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Abstract: Routing in delay tolerant networks (DTN) can benefit  from  the  fact  that  most  real  life  DTN,  especially  in 

the  context  of  people-centric networks  (e.g.  Pocket  Switching Networks (PSN)), exhibit some sort of periodicity in their 

mobility patterns. For example, public transportation networks follow periodic schedules. Even most individuals have fairly 

repetitive movement patterns, for example, driving to and from work at approximately the same time everyday. This paper 

proposes a BayesiaLab tool based DTN routing framework that adopts a  methodical approach for  computing the  

routing metrics by utilizing the network parameters (e.g. spatial and temporal information at the time of packet 

forwarding) that capture the periodic behavior of DTN nodes. After the calculation of routing metrics, different routing 

instantiations are possible based on this framework. We simulate a real-world vehicular DTN network using mobility traces 

from a metropolitan public transportation bus network and demonstrate that even a simplistic single-copy forwarding 

scheme based on our framework outperforms existing gradient-based single copy schemes by 25% in terms of delivery ratio. 

To the best of our knowledge this work is one of the first studies that adopts Bayesian inference in the context of DTN 

routing. 

 

I.  Introduction  
Delay Tolerant Networks (DTN) [3] are a class of challenged networks wherein the node contacts 

are intermittent and disconnections are common place. To deal with this episodic connectivity in DTN, the 

proposed routing strategies rely on the inherent mobility of the participating nodes to store-carry-and-

forward [1] the messages for delivery to the destination. Such networks are well-suited in areas where there is 

no communication infrastructure due to harsh environments (battlefields, forests, space) or economic conditions 

(rural and remote areas, developing countries). Two particularly attractive instances of people-centric DTN 

include (i) Pocket Switched Networks (PSN) [7], wherein personal communication devices carried by humans 

self-organize to form an intermittently connected network, thus enabling a new class of social net- working 

applications (e.g. PeopleNet [15]) and (ii) Vehicular DTN, which can leverage the large data storage and energy 

capabilities offered by vehicles to create a large-scale powerful DTN.  Examples  include  the  use  of  vehicle-

based DTN  to provide low cost digital communication to remote villages [16] and vehicular sensing platforms 

such as CarTel [9] for urban monitoring. 

Over  the  past  years,  several routing schemes have  been proposed for DTN (an overview of these can be 

found in [11]). 

A particularly effective forwarding principle that is often em- ployed is gradient routing [11], wherein 

the message tends to follow a gradient of increasing utility function values towards the destination. The utility 

function serves as the routing metric and is based on a variety of parameters, which depend on the a priori 

information about the network characteristics, such as: last encounter [2] with the destination, encounter 

frequencies of nodes [1], etc. 

However, most of the schemes (e.g. [14], [1]) need to maintain routing metrics for all potential destinations, 

which is clearly not scalable, particularly for large-scale DTN (e.g. PSN or vehicle-based DTN). A more 

scalable approach, presented in [8], involves grouping of the nodes into a finite set of classes based on certain 

community affiliations (i.e. institutional affiliation) that exist amongst the nodes. Consequently, nodes only need 

to maintain routing metrics on a per-class basis. The goal is to transfer the message to any node that belongs to 

the same class as that of the destination since members of the same class have a high likelihood of encountering 

each other. However, this type of simple classification may be harder to achieve in larger and complex 

networks such as people-centric DTN because it is not obvious how and which properties should be utilized for 

the classification purpose. 

In most people-centric DTN, the mobility patterns of the nodes generally exhibit some level of time 

periodicity. For example, public transport buses follow fixed schedules and routes; also individuals often follow 

repetitive patterns, for example - driving to and from work at the same time every weekday. Given that the 

mobility of most real-world DTN follow repetitive patterns to some extent, statistical approaches are particularly 

suitable for the above mentioned classification of nodes. In this paper, we present a novel routing framework, 

which utilizes the concept of Bayesian classification [6] for determining the class membership probabilities. 

The simplicity and accuracy of Bayesian classifier [6] make it an attractive candidate for this classification 

problem. In our approach the computation of these class membership probabilities relies on the availability of 
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historical statistics about relevant network parameters (e.g. node mobility traces, node encounter statis- tics, 

etc.). After computing class membership probabilities, our routing framework employs class-based gradient 

routing similar to the ideas presented in [8]. The use of posterior probabilities in computing class membership 

enables us to accommodate more information as compared to prior probabilities. 

For example, in vehicular DTN, packet forwarding behavior varies in different periods of a day due to 

heterogeneous traffic patterns throughout the day. Also landmarks like bus-stops are good place for packet 

forwarding since there is a high likelihood of finding a suitable forwarder in those areas. The effect of these 

additional attributes (e.g. time, location) can be factored in methodically by using posterior probabilities. 

In particular, we make the following contributions: 

• We introduce an extensible routing decision framework based on Bayesian classification, which seamlessly 

inte- grates knowledge about network characteristics and node mobility patterns in order to make better routing 

decision. 

• We  present  a  simple  instantiation  of  our  framework, referred to as Bayesian, which uses two simple 

classes based on prior packet delivery statistics. The routing metrics employed are posterior delivery 

probabilities conditioned on two attributes, location and time. 

• We  demonstrate the  efficacy of  our  approach through simulation-based evaluations using mobility traces 

of a realworld public transport network. The simple Bayesian scheme achieves a 25% improvement in the 

packet delivery ratio as compared to that of MaxProp [1], an effective routing protocol that employs prior 

probabilities. 

The rest of the paper is organized as follows. Section II provides an overview of related work. Section III 

presents our proposed Bayesian classifier based routing decision frame- work. A detailed example illustrating the 

use of this framework is  also  provided. Section  IV  presents  the  simulation-based evaluation of our scheme 

and compares it with other routing strategies. Finally, Section V concludes the paper. 
 

II.     Related Work 
The idea of using prior information about network char- acteristics  has  been  proposed  in  prior  

literature  [1],  [14], [2], [4], [11]. For example, the routing schemes proposed in [2] and [4] maintain age-of-

last-encounter timers and choose a  forwarding node  that  has  most  recently  encountered the destination. In  

general, most of  those routing schemes are based on the principle of Gradient Routing [11]. The basic 

idea is to transfer the message to the contact that has better delivery metric than the current incumbent. Lindgren 

et al. [13] introduced a probabilistic routing strategy wherein each node maintains a utility function, which is an 

exponential weighted moving average of prior contact probability for every other node. This utility function is 

then used as a metric for gradient routing. Burgess et al. [1] use incremental averaging of node encounters to 

calculate the delivery predictability. 

However, most of the above mentioned stochastic routing protocols use  prior  probabilities (i.e.  the  

probability of  an event regardless of other events) in making a routing decision. For example, MaxProp [1] 

uses unconditional encounter-based prior probabilities to calculate shortest path. On the contrary, our  proposed 

decision model  is  based  on  posterior probabilities, i.e., the probability of an event when relevant other 

attributes are taken into account. Consequently, this enables our scheme to make a more informed decision 

in choosing suitable forwarders and thus improves the routing performance in terms of delivery ratio. 

In machine learning research, studies [12] comparing classification algorithms have found that even 

a naive Bayesian classifier performs comparably with Logistic Regression and Support Vector Machine . Text 

classification, weather predition, large database management (e.g. in NASA’s space flight centre) are some of 

the practical uses of Bayesian classifiers. To the best of our knowledge this is one of first attempts at 

adopting bayesian inference in DTN routing. 

 

BayesiaLab  

A single tool for all your Decision Support and Data Mining Tasks  

  

• Bayesian networks will allow you to model your expert knowledge relative to risk, fraud, customer s’ behavior 

…The graphical representation of Bayesian networks and the BayesiaLab’s ease of use make it a invaluable 

Brain Storming and communication tool.  

• You will be able to exploit all the power of unsupervised learning to extract from your data bases the set of 

probabilistic relations that are really significant. This kind of learning is a real knowledge discovery tool and is 

very helpful for the understanding of your problems.  

• Supervised learning will allow you to characterize your target variable. This variable will represent, for 

example, the fraud, the propensity to buy a product, or the customer satisfaction. The evaluation of the 

automatically learnt Bayesian network on an independent test set (cases that have not been used for learning) 

will return you the model global precision, its confusion matrix (occurrences, reliability and precision) that will 



 

Routing Framework for Delay Tolerant Networks using BayesiaLab 

www.iosrjournals.org                                                     46 | Page 

enable you to precisely know the prediction behavior of the network. You will also have an interactive lift curve 

that will help you finding the threshold representing the best economic compromise for your marketing actions.  

• You will also be able to exploit the powerful Markov Blanket Learning algorithm for the selection of the 

minimal subset of variables that are really useful with respect to the target variable. 

 • Clustering of your data bases will enable you to discover groups of homogeneous individuals sharing the same 

characteristics. The HTML report that will give you the probabilistic profile of each identified cluster will help 

your experts to put a name to these clusters and to use them in your marketing campaigns.  

• If Expert knowledge is available, BayesiaLab will rigorously merge it with your data bases.  

• BayesiaLab will enable you testing levers effects (e.g. action for image improvement or for training) by 

manually adding nodes to your learnt networks. By associating cost nodes to these levers, you then will be able 

to evaluate various action policies.  

• The BayesiaLab’s adaptive questionnaires will return you the most relevant questions with respect to the 

information brought to the knowledge of your target variable and with respect to the cost associated to 

questions. A new set of ordered questions will be automatically returned after each answer.  

• You will be able to use your Bayesian networks off-line to automatically classify new cases described in a data 

base. Two additional fields will be added to each case: the predicted value and its probability.   

• By using the BayesiaLab’s analysis toolbox, you will really be able to understand your data: analysis of the 

strength of the relations, analysis of the interaction between your target variable and the other variables, analysis 

of the relations linking all the variables with a specific value of the target variable, contradiction analysis to 

know if all the evidences support the same conclusion or if there are some contradicting evidences, causal 

analysis to transform the arcs that can be inverted without changing the probabilistic meaning of the network 

into edges.  

• You will be able to “play” with your networks to easily test your hypothesis by carrying out What-if scenarios.  

• Lastly, you will have access to a rigorous imputation tool that will use your Bayesian network jointly with all 

the available evidences to compute the probability distribution of your missing values, and then Replace them 

accordingly.  

 

III.    Bay E S I A N Routing Framewo Rk 
Our routing framework consists of two phases: 1) classification and 2) packet forwarding. The goal of 

the first phase is to create an abstract grouping of nodes based on certain prior information about the network. 

Gradient routing is employed in the second phase, wherein a node tries to forward the packet to a neighbor 

which has higher affinity with the destination, in anticipation that the packet gradually moves towards destina- 

tion. The affinity of a node with the destination is computed as a posterior probability using Bayesian inference 

and is based on the history of past packet forwarding behavior which is conditioned on network specific factors 

such as: node location, time etc. The intuition being that a suitable forwarder which was encountered at the 

same time of day and location in the past is likely to be a good candidate in the future. Bayesian inference 

allows  us  to  model  the  imprecise node  mobility and  outcomes  of  interest  (e.g.  routing  success  or  

failure) by  combining  common-sense knowledge  and  observational evidence. Its ability to express all forms 

of uncertainty in terms of probability makes it an attractive tool to quantify a node’s probability (i.e. affinity) to 

meet destination. 

The proposed routing framework has two phases which we elaborate  in  the  next  section,  followed  

by  an  instantiation of  the  framework.  It  should  be  noted  that  depending  on the network attributes (e.g. 

node location, forwarding time, etc.), several routing instantiations are possible based on this framework. 
 

A. Phase One: Bayesian classification 

Generally speaking, a Bayesian classifier takes the attributes of an unknown sample and tries to 

predict its class membership probability based on the history of previously known samples. Let  us  assume, a  

forwarding node P  has 

×N1 , N2 , . . . , Nm   neighbors  which  belong  to  one  of  the classes ×C1 , C2 , . . . , Cn  , where m       n. In 

practice, a node may belong to more than one classes but its class membership probabilities would usually be  

different. Now, assume that node P  has a packet to send to destination D. Node P  and node D  are 

members of classes CP    and CD , respectively. If node P  encounters another node that has a higher affinity 

towards the destination class CD , then P  should pass on the message to this node. 

Let, the attributes (which have direct or indirect effect on the packet delivery) of a node be represented by an 

attribute vector, X = ×x1 , x2 , . . . , xn  . Current time, physical location, 

contact probability and contact duration with destination are some examples of attributes, which affect packet 

delivery probability. It is upto the network administrator (or system developer) to determine appropriate classes 

and attributes for a particular network. 
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Now, referring back to our example, a node can calculate its affiliation probability with other classes (Ci ) 

conditioned on the attributes X (i.e. posterior probability) as: P (Ci |X ). Intuitively, a larger value of the 

posterior probability would imply better affiliation to that class. The posterior probability P (Ci |X ) is based 

on more information than prior probability P (Ci )  because it  factors in  the  effect of  the  attributes on the 

class memberships, and is hence able to identify better forwarding candidates. Using  Bayes  theorem, the  

posterior probability can be calculated from prior probability as: 

P (Ci |X ) = P (X |Ci )P (Ci )/P (X )                (1) The denominator of  Eq.  1,  P (X )  does not  depend on Ci 

and is only used for normalization. Clearly, P (Ci |X ) will be 

maximum when P (X |Ci )P (Ci ) is maximum. To quantify the 

affiliation of a node to a class, we define a metric called the 

Affiliation Index, which is computed using Eq. 2. 
 

Affiliation Index = P (X |Ci )P (Ci )                (2) 
 

P (X |Ci ) and P (Ci ) can be calculated based on the available historical information. 

The term P (X |Ci )P (Ci )  is equivalent to the joint prob- ability  model  of  P (Ci   ∩ X ).  However,  an  

expansion  of P (X |Ci )P (Ci ) becomes unmanageable for dimension of X = 

×x1 , x2 , . . . , xn  . If we can assume that every attribute xi is conditionally independent on every other 

attribute xj (i = j) then we can come up with Eq. 3. 
n 

P (X |Ci ) = 
     

P (xk |Ci )                        (3) 
k=1 

Despite the naive assumption of conditional independence among the attributes, the naive Bayesian classifier 

exhibits remarkable accuracy in classification process [17]. Now, the affiliation index can be computed from 

Eq. 2 and 3 as: 
 

Affiliation Index = P (Ci ) 
     

P (xk |Ci )             (4) 
∀k 

 

The conditional probability P (xk |Ci ) can be estimated from the history data set. Assume that the historical 

data contains si samples that belong to class Ci . Assume that from this sample set, there are sik samples for 

which the value of an attribute is equal to xk . In this case, P (xk |Ci ) = sik . If it is known that certain 

attributes follow well-known probability distributions (e.g.  exponential, gaussian, etc.), then  we  can  directly 

usethat distribution in place of  P (xk |Ci ).  It should be noted that if any of the P (xk |Ci ) in Eq. 4 

becomes zero, then the corresponding affiliation index will also be zero, nullifying the effect of other attributes. 

In order to circumvent this problem, we assume a low value (e.g. 0.01) for P (xk |Ci ) whenever its value 

becomes zero. 

 

B. Phase Two: Forwarding 

The  second  phase  of  our  framework uses  the  affiliation indices (computed in the first phase) to 

forward the packets towards the destination in gradient manner. When a node encounters one or more 

neighbors, it needs to make a decision on which node is a suitable forwarder. The node can readily compute its 

own affiliation index with the destination using Eq. 4. However, it also needs to know the affiliation indices of 

its neighbors with the destination. The node can calculate the class affiliation probabilities for all other 

neighbors provided that the node knows the attributes of its neighbors. However, calculating the posterior class 

affiliation probabilities is com- putationally non-trivial. This is especially true if there are a large number of 

neighbors (i.e. dense topology) and/or if there are a large numbers of classes and attributes to be considered for  

calculating  the  posterior  probabilities. For  example,  in vehicular DTN, some regions (e.g. bus stops, road 

crossings etc.) have dense vehicle distributions and hence the number of neighbors are usually much large in 

these areas. It should also be noted that these computations need to be performed on per- packet basis. In order 

to reduce the computation overhead, the forwarding node distributes the calculation of the affiliation indices 

among its neighbors using a simple query-response based protocol: the forwarder broadcasts a request 

containing its own affiliation index with the destination and overhearing neighbors respond it back with their 

own affiliation indices. As a result, the forwarder can select the neighbor which has maximum affinity towards 

destination. 

In  the  next  sub-section, with  the  help  of  an  illustrative example, we discuss a simplified single-

copy version of our scheme. A multi-copy version can also be implemented in a straight forward manner. 
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C. Example 

We present a simplified example to illustrate the operation of our routing protocol. We consider the 

context of a vehicle- based  DTN.  It  is  assumed  that  the  past  delivery  statistics are already known. In 

public transportation networks, where nodes are equipped with huge storage, computing power and sensors, 

these information together with nodes’ coordinate can be logged as the nodes deliver packets to destinations. 

We assume a very basic classification scheme consisting of 

only two classes: delivered, which includes nodes which acted as relays in successfully delivering packets to the 

destination, and not-delivered which indicates nodes which failed to deliver packets. For simplicity, we have 

chosen two attributes ×x1 , x2  which are: 

•  x1  =  Region  Code  ×R1 , R2 , . . . , Rm  ,  identifying  the location where the node was situated at the time of 

packet forwarding. We assume that the entire physical domain of the network is divided into m smaller 

rectangular grids of equal size, each with a distinct identifier. The motivation for using location as an attribute is 

because in most DTN, the packet delivery probability depends on the physical location of the nodes. For 

example, in vehicular DTN, the probability of finding a suitable forwarder is higherin the vicinity of 

landmarks like bus-stops and parking lots, than on isolated suburban roads. 

•  x2 = Time Slot ×T1 , T2 , . . . , Tn  , indicating the time slot when the packet was forwarded. This metric has 

been chosen because packet delivery also depends on different time periods of a day. In vehicle-based DTN, 

different traffic patterns are prevalent in different periods of a day and hence the packet forwarding behavior 

also varies with time. The granularity of the time slot as well as region code can be increased or decreased 

depending on the availability of historical data. In general, choosing finer grained time slots will result in a 

more precise affiliation index but requires larger historical records. 

In the rest of this section, we explain the operations of our proposed scheme in the context of a vehicular 

DTN. 

A sample topology of a vehicular DTN and past packet forwarding statistics are shown in Fig. 1. 

The vehicles repre- sent nodes and the links represent the connectivity among the neighbor nodes. Each node 

maintains a history of past packets that have been forwarded. The history can be gathered via the the 

propagation of acknowledgments (details in Section IV-C). Each tuple of the history database contains: (a) 

destination address of the packet, (b) region code where the node was situated at the time of packet 

forwarding, (c) time slot when the packet was forwarded and (d) the class of the packet, i.e., whether the 

packet was successfully delivered to the destination or not). We use a simple YES and NO to indicate class 

memberships. For example, the first entry of the history data maintained by node A (×D, R1 , T2 , YES ) 

indicates that while node A  was in region R1 , it had forwarded a packet (with destination D) at time slot T2  

and the packet eventually reached the destination. 

Let us assume that node A  has a packet to send to node 

D;  A  is in region R2   and the current time slot is T1 . Node A  calculates its affiliation index for D  using 

Eq. 2, which is elaborated below. The prior class probability (for class Cdelivered )  is:  P (Cdelivered )  =  0.5  

(since  there  are  two entries in the training dataset of node A  for destination D, from  which  one  tuple  

belongs to  the  class  labeled  yes  or next hop. This process continues until the packet reaches the destination 

or is discarded (due to expired TTL value). 
 

IV.     Simulation -Based Eval Uat I O Ns 
To demonstrate the efficacy of our approach we have carried out a simulation-based evaluation in the 

context of a vehicular DTN. We consider a metropolitan public transport bus network [10] and assume that each 

bus is equipped with a wireless radio, thus simulating a large-scale DTN. We choose to use a public transport 

network because of the inherent repetitive nature of the nodes movements. 

We use the simple example discussed in Section III-C (with two classes delivered and non-delivered and two 

attributes: region code and time slot) as an instantiation of our framework. This is referred to as Bayesian in the 

rest of the simulations. We compare this scheme with three other routing strategies: (i) Epidemic [18], (ii) 

single copy version of MaxProp [1] and (iii) Wait (or direct delivery) [11]. Epidemic and Wait exhibit greatly 

contrasting properties. Epidemic routing is known to achieve  the  best  case  delivery  ratio  with  minimum  

delay since  it  relies  on  flooding. On  the  contrary, Wait  requires the  minimum  possible  cost  to  deliver  a  

packet  since  the packet is directly forwarded to the destination without the need for relays. In this study, we 

assume that there are sufficient buffers at each node, since we wish to exclusively focus on the  performance 

of  the  routing  strategies. The  simulations have been conducted using a custom built simulator and 

PostgreSQL has been used as the back-end database server for storing and processing the history data set at 

each node. 
 

A. Details of Mobility Traces 
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We  have  used  the  mobility traces of  buses in  the  King County Metro bus system in Seattle, USA 

[10] to simulate a DTN network. This public-transport system consists of 1163 buses plying over 236 distinct 

bus routes covering an area of 5100 square kilometers. The traces were collected over a two week period in 

November 2001. The traces are based on location update messages sent by each bus. 

Our Bayesian protocol requires information about the loca-delivered; hence the probability is:  1or 0.5). Now, 

in order tion (region code) and time (time slot). For this purpose, we to calculate P (X |Ci )  where x1  = R1 

, x2  = T1 , we need to calculate: P (x1 |Cdelivered ),  P (x2 |Cdelivered ).  From the history data of A (Fig. 1), 

we find, P (x1 |Cdelivered ) = 0.01 and P (x2 |Cdelivered )  = 0.01. Recall that null values need to be replaced 

by a small representative value (0.01 in this example). Now the node can calculate the affiliation index, I , 

using, Eq. 2 as, assume that the entire region under consideration is divided into 1km × 1km square grid 

blocks. In general, selection of smaller grid size results in a more precise affiliation index but  increases  the  

amount  of  historical  data  that  needs  to be  maintained to  calculate statistically significant posterior 

probabilities. For similar reasons, the granularity of the time slots is chosen as 10 minutes (600 seconds). 

I = P (Cdelivered )P (x1 |Cdelivered )P (x2 |Cdelivered ) 
or, I = 0.5 × 0.01 × 0.01 = 0.00005 

Node A broadcasts a request packet containing destination node and its delivery index ×D, I  to its neighbors. 

Upon re- ceiving the request, the neighbors B and C also calculate their own affiliation index, which are 0.125 

and 0.1437 respectively. Since these are greater than that of node A, both nodes transmit their respective indices 

to A.  Node A  then chooses C as the 

 

Though  we  have  mobility  traces  for  the  entire  24  hour duration of a weekday, we focus on a 9 hour period 

from 6am - 

3pm to ensure that the simulations are tractable. This period is sufficient to capture the periodicity of the bus 

mobility, since a typical trip along a bus route takes 2 - 2.5 hours. For the same reasons, we have concentrated 

on a 58 km x 88 km region, which includes the central business district of the city. Further, 

History database maintained by Node B 

 

 
 

Fig. 1.    Illustrative Example of our Routing Framework
 

we only consider the 35 buses whose routes are for the most part contained within the region of interest. 

We use 50 random source-destination pairs (from the combination of 35 × 35 unique source-destination 

pairs) where each source is a CBR node which transmits a new packet of size 1000 bytes every 100 seconds. 

The source nodes begin to transmit packets at time 1000+trand (0 < trand < 4600) after the simulation starts in 

order to ensure that all the buses in our trace file become active by this time. The whole simulation runs for 

32400 seconds (i.e. 9 hours). The entire simulation is repeated 20 times with different sets of source-

destination pairs and the results presented are averaged over these runs. 

 
C. Gathering Packet Traversal History 

Recall that our routing framework requires prior statistics about  certain  network  parameters, 

which  can  serve  as  the input  to  the  Bayesian classifier. In  particular, the  example Bayesian protocol 

requires past packet delivery statistics and information about the region code and time slot when these 

packets  were  forwarded.  In  order  to  emulate  the  requisite history, we simulated 500 sample runs of the 
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simulation with exactly the same parameters as discussed in Section IV-B. The only difference is that we used 

a 9 hour period (6am - 3pm) for the weekday prior to that used for the actual evaluations. Though we have 

not updated the history in our simulation (since lack of updated history only affects long-lasting 

simulations), it can be easily done in real-world scenario. In our instantiation, the nodes need to know if 

the forwarded packets eventually reach the destination or not. Nodes which deliver the packets to the 

destination can readily log these packet traversal history. Or, some form of acknowledgment packets  can  

be  used  to  let  the  forwarders  to  update  their records. In fact, in many multi-copy DTN routing protocols, 

acknowledgment packets (e.g. vaccine [5]) are sent back to the sender so that the sender and intermediate nodes 

can purge the packet from their queues. These acknowledgments can be used to update the history. 
 

D. Delivery Ratio Results 

The most important metric in DTN routing is the delivery ratio, which is the ratio of the messages 

delivered to the mes- sages created. As seen from Fig. 2a, the delivery ratio achieved by Epidemic routing is near 

perfect, which is expected. Wait performs the poorest since it relies on direct delivery. Bayesian outperforms 

MaxProp by  25%.  The  reason behind that  is, MaxProp suffers from inferior quality encounter probabilities 

(due to its prior probability calculation method which does not  depend on  other network parameters) and  

hence often makes non-optimal routing decisions. It should be noted that MaxProp performs path lookup upto 

n hops away to find the best route to the destination. This method of searching all possible paths is clearly not 

scalable in large networks. On the contrary, our framework computes the posterior probabilities in a 

distributed manner and hence can scale easily. 
 

E. Delivery Cost Results 

We measure the delivery cost by counting the total number of messages transmitted and normalizing it 

by the total number of unique message created. The Epidemic routing protocol achieves its higher delivery 

ratio with a very high cost. Fig. 

2b shows the semi-log plot of delivery cost vs. time. The delivery cost is about 30 times less in our method 

compared to that of Epidemic routing. The delivery costs of MaxProp and our proposed method are similar, 

though Bayesian exhibits marginal better performance. This is because they both are 

 

 

single copy schemes and the delivery costs have been cal- culated from the delivered packets only, neglecting 

the fact that the schemes have different delivery ratios. So the single- copy routing methods which have low 

delivery ratios have low delivery costs in general. Besides, we have not considered the added cost of exchanging 

the summary vectors which is an integral part of MaxProp. The need for exchanging summary vectors also 

limits MaxProp’s deployment in large networks. 
 

F. Delay Distribution Results 

Though a large packet delay is common in delay tolerant networks, it is always desirable to receive a 

packet as early as possible. In order to get an idea of packet delivery delay, we plot the cumulative delay 

distribution of the routing protocols in Fig. 2c. Epidemic routing achieves the minimum possible packet delivery 

delay (receives 50% of the packets during first≈3000  seconds) whereas the direct delivery approach (Wait) 

shows worst case delivery delay (receives only 20% packets during the first 3000 seconds). Bayesian and 

MaxProp again exhibit similar properties with Bayesian having a slight edge. It can be concluded from the 

results above that the deliv- ery  ratio of even a simple implementation (which uses two simplistic classes 

and just two attributes) of our framework (which is a single-copy method) is about 60% of the best case 

(i.e. multi-copy Epidemic), while incurring an overhead that is 30 times less than that of the base case. The 

delivery ratio is significantly better than that of MaxProp. Also, it is intuitive that the use of better attributes 

further improves the performance of routing protocol. 
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V.  Conclusion  
In this paper, we present a Bayesian classifier based routing decision framework which simplifies the 

integration of various routing attributes and utilizes the repetitive nature of people- centric DTN in making 

better routing decisions. Preliminary simulation study with traces from a real-world delay tolerant public 

transport network demonstrates considerable perfor- mance gain (about 25% improvement in terms of packet 

delivery ratio) than existing gradient-based routing schemes. 

It is intuitive that choosing proper attributes and classes in our routing framework may increase 

the performance of the  routing protocol even further. We  intend to  investigate methodologies for choosing 

appropriate attributes and classes for our routing framework. We also plan to evaluate the effectiveness of our 

framework in other types of DTN with imprecise schedules (e.g. PSN, etc.). 
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