
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 16, Issue 2, Ver. II (Mar-Apr. 2014), PP 04-14

www.iosrjournals.org

www.iosrjournals.org 4 | Page

Agile Web Service Composition and Messaging approach for

e-Government services

Avinash Ramtohul
1
, Prof. K.M.S Soyjaudah

2

1
PhD Student, Faculty of Engineering, University of Mauritius
2
Professor, Faculty of Engineering, University of Mauritius

 Abstract : E-Government services are increasingly being deployed using service-based architectures.

Individual web services, developed from legacy and modern firmware, are composed to achieve e-service

delivery. Current web service composition approaches range from practical languages aspiring to become

standards (like BPEL, WS-CDL, OWL-S and WSMO) to theoretical models (like automata, Petri nets and

process algebras). In this work, current approaches were studied and a comparison of their features and

weaknesses was carried out. It was observed that current composition mechanisms are static and not agile

enough to cater for functional change in business needs. This paper proposes a new web service composition

and messaging mechanism for electronic government services in which composition of web services is done

dynamically to provide for more agility in government e-services. The proposed composition mechanism works

on a software architecture which enables application software integration. This architecture has been

developed to deploy end-to-end e-services to G2B, G2C and G2G users starting from legacy government

software applications. Using the proposed approach, integrating back-end e-Government applications to deliver

end-to-end e-services can be agile, simpler and faster. The main contribution of this paper is the novel dynamic

web service composition mechanism.

Keywords: e-Government, SOA, Business Process Management, Software architecture

I. INTRODUCTION

Web services (WSs) are software modules which combine and interact with each other. One of the

main features of WSs is re-usability. Generally, the higher the granularity of WSs, the more is the re-usability

and the number of web services. However, a higher number of web services entail a more complex composition

and execution of web services. Composition rules describe how to compose web services in simple and complex

environments. Fundamentally, they specify the sequence in which, and the parameters under which, Web

Services may be invoked. There are two types of WS Composition mechanisms: Syntactic (XML-based) and

Semantic (ontology-based). Research on web services focuses on how to formally specify them, compose them

in an automated manner, expose them on a network and validate their functionality. Business process

automation creates the underlying engine on which web services work. Among the most important business

process automation technologies are Business Process Execution Language for Web Services, BPEL[1] and the

Web Services Choreography Description Language WS-CDL[2]. These languages support mostly static WS

composition due to inadequate semantic representations of WSs available on the Internet. Consequently, various

solutions were proposed by the Semantic Web community and other working groups. These include the Web

Ontology Language for Web Services, OWLS[3] and the Web Service Modeling Ontology WSMO[4].

Web service composition methods have been a subject of active scientific study. While some

researchers focused on Web service composition and related aspects[5] [6], others explored the QoS

dependencies[7]. Further work was done on pre-/post-conditions of web service composition[8-12]. The study

of the importance of user constraints and preferences revealed interesting impact on web service composition

patterns[13-15]. Consideration of the user context and complex dependencies between services and the

transactional behavior of Web service compositions was also studied. Current research focuses on aspects such

as quality of service and pre/post conditions. A SOA based architecture and a novel approach for rapid web

service development and deployment of e-services on existing legacy e-Government application systems was

also developed[16]. In the field of web service composition, researchers argued that the main weakness of

existing methods is their inability to dynamically compose web services depending upon the business context,

especially in e-Government systems.

No in-depth research seems to have been undertaken to define agile web service composition methods

in the field of e-Government. Given the increasing need for agility in e-Government services, dynamic web

service composition to develop and deploy e-services is more than ever important. In this paper, a new and agile

web service composition and messaging method for developing and deploying e-Government services, is

proposed. Based on semantic WS composition, this new method can automatically compose web services

depending on the business context. Therefore, the proposed method enables business processes to be

Agile Web Service Composition and Messaging approach fore-government services

www.iosrjournals.org 5 | Page

dynamically constructed and executed using a superset of pre-defined web services, thus increasing the agility

of e-Government software systems and e-services. This method uses the concept of doubly linked-lists to

represent e-Government service flows on main memory. Therefore, business process execution thread reads

business context parameters (contained in nodes of linked lists) and dynamically chooses web services to

compose with (by traversing the linked list dynamically wherever a pointer/link exists).

II. SYNTACTIC WS COMPOSITION METHODS AND LIMITATIONS

There are two main approaches for composition of syntactic Web services. Referred to as ‗WS

orchestration‘, the first approach composes WSs and controls execution by using a central coordinator known as

‗Orchestrator‘. The main function of the orchestrator is to invoke and combine granular software functions and

modules. The second approach is called ‗WS choreography‘ which does not use a central coordinator. This

approach uses the definition of the conversations between each pair of WS to specify the composition that

should take place; the overall definition is obtained by combining the flow of peer-to-peer conversations

between WSs. Though there are several proposals for orchestration languages, BPEL has emerged as the most

important one. However, the choreography technique did not develop any further[17].

BPEL4WS is an XML-based language designed to combine, coordinate and execute web services. This

language is based on the Web Services Description Language WSDL, an interface description language for WS

providers. BPEL4WS uses a workflow approach in order to execute WSDL. The workflow expresses

relationships and web service interactions using control and data flow links. BPEL4WS can be executed in

centralised or distributed models using variables to carry data. Process definitions represent the main construct

for modeling the flow of WSs.

WS-CDL is an XML-based specification language which works on composition of interoperable web

services. Further, long running, peer-to-peer collaborations between WS participants with different roles can

also be specified by WS-CDL. A choreography description defines the composition of participating Web

Services. The most important element of WS-CDL is the INTERACTION activity which describes an

information exchange between parties. This interaction creates message transfer from one web service to

another, but focus is laid on the receiver. During any interaction, three elements are considered: Communication

with the participants, Information which is being communicated and the Channel through which information is

transferred. Management of exceptions and compensations is done through ‗exception and finalizer work units‘.

Data, in form of messages, is transferred between participants and represented using variables and tokens. The

XML schema or WSDL contains the definitions of the data type for these variables and tokens. Channels are

used to define the way in which message exchanges take place between Web Services. These activities are

synchronised as a work unit. The latter defines the pre-conditions that must be satisfied for the activity to

continue.

III. SEMANTIC WS COMPOSITION METHODS AND LIMITATIONS
Available Web Service technologies cater only for the syntactic aspects of WSs resulting in a set of

rigid WSs that are static and unable to adapt to variations in the environment. Such variations can only be

handled programmatically following human intervention. Two main initiatives are discussed, namely, Ontology

for Web Services Logic Semantic (OWL-S)[18], and Web Services Modeling Ontology (WSMO) developed by

the WSMO working group. The former defines an ontology for the semantic markup of Web Services. This

ontology aims at enabling the automation of WS development Cycle, ranging from discovery through

invocation, composition, interoperation and execution monitoring by providing appropriate semantic

descriptions of WSs. The WS Modeling Ontology WSMO aims at creating an ontology which will describe

various aspects related to semantic WSs for solving software integration problems. OWL-S and WSMO both

share the same goal of providing an industry standard for semantically describing Web Services.

OWL-S specifies web service semantics using four elements, namely, Service profile, Service model, Process

model and Service grounding. The concept of SERVICE defines a starting point for the web service to have a

context. The Web service is declared by creating a SERVICE instance which links the remaining three elements

of a Web Service through properties such as PRESENTS, DESCRIBEDBY and SUPPORTS. The SERVICE

PROFILE defines what a WS does from a high-level perspective. The functional and non-functional properties

of the Web Service are described. Therefore, using the Service profile, both the web service provider and

consumer can specify the functional properties of WS. The Service model uses the Process model to define the

main and sub processes and describes how a WS achieves its intended functionality. Finally, Service grounding

describes how WS can be invoked.

In WSMO, the conceptual design set up in the WS Modeling Framework (WSMF)[19] is used to

specify Web service semantics. WSMF includes four distinct elements, namely, ontologies, web Services, goals

and mediators. WSMO uses these elements to further refine the semantics. The key element is ontologies since

they contain the super set of domain-specific terminologies which describe the other elements. Further, they

Agile Web Service Composition and Messaging approach fore-government services

www.iosrjournals.org 6 | Page

bridge human and machine terminologies by formal semantics. Web Services run on industry standard protocols

such as http in order to exchange and combine messages and data. Properties of ontologies can be described

from three different angles: behavioural, functional and non-functional. Goals specify the objectives of a client

when consulting a WS, i.e. the functionalities a WS should provide from the user‘s perspective. Mediators,

finally, aim to overcome the mismatches appearing between the different elements constituting a WSMO

description. Their existence allows links among both homogeneous and heterogeneous systems.

The first limitation is that OWL-S does not separate end-user needs and the available functionality of Web

Services. The name, human-readable description and contact information are not expressed in a standard

metadata format. The service profile is expressed differently in WSMO which recommends acceptance of a set

of agreed vocabularies such as the Dublin Core[20]. Moreover, WSMO supports the expression of non-

functional properties using any WSMO element, but in OWL-S only service profile elements can be used to

define non-functional properties. Further, the service model of OWL-S does not differentiate between

choreography and orchestration since no formal model is available. It should be noted, however, that some work

on defining the formal semantics of OWL-S processes has been completed. In summary, orchestration describes

how other Web Services are composed in order to achieve the required functionality of the WS while

choreography describes the external visible behavior of the WS.

IV. PROPOSED COMPOSITION AND MESSAGING APPROACH
This section discusses the novel agile web service composition and messaging method which addresses

the lack of dynamic web service composition in existing methods. Based on semantic WS composition, this new

method can automatically compose web services depending on the business context. Therefore, this method

enables business processes to be dynamically constructed and executed using a superset of pre-defined web

services. The proposed composition and messaging method uses an orchestration mechanism based on semantic

web service composition. It has been developed in the context of an overall framework, called Service-based

architecture for e-Government (SBA-eGOV) designed for implementing service orientation to deploy secure e-

services onto an existing e-Government infrastructure shown in fig. 1.

To explain the design and workings of the proposed composition and messaging method, it is important to

briefly discuss this framework. The principles of SBA-eGOV are:

(i) Integrate back-end legacy systems to develop/implement web services.

(ii) Use a business process driven approach to compose web services and deploy G2C, G2B and G2G e-

services.

(iii) Enable messaging between web services

This paper focuses on composition and messaging principles of SBA-eGOV. Semantic composition approaches

bridge machine and human terminologies by formal semantics which can be expressed as special notations and

mapped onto a process flow. Generally, every G2B, G2G and G2C service has a pre-defined flow that maps onto

one or more web services. For example, an e-service that allows citizens to obtain an appointment for their

Figure1: Architectural map of e-Government using SBA-eGOV

e-Government

applications

Agile Web Service Composition and Messaging approach fore-government services

www.iosrjournals.org 7 | Page
Figure 3: Web Service sequencing for e-service: Request for appointment for vehicle examination

vehicle fitness examination invokes the web service appointment_for_ veh_fitness_test, which, in turn invokes

several other web services before responding to the end-user.

The set of web services invoked also include those, which read data from the source software systems and

execute built-in logic.

To create e-service from source systems (e.g. Pension systems, Recruitment system, Scholarship management

system), the latter systems need to expose a set of interacting web services deployed on a portal. SBA-eGOV

enables integration between source systems so that their native functionality can be deployed as simple or

composite web services. Composition and messaging is done by e-service Sequencer and the Messaging layers

of the SBA-eGOV software architecture. The Data Abstraction layer reads data from source systems using

Simple Object Access Protocol (SOAP) and sends the data for processing to the Web Services Logic layer. The

latter consists of the business logic which processes data read from source systems by the Data Abstraction

layer. The software architecture presented in fig. 2 shows the various layers discussed in this section.
Execution of the web services logic is controlled using the e-service sequencer which also handles composition

and messaging of web services. The presentation and registry layers maintain information on web services and

information on how to call them. In order to illustrate how the proposed composition and messaging scheme

works, the following web services are used.

Web_service (check_veh_details) is a web service exposed by the Vehicle Registration Authority information

system, which houses a database of vehicles. It checks the registration number of the car against the National

Identity Number of the owner supplied by the citizen accessing the appointment_for_veh_fitness_test e-service.

It also checks the registered address of the vehicle and selects the closest vehicle examination centre location.

Appointment_for_veh_fitness_test e-service is a service provided to citizens on the portal for booking an

Figure 2: SBA-eGOV architectural model

Agile Web Service Composition and Messaging approach fore-government services

www.iosrjournals.org 8 | Page

appointment for vehicle examination.

Web_service (generate(reference number, date time, fitness test location id)) is a web service that selects the

location of the vehicle examination centre, reads the available slots for vehicle examination and generates a

reference number, date and time of appointment.

Web_service (display_available_slots) is a web service, which displays the set of available slots. It also

prompts the user to select an available slot from the list.

SBA-eGOV interacts with legacy systems to read, write and process data. The web services that are exposed by

back-end e-Government applications implement abstraction of data to hide the complexity of data structures and

present data as objects. For instance, in the scenario of fig. 3, the Vehicle Registration System, exposes vehicles

as an object, accessed by a web service known as check_veh_details.

A. Presentation and Registry

While all other layers of SBA-eGOV are transparent to the end-user, the presentation layer consists of a

mechanism to expose web services to users. An overview of web services and their input/output parameter

specifications are displayed to users and to other web services wishing to consume web services from this

provider.

Web services exposed on this layer can be composite or simple. A composite web service is a

sequenced collection of several web services for deploying an e-service completely or partially. For example

Apointment_for_veh_fitness_test is a composite web service consisting of simple web services such as

Check_veh_details and Check_availability_of_slot. Simple web services are re-usable components within SBA-

eGOV. Check_veh_details can be shared with another web service which can also be accessed by the Law

enforcement division for investigation purposes. SBA-eGOV implements Web Services Registry using a

database table. Table 1 holds information about all web services covering all events in their life cycle, ranging

from creation to deletion.

B. E-service Sequencer, messaging and web services logic

Composing, sequencing and messaging play a major role in any service-based architecture and can be

of type orchestration or choreography. This section discusses the proposed method, based on orchestration, for

achieving these major functions. The process of calling and executing several web services in a given

chronology is referred to as composing web services. Exchange of information between web services is called

messaging.

Using the sequencing feature of the proposed web service composition method, a complete business

flow can be represented in form of web services. Thus the sequencer becomes aware of business processes. The

e-service sequencer therefore replaces the Orchestration layer found in traditional SOA framework.

Table 1: Web services registry implementation using database table

Web

Service ID

Web service name Web service description Web service

input

parameter

name and

type

Web service output parameter

name and type - Data structure

WS001 Check vehicles details

implemented as

Check_veh_details

Checks the details of vehicles

including registration mark

Vehicle

registration

mark, NID

Make, model, engine rating

WS002 Check availability of slot
implemented as

Check_availability_of_slot

Verifies availability of the
requested slot for appointment

Date/time 1: Available
0: Not available

Agile Web Service Composition and Messaging approach fore-government services

www.iosrjournals.org 9 | Page

Figure 4: High-level representation of a typical business process

Appointment_for_veh_fitness_te

st

Read vehicle details

Check_veh_details

Check availability of slot

Display message

Msg=‖Invalid Data‖

Msg=List of available slots

Msg=Reference number of

appointment

The sequencer

(i) executes pre-defined business flows in a sequence

(ii) makes calls to web services based on a business process flow

(iii) sends and receives messages in form of parameters to and from web services

1) Translating business flows into web services

A business process can be broken down into sub-processes or modules and hence in form of sequenced

process flow, consisting of sequenced sub-processes. A business process can be sequenced

manually/programmatically or using a process-modeling tool. Fig. 4 shows the business flow of an e-service,

Appointment_for_veh_fitness_test, represented in form of sub-processes. Since the flow is sequenced, the sub-

processes are also sequenced.

In traditional business process management notification methods (BPMN), these processes can be

stored in form of XML files. The proposed method represents business process flows in terms of doubly linked

lists. A linked list is a data structure for storing relational information in active memory. Linked lists consist of a

collection of nodes (memory addresses) pointing in a single direction (singly linked lists) or in both directions

(doubly linked lists). In the process flow of fig. 4, each process box is a node of a doubly linked list. Each node

represents a call to a web service and sends the relevant parameters in form of a data structure to the next node

(right, top or bottom). Every node of the linked list contains a data structure that stores sequencing information

and data messages. This enables the current node to know which node it should point to and what parameters the

next node will require.

2) Defining business flows using linked lists

Linked lists are capable of holding data structures of complex nature. Every node has storage capacity

for storing information and can also be linked to others nodes. Generally, a linked list is identified and accessed

using a handle, known as pointer, which points to a memory address. Once identified, the first pointer is used to

access all the nodes of a list. Using this mechanism, the linked list can be accessed sequentially from one end to

the other. Linked lists can also be extended to point to as many nodes as required. This property provides the

possibility of using linked lists to model business processes by representing processes as nodes and process

branches as pointers, illustrated in fig. 5.

As described earlier, a process or sub-process box represents a call to a web service. Since a process

can be modeled using a linked list, every node therefore, represents a call to a web service. Hence, using the

Agile Web Service Composition and Messaging approach fore-government services

www.iosrjournals.org 10 | Page

example of appointment_for_veh_fitness_test e-service, the process flow of fig. 4 can be mapped onto a linked

list to represent a complete business flow, shown in fig. 6. Thus, nodes can be referred to as web services and

linked lists referred to as processes. All the nodes have the same data structure that stores information about the

current node, the next node and the web-service(s) to be called. Information on parameters and their values are

exchanged among web services (nodes) through the pointers which point to each other (left, right, top, bottom)

in the linked list. The process flow could have been represented by a singly linked list; however, parameter

values required by the current node are always stored in the previous node. Hence, it is important for a node to

be able to traverse back to the previous node to read the parameter values. Web service execution requires

parameter values that are computed in the node that precedes the current node. Therefore, the current node has

to use the back or top pointer to read data of the preceding node. Using this mechanism, SBA-eGOV

implements exchange of data between web services. Every node can hold 50 parameters. It is also possible to

extend the list to accommodate more parameters. Below is the algorithm to create the data structure for the

linked list.

1: Define structure for the linked list nodes

2: Initiate variables

Linked list

node

Process A box

Next node Next process,

C

Next process,

B

Figure 5: Using linked lists to represent process flows

Linked list view Process flow view

Figure 6: Representing a process flow in a linked list

Appointment_for_veh_fitn

ess_test

Read vehicle details

Check_veh_details

Check availability of slot

Display message

Msg=‖Invalid Data‖

Msg=List of available slots

Msg=Reference number of

appointment

Pointer to the linked list

X

Agile Web Service Composition and Messaging approach fore-government services

www.iosrjournals.org 11 | Page

3: Define variables for storing web_service_id, web_service_name, web_service_url

4: Define array to store parameter names and parameter values

5: Define pointers which point to right, left, up and down

This structure defines the contents of every node of the linked list and contains meta-data regarding the web

service, metadata of parameters and links the node to other nodes as per the process definition. Further, the data

structure also creates the necessary links to other nodes in order to represent the business process.

3) Messaging: Data exchange among web services

The use of doubly linked lists provides the possibility of accessing the previous and the next node from the

current node. Any node can also read parameter values from any other node in the list. This feature is critical in

the proposed messaging mechanism as it allows moving data from one web service another. Thus data can be

transferred from one web service to any other linked web service in the business process. The next algorithm

shows how the linked list is built and how data is exchanged between web services.

1: Allocate memory to new node having the structure defined above

2: Read the web service id from the Registry layer when user clicks on an e-service

3:Name linked list as 'Appointment_for_veh_ fitness_test'. This is also the e-service name

4: Write value of the web_service_url onto a variable 'http://www.mauritius.gov/webservices

/Appointment_for_veh_fitness_test?'

5: Let web_service_id= '101', Obtained from the web-services registry

6: Let web_service_name= 'Appointment_for_veh_ fitness_test'

7: Build the web service call URL by using the parameter values read from the user

8: Set values web_service_msg_param_name to veh_registration_mark value is ‘AC 22’

9: Set web_service_msg_param_name to veh_owner_NID and value to 'R1510198523255'

10: Set web_service_msg_param_name to 'Appt_date' and value to '5-Jan-2012'

11: Point node to null

4) Sequencing web services

The vehicle details shown above are entered by citizens on the portal, captured by an HTML interface and sent

to the web service appointment_for_veh_fitness_test using POST method. This web service generates the linked

list shown in fig. 7. The main pointer is called ‗Head‘ and is the first node in the list. A second node, Node 2, is

then created. This node calls the web service

check_veh_details by using the vehicle parameters that

are located in the first node. These two nodes are shown

in fig. 8. Check_veh_details validates the vehicle

registration mark against the owner‘s national identity

number. The result of this validation check is then stored

in the current node, i.e. Node 2. This composition and

messaging method also has the capability of handling

‗if…then‘ by branching the linked list right, left, top or

bottom in order to create or access the next node. Thus,

decision boxes appearing in process flows are also

implemented using linked lists. Inherently, the

branching can be dynamic depending upon the parameter values and the outcome of the validation checks. The

next algorithm creates the second node, Node 2, which has double links to the first node.

1: Start second node and allocate memory

2: Set the web_service_id to ‘102' which is an identifier of the next web service which is composed with web

service 101 to deliver the e-service invoked by the end-user

3: Set web_service_name to 'check_vehicle_details' read from the web services Registry using identifier of

Step 2 , i.e. web service ‘101’2.

4: Set the web_service_url to the web service name: 'http://www..gov.com/webservices/check_vehicle_details?'

and value to the output returned by web service 102.

6: Store parameter names and values in the linked list as obtained from the user.

7: Link this node with the previous one using 2 links

8: Build the URL with these values and point to the next node. The URL contains the host name, port, next web

service name and parameter values

9: Point node to null.

Figure 7: Building up the linked list for this web service

Figure 7: Building up the linked list for

sequencing business processes

Veh_regi

stration_

mark =

‗AC 22‘

Hev_ow

ner_id='

R151019

8523255

Appt_dat

e=‘5-jan-

2012‘

Head

X

Agile Web Service Composition and Messaging approach fore-government services

www.iosrjournals.org 12 | Page

Head

X

Veh_registration_mark= AC2

owner_nid=R1510198523255 Check_veh_details

Web service returns ‗OK‘

Data is read from the previous node

Node: 2

Veh_info_validity_status

=‘OK‘

Veh_registration_mark =

‗AC 22‘,Hev_owner_id=

'R1510198523255, Appt_date

=‘5-jan-2012‘

Figure 8: Messaging between web services

Veh_appt

e-service

Node 2 calls the web service check_veh_details by using the vehicle parameters that are located in the first node,

shown in fig. 8. This check validates the vehicle registration mark against the owner‘s national identity number.

The result of the call to the web service check_veh_details is then stored in the current node, i.e. Node 2. This

composition and messaging method also has the capability of handling ‗if…then‘ by branching the linked list

right, left or bottom to create the next node. Decision boxes appearing in process flows, can be implemented

using linked list. Inherently, the branching can be dynamic depending upon the parameter value and the check

conditions.

if the parameter value = '1'

then branch to the right node and create a link back to the previous node

else

branch to the bottom node

create a link back to the top node

If the result is ‗OK‘ the next node is created and makes a call to another web service for checking the

availability on the requested date. An appropriate error message is recorded in the web service node ‗display

message‘ for all the possible cases as shown in the fig. 9.

Using doubly linked lists, web services can be composed in order to execute business processes and hence e-

services. Fig.s 7 and 8 show how the proposed method can be used to address dynamic web service composition

and messaging. Using the same approach, the complete business process is constructed as shown in fig. 9.

V. RESULTS
This paper has successfully shown how an e-service can be developed and deployed using the proposed

agile web service composition and messaging approach. A typical e-service, appointment for vehicle was used

as an example to illustrate the method and its working. The service was broken down into modular business

processes and web services. Further, these web services were logically sequenced and messages were passed

from one web service to another so that information can be exchanged. Using the proposed method for web

service composition and messaging, the appointment_for_veh_ fitness_test e-service was successfully

implemented. The screen shot is shown in fig. 10.

Agile Web Service Composition and Messaging approach fore-government services

www.iosrjournals.org 13 | Page

VI. CONCLUSION

This work analysed syntactic and semantic web composition approaches and discussed the strengths

and weaknesses of available methods. Further, the paper proposed a novel approach for agile web services

composition, sequencing and messaging mechanism as part of an overall framework called SBA-eGOV. An

example of an e-service has been used to successfully test and illustrate how the proposed method can be used to

deploy the e-service. One of the main weaknesses of the existing methods is their inability to dynamically

compose web services. The proposed method has the ability to compose web services based on the evolution of

parameters as processes are executed, hence dynamically. The example used has successfully shown how

existing web services can be dynamically composed.

This work focused on agile composition of web services and did not dwell in details concerning

security of messages, an area of further research. For instance, in the proposed approach, data messages are

exchanged between web services in form of parameters. These messages are transmitted in clear text, hence

inducing a security flaw in the system. The proposed model should therefore be extended so that data messages

are encrypted before transmission. The encryption key should not be included in the data message. This

mechanism will secure data messages. A second area of further research pertains to access control of web

services. Not every user or web service should be allowed to access every other web service. Therefore a central

Role-Based-Access-Control (RBAC) specification should be implemented on top of the proposed model for

agile web service composition. Implementation of these two security measures will result in a fully

implementable agile web service composition method.

Head

Veh_registration_mark= AC22

owner_nid=R1510198523255
Check_veh_details

Web service returns ‗OK‘

Node: 2 If

check_veh_status=‘0‘

then create node on right

and link else create node

bottom and link

Node: 1

Veh_registration_ mark =

‗AC 22‘

Hev_owner_id='R151019

8523255‘

Figure 9: Messaging between web services

Veh_appt

e-service

Node: 3

Read previous node for

vehicles details.msg = ‗Invalid

Data‘

Node: 3 Check availability

of requested slot

Node: 4

Display message (msg)

defined in the previous node

X

Display ‗msg‘

Read msg

Agile Web Service Composition and Messaging approach fore-government services

www.iosrjournals.org 14 | Page

References

[1] IBM 2007. Business Process Execution Language for Web Services version 1.1 BPEL 1.1. Available:

http://ibm.com/developerworks/library/ws-bpel, Accessed Dec 2011
[2] Kavantzas, D. Burdett, and G. Ritzinger 2004. WSCDL v1.0. Available: http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/

[3] Ankolekar et al., 2007, DAML-S: Web Service Description for the Semantic Web in Proc.

[4] WSMO working group, 2008. Available: http://www.wsmo.org. Accessed Sep 2011
[5] Bartalos et al. 2011. Effective Automatic Dynamic Semantic Web Service Composition. Information Sciences and Technologies

Bulletin of the ACM Slovakia, Vol. 3, 2011, No. 1, pp. 61–72.

[6] Dustdar 2008 et al.. M. P.: Services and Service Composition – An Introduction (Services and Service Composition – Eine
Einf¨uhrung). IT – Information Technology, Vol. 50, 2008, No. 2, pp. 86–92

[7] Agarwal et al 2005. User Preference Based Automated Selection of Web Service Compositions. In ICSOC Workshop on Dynamic

Web Processes, 2005,pp. 1–12.
[8] Zh.—Jiang et al. 2009. Effective Pruning Algorithm for QoS-Aware Service Composition. In Int. Conf. on E-Commerce

Technology 2009, IEEE CS 2009, pp. 519–522.

[9] Huang et al, 2009. Effective Pruning
[10] Bellur et al., 2009 H.: On Extending Semantic Matchmaking to Include Preconditions and Effects. In ICWS ‘08: Proceedings of the

2008 IEEE International Conference on Web Services, Washington, DC (USA), 2008, pp. 120–128.

[11] Kirci Ozorhan et al. 2010. Automated Composition of Web Services With the Abductive Event Calculus. Information Sciences,
Vol. 180, 2010, pp. 3589–3613, ISSN 0020-0255.

[12] Urbieta et al. 2008. Analysis of Effects- and Preconditions-Based Service Representation in Ubiquitous Computing Environments.

International Conference on Semantic Computing, Los Alamitos, CA (USA), IEEE Computer Society 2008, pp. 378–385
[13] Gamha et al. (2008). A Framework for the Semantic Composition of Web Services Handling User Constraints. In ICWS ‘08: Proc.

of the 2008 IEEE Int. Conf. on Web Services, IEEE CS 2008, pp. 228–237.

[14] Karakoc 2009. Composing Semantic Web Services Under Constraints. Expert Syst. Appl., Vol. 36, 2009, No. 8, pp. 11021–11029.
[15] Lin et al. 2008. Web Service Composition With User Preferences. In European Semantic Web Conference 2008, Vol. 5021 of

LNCS, Springer, 2008, pp. 629–643

[16] Avinash Ramtohul, University of Mauritius. Mphil/PhD Transfer report, Service Based Architecture for enabling effective e-
Government in Mauritius 2011. Pp 22-24

[17] Maurice ter Beek, Antonio Bucchianrone, Sfefania Gnesi 2007. Web Service Composition Approaches: From Industrial to Formal

Methods. Second International Conference on Internet and Web Applications and Services, ICIW 2007, May 2007, Mauritius.

[18] McGuinness and F. van Harmelen. 2009. OWL Web Ontology Language Overview. Available: http://www.w3.org/TR/owl-

features/. Accessed on Jan 2011.

[19] Fensel and C. Bussler, 2009. ―The Web Service Modeling Framework WSMF,‖ Electr. Commerce Res. Apps., vol. 1, no. 2, pp.
113–137.

[20] Weibel et al. 1998 Dublin Core Metadata for Resource Discovery.IETF 2413. Available: http://www.ietf.org/rfc/rfc2413.txt,

Accessed on Oct 2013.

Figure 10: Screenshot showing the results of the web service appointment_for_veh_ fitness_test

http://ibm.com/developerworks/library/ws-bpel
http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/
http://www.wsmo.org/
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl-features/
http://www.ietf.org/rfc/rfc2413.txt

