
IOSR Journal of Computer Engineering (IOSR-JCE)
e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 16, Issue 1, Ver. VI (Feb. 2014), PP 11-18
www.iosrjournals.org

www.iosrjournals.org 11 | Page

LEXIMET: A Lexical Analyzer Generator including McCabe's

Metrics.

Rana khudier Abbass Ahmed
Al-Rafidain University College, Computer techniques engineering department

Abstract: Due to the complexity of designing a lexical analyzer for programming languages, this paper

presents, LEXIMET, a lexical analyzer generator. This generator is designed for any programming language

and involves a new feature of using McCabe's cyclomatic complexity metrics to measure the complexity of a

program during the scanning operation to maintain the time and effort.

I. Introduction
 This section includes an introduction to the compiler architecture and McCabe's metrics due to its

relation to the aim of the research.

1.1 Compiler Structure

 A compiler is system software that converts a high-level programming language program into an equivalent low-level

(machine) language program [1]. Figure (1) shows the structure of the compiler.

 A typical decomposition of a compiler into phases is shown in Figure (1). In practice, several phases may be

grouped together, and the intermediate representations between the grouped phases need not be constructed

explicitly. The symbol table, which stores information about the entire source program, is used by all phases of

the compiler [2].

 Some compilers have a machine-independent optimization phase between the front end and the back

end. The purpose of this optimization phase is to perform transformations on the intermediate representation, so

that the end can produce a better target program than it would have otherwise pro­duced from an unoptimized

intermediate representation. Since optimization is optional, one or the other of the two optimization phases

shown in Figure (1) may be missing [2].

Figure (1): Phases of a compiler [2].

LEXIMET: A Lexical Analyzer Generator including McCabe's Metrics.

www.iosrjournals.org 12 | Page

1. Lexical analysis: The first phase of a compiler is called lexical analysis or scanning. The lexical analyzer

reads the stream of characters making up the source program and groups the characters into meaningful

sequences called lexemes. For each lexeme, the lexical analyzer produces as output a token of the form

 (token-name, attribute-value) that it passes on to the subsequent phase, syntax analysis [2].

2. Syntax analysis: The second phase of the compiler is syntax analysis or parsing. The parser uses the first

components of the tokens produced by the lexical analyzer to create a tree-like intermediate representation

that depicts the grammatical structure of the token stream. A typical representation is a syntax tree in which

each interior node represents an operation and the children of the node represent the arguments of the

operation [2].

3. Semantic analysis: The semantic analyzer uses the syntax tree and the information in the symbol table to

check the source program for semantic consistency with the language definition. It also gathers type

information and saves it in either the syntax tree or the symbol table, for subsequent use during intermediate-

code generation [2].

4. Intermediate Code Generation: In the process of translating a source program into target code, a compiler

may construct one or more intermediate representations, which can have a variety of forms. Syntax trees are

a form of intermediate representation; they are commonly used during syntax and semantic analysis [2].

5. Code Optimization: The machine-independent code-optimization phase attempts to improve the intermediate

code so that better target code will result. Usually better means faster, but other objectives may be desired,

such as shorter code, or target code that consumes less power [2].

6. Code Generation: The code generator takes as input an intermediate representation of the source program and

maps it into the target language. If the target language is machine code, registers Or memory locations are

selected for each of the variables used by the program. Then, the intermediate instructions are translated into

sequences of machine instructions that perform the same task [2].

7. Symbol-Table Management : An essential function of a compiler is to record the variable names used in the

source program and collect information about various attributes of each name. These attributes may provide

information about the storage allocated for a name, its type, its scope (where in the program its value may be

used), and in the case of procedure names, such things as the number and types of its

 arguments, the method of passing each argument (for example, by value or by reference), and the type

returned [2].

 The symbol table is a data structure containing a record for each variable name, with fields for the attributes

of the name. The data structure should be designed to allow the compiler to find the record for each name

quickly and to store or retrieve data from that record quickly [2].

1. 2 McCabe's Cyclomatic Complexity Metrics

 Cyclomatic complexity is probably the most widely used complexity metric in software engineering.

Defined by Thomas McCabe in 1976 and based on the control flow structure of a program. It is easy to

understand, easy to calculate and it gives useful results. It's a measure of the structural complexity of a

procedure [3].

 McCabe’s complexity measures are based on control flow representation of the program. A program graph is

used to depict control flow. In graph, nodes represent processing tasks and edges represents control flow

between nodes [4].

The McCabe metric is [5]:

M = E – N + X

 where M is the McCabe Cyclomatic Complexity (MCC) metric, E is the number of edges in the graph

of the program, N is the number of nodes or decision points in the graph of the program and X is the number of

exits from the program.

 In programming terms, edges are the code executed as a result of a decision, they are the decision

points. Exits are the explicit return statements in a program. Normally, there is one explicit return for functions

and no explicit return for subroutines.

 A simpler method of computing the MCC is demonstrated in the equation below. If D is the number of

decision points in the program, then

M = D + 1

 Here, decision points can be conditional statements. Each decision point normally has two possible

paths [5].

The nodes of the graph correspond to the code lines of the software, and a directed edge connects two nodes

if the second node might be executed immediately after the first one. If the conditional evaluation expression is

composite, the expression should be broken down. For example, the expression “if(c1 && c2){}” should be

treated as “if(c1){if(c2){}}”. The control flow graph of a module has one and only one entry node and exit

LEXIMET: A Lexical Analyzer Generator including McCabe's Metrics.

www.iosrjournals.org 13 | Page

node. If one control flow graph has e edges and n nodes, the Cyclomatic Complexity value of the corresponding

module is M = E-N+2 [6].

 As an example in figure (2), is a control flow graph of a simple program, the program begins executing at

the entry node, then enters a loop (group of three nodes immediately below the entry node). On exiting the loop,

there is a conditional statement (group below the loop), and finally the program exits at the exit node. For this

graph, E = 9, N = 8 and X = 1, so the cyclomatic complexity of the program is 9 - 8 + (2*1) = 3 [7].

Figure (2): Control flow graph of a simple program [7].

 Cyclomatic complexity metrics were always correlated with quality of the software such as reusability,

maintainability, security and predicting software faults and it is a good guide for developing test cases. This

metric calculates the complexity of a module based on a flow graph which makes it applicable in various

representation of design

such as flow chart or Program Design Language PDL [3].

2. Related work

 Hussein [8] in 2000, designed a lexical analyzer generator using Halstead's metrics. The process of

generating the lexical analyzer automatically is not a new one. But such an operation that can involve any

programming language and includes McCabe's metrics is a new idea, and that’s what the research suggests.

3. The Aim of This Research

 The aim of this research is to design a lexical analyzer generator, which we called LEXIMET, for any

programming language to reduce the effort required to construct a compiler. The generated lexical analyzer has

the ability to measure the complexity of the programs written in the specified programming language. The

generated lexical analyzer depends on McCabe's metrics to measure the complexity.

 The input of LEXIMET is the specification of a programming language and the output is a C++ program

which represents a lexical analyzer for the programming language. LEXIMET was used to generate lexical

analyzers for C++ and Visual Basic languages which scanned programs written in these languages successfully.

4. The LEXIMET Design

 We designed a system called LEXIMET to receive the specification of a programming language as

producing a lexical analyzer for the programming language. The specification includes keywords, reserved

character, relational operator, numeric formats, comment formats, regular expression of the identifier, etc. The

output of the LEXIMET is a lexical analyzer system, which performs the ordinary scanning process, but with a

new property that is measuring the program complexity depending on McCabe's metrics. The generated lexical

analyzer, is to be included in the compiler being built. Figure (3) depicts the process of generating a lexical

analyzer for a specific programming language including McCabe's metrics.

Entry node

node

Edges

Exit node

LEXIMET: A Lexical Analyzer Generator including McCabe's Metrics.

www.iosrjournals.org 14 | Page

The Architecture of the LEXIMET

 Our LEXIMET system consists of many recognizers, such as identifier and reserved word recognizer, the

numbers recognizer, the delimiter and punctuation symbols recognizer, the operators recognizer, the comment

eliminator recognizer and the error handler recognizer. Figure (4) depicts the architecture of the LEXIMET.

 Therefore, LEXIMET consists of many programming parts called, recognizer generators, each of these

generators recognizes a specific part of the programming language specification and with a new feature which

measures the metrics of any programming language by the E, N, and X counter recognizer to produce a

specialized recognizer to be added to the generated lexical analyzer. These generators construct the recognizer

as functions. Some of the recognizer generators are:

LEXIMET: A Lexical Analyzer Generator including McCabe's Metrics.

www.iosrjournals.org 15 | Page

1. Identifier and keyword recognizer generator: This part generates a code of a routine which will

recognize the identifiers and reserved words of a language. This generated code will be included in the

generated lexical analyzer. For example, the identifiers for LEXIMET are described by using a transition

diagram as shown in figure (5). For example, the C++ language must begin with a letter or underscore

followed by letter, digit or underscore.

Figure (5): The transition diagram to recognize identifiers of C++ language [2].

 Indeed, the transition diagram is given to the generator as a transition table as follows:

#start Letter Underscore digit Other

State 9 10 10 - -

State 10 10 10 10 11

 Figure (6), describes a part of the code generated from the LEXIMET as a lexical analyzer program for

C++ identifier according to figure (4).

Figure (6): Part of the code generated from the LEXIMET as a lexical analyzer program for an example, a C++

program , that describes C++ identifiers.

2. Numbers format recognizer generator: This part generates code to recognize numbers by the generated

lexical analyzer. The number formats also described by transition diagram.

 .

 .

 .

if (isdigit(ch)) {

 num = 0;

 do {

 ch = read_ch();

 } while (ch != EOF && isdigit(ch));

 put_back(ch);

 return number;

 }

 if (isalpha(ch)) {

 Entry *entry;

 id_len = 0;

 do {

 if (id_len < MAX_ID) {

 id[id_len] = (char)ch;

 id_len++;

 }

 ch = read_ch();

 } while (ch != EOF && isalnum(ch));

 id[id_len] = '\0';

 put_back(ch);

 entry = find_htab(keywords, id);

 return entry ? (Symbol)get_htab_data(entry) : ident;

 }

 . . .

LEXIMET: A Lexical Analyzer Generator including McCabe's Metrics.

www.iosrjournals.org 16 | Page

3. Delimiter and punctuation symbols recognizer generator: This module is responsible for generating

the code which recognizes reserved punctuations, delimiters and symbols.

4. Operator recognizer generator: This part generates the code of generated analyzer to recognize the

relational, arithmetic and logical operations. It receives the description of the operations of a language.

This table consists of two entries: the operation entry and its token name. The compiler builder determines

the token names. Figure (7), shows the transition diagram to recognize the relational, arithmetic and

logical operations.

Figure (7): The transition diagram to identify tokens (relational, arithmetic and logical operations) for C++

language.

 Then the transition diagram is given to the generator as a transition table as follows:
#start < <= != > >= = = other

State 0 1 - - 8 - - -

State 1 - - - - - - 3

State 8 - - - - - - 10

 Figure (8) describes a part of the code generated from the LEXIMET as a lexical analyzer program for C++

to identify relational operations.

 Figure (8), a part of the code generated from the LEXIMET as a lexical analyzer program for an example, a

C++ program , that describes how to identify relational operations

switch (ch) { # this is "switch part of the algorithm

 case EOF: return eof;

 ch = read_ch();

 return (ch == '=') ? becomes : nul;

 case '<':

 ch = read_ch();

 if (ch == '>') return neq;

 if (ch == '=') return leq;

 put_back(ch);

 return lss;

 case '>':

 ch = read_ch();

 if (ch == '=') return geq;

 put_back(ch);

 return gtr;

 default:

 error("getsym: invalid character '%c'", ch);

 return nul;

 } # case

 . . .

LEXIMET: A Lexical Analyzer Generator including McCabe's Metrics.

www.iosrjournals.org 17 | Page

5. Comment eliminator recognizer generator: The comments are eliminated or removed, during lexical

analysis. So the designer of the compiler must describe the format of the comment in the language that a

compiler is required to by determining delimiters of the comment.

6. Error handler recognizer generator: This part receives the error messages and error codes to be included

in the generated lexical analyzer. It is possible that none of the regular expressions denoting the tokens

matches any prefix of the input. In that case, an error has occurred, and the LEXIMET must transfer control

to generated module which is responsible for error handling.

7. E, N and X metric counter recognizer generator: In this part , the cyclomatic complexity is found by

counting the number of linearly independent paths through the source code. This part is added for all

generated lexical analyzers and it is not variant according to the specification of the language.

II. Results
 Our LEXIMET system can be applied for any programming language. For an example, we examined

the LEXIMET system on a visual basic program, as in figure (9).

 The LEXIMET system describes the token's from the chosen program and then transforms it to a c++ source

code including McCabe's cyclomatic complexity metrics as shown in table (1).

Table (1): Token's described in the LEXIMET from the chosen visual basic program.
Tokens Sample Values Informal Description

Private Private Keyword private

Sub Sub Keyword sub

underline _

Click Click Keyword click

lparen (

rparen)

Dim Dim Keyword dim

As As Keyword as

Text Text Keyword text

Eq =

string "hello"

Id X, integer, text1, text1, label1 letter followed by letters, digits, and under-

scores

Caption Caption Keyword caption

Int 5 Integer constants

Eof End of file

McCabe's cyclomatic complexity metrics=1

III. Discussion
 The process of generating the lexical analyzers automatically is not a new one. But such an operation that

includes McCabe's Metrics is a new idea, and that's what the research suggests. Although the existing of a huge

number of compilers, but no one of them applies or sets up the McCabe's metrics of software engineering. We

used McCabe's metrics because It can be computed early in the life cycle ,it can be used as a quality metric, and

give relatively complexity of various designs. Also it is easy to apply, It can be used as an ease of maintenance

metric, measures the minimum effort and best areas of concentration for testing and finally it guides the testing

process by limiting the program logic during development. From the results of examining the LEXIMET on a

visual basic program, we found that the value of the McCabe's cyclomatic complexity refers to a simple module

without much risk according to the threshold based on categories established by the Software Engineering

Institute.

Private sub command1-click()

Dim x as integer

X=5

Text1.text="hello"

Label1.caption=x

End sub

Figure (9): an example of a visual basic program.

http://en.wikipedia.org/wiki/Control_flow
http://en.wikipedia.org/wiki/Source_code

LEXIMET: A Lexical Analyzer Generator including McCabe's Metrics.

www.iosrjournals.org 18 | Page

IV. Future Work
1. develop the LEXIMET for parser generator and use another software engineering metric for test

measurement.

2. use another software metrics with the LEXIMET to compute the product (program) quality.

References
[1]. Biswajit R Bhowmik, "A New Approach of Complier Design in Context of LexicalAnalyzer and Parser Generation for NextGen

Languages" International Journal of Computer Applications (0975 –8887) Volume 6 – No.11, September 2010.

[2]. Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ulman, "Compilers: Principles, Techniques, and Tools" 2nd Edition, Prentice
Hall, 2007.

[3]. Ayman Madi, Oussama K. Zein and Seifedine Kadry, "On the Improvement of Cyclomatic Complexity Metric" ,International
Journal of Software Engineering and Its Applications, Vol. 7, No. 2, March, 2013.

[4]. N Gayatri, S Nickolas, A.V.Reddy, "Performance Analysis and Enhancement of Software Quality Metrics using Decision Tree

based Feature Extraction, "International Journal of Recent Trends in Engineering, Vol 2, No. 4, November 2009.
[5]. Reg. Charney, "Programming Tools: Code Complexity Metrics", Linux Journal, 2005.

[6]. heng Yu, Shijie Zhou , "A Survey on Metric of Software Complexity", yusheng123@gmail.co, m, sjzhou@uestc.edu.cn, 2008.

[7]. Thomas J.McCabe, Sr., "Cyclomatic Complexity", www.projectcodemeter.com/cost_estimation/help/GL_cyclomatic.htm, 1976.
[8]. Hussein G. Mancy, "GENELEX: A Generator of Lexical Analyzers including Halstead's Metrics", journal of Al-Rafidain

University College for sciences, vol 5, 2000.

http://www.linuxjournal.com/user/801407
mailto:yusheng123@gmail.co
mailto:sjzhou@uestc.edu.cn
http://www.projectcodemeter.com/cost_estimation/help/GL_cyclomatic.htm

