An Intermediate Service Composer Architecture for Dynamic Discovery and Invocation of Web Services from Mobile Devices

K.Kishoreanthuvan¹ S.Balaji², S.Thamizharasan³, K.Kuzhandaiavelu⁴
¹(Assistant Professor, Department of computer Science & Engineering, Christ College of Engineering and Technology, Pondicherry, India)
²,³,⁴(Department of computer Science & Engineering, Christ College of Engineering and Technology, Pondicherry, India)

Abstract: Web services describe a standardized way of integrating Web-based applications over an Internet protocol backbone. Mobile devices are getting more pervasive and it is becoming increasingly necessary to integrate web services into applications that run on these devices. We introduce a novel approach for dynamically invoking web service methods from mobile devices with minimal user intervention that only involves entering a search phrase and values for the method parameters. The architecture overcomes technical challenges that involve consuming discovered services dynamically by introducing a man-in-the-middle (MIM) server that provides a web service whose responsibility is to discover needed services and build the client-side proxies at runtime. The architecture moves to the MIM server energy-consuming tasks. Such tasks involve communication with servers over the Internet, XML-parsing of files, and on-the-fly compilation of source code. The MIM Server programmed with the intelligence to identify a set of services whose collective functionality can serve the user’s request. We perform extensive evaluations of the system performance to measure scalability as it relates to the capacity of the MIM server in handling mobile client requests, and device battery power savings resulting from delegating the service discovery tasks to the server.

Keywords: Geocode Services, Location Based Services (LBS), Man-in-the-Middle (MIM), Web services, XForms.

I. INTRODUCTION

A Web service is a method of communication between two electronic devices over the World Wide Web. The W3C defines a "Web service" as "a software system designed to support interoperable machine-to-machine interaction over a network. Man-in-the-middle (MIM) servers which will be used by mobile devices to discover needed web services and build their proxies. After getting the proxy, a mobile device can invoke a particular method of the web service and get the desired results. More specifically, the MIM server offers a web service which exposes a web method that the mobile device invokes and passes to it a search string. The MIM server’s special service (or simply the MIM server) compares the submitted string to cached short-descriptions of Internet web services and generates a short list of services that best match the user’s string.

To start with, the MIM server has a process that wakes up periodically to download a list of web service descriptions and associated URIs from a designated set of UDDI registries. More notably, the MIM server offers a web service that interfaces to three main processes which jointly fulfill the user’s request. When using UDDI registries for service discovery, multiple costly network round trips are needed, and frequent unavailability of the wireless network may cause failures in the service discovery process, and will hinder the completion of the user request. Many techniques have been used for dynamic discovery and invocation of web services from mobile devices and quite a number of tools have been in existence for the past few years. The major problem faced by the web services is, the user could not invoke composite web services and provide access of Multimedia, Data mining and Bio-Informatics. So a new architecture has been designed for composite web services and Multimedia in Mobile devices. It has a Location Based Service Framework which using Composite Web Services to access data in mobile devices.

II. RELATED WORK

Though, the particularities and restrictions of mobile devices and the mobile environment create great challenges for consuming web services [1]. However, the technology that allows devices to dynamically access web services is yet to established as there are infrastructural issues, which need to be tackled [2]. At first, several expensive network round trips are needed for service discovery while using UDDI registries and failures may cause in the service discovery process by frequent unavailability of the wireless network [1], and will delay the finishing point of the user request [3]. In [4] it was argued that the normal web service architecture which integrates a requestor, a broker, and a provider does not allow for designing a suitable service invocation on mobile devices. On the other hand, Halteren and Pawar [5] describe a platform for hosting web services on
An Intermediate Based Architecture for Dynamic Discovery and invocation of Web Services from mobile devices by building on the Jini Surrogate Architecture Specification [6]. The DynWsLib library [7] is a .NET Framework-based technology that works by generating the client-side proxy class at runtime. Finally, we discuss the work in [8] which proposes a design for automatic generation of multimodal user interface from discovered WSDL files and a mechanism for service invocation. The approach relies heavily on the XForms technology [9] and requires the client browser to understand another markup language.

III. PROPOSED WORK

The proposed work provides a number of options for the user and provides a detailed output to the user using Intermediate based Architecture. This system operationally satisfies the needs what the user expects. The system designed is easily understandable by the end user. Location-based services are a general class of computer program-level services used to include specific controls for location and time data as control features in computer programs.

As such (LBS) is an information and has a number of uses in Social Networking today as an entertainment service, which is accessible with mobile devices through the mobile network and which uses information on the geographical position of the mobile device. This has become more and more important with the expansion of the Smartphone and tablet markets as well.

3.1 Intermediate Based Server Architecture

3.1.1 Boyer Moore Algorithm

The Boyer-Moore exact pattern matching algorithm is probably the fastest known algorithm for searching text that does not require an index on the text being searched. This algorithm works by creating a "skip table" to each possible character. Using this skip table, the number of actual comparisons needed to locate a string can decrease, in some cases dramatically.
The Boyer-Moore algorithm searches for occurrences of \(P \) in \(T \) by performing explicit character comparisons at different alignments. Instead of a brute-force search of all alignments (of which there are \(m \cdot n + 1 \)), Boyer-Moore uses information gained by preprocessing \(P \) to skip as many alignments as possible.

The algorithm begins at alignment \(k = n \), so the start of \(P \) is aligned with the start of \(T \). Characters in \(P \) and \(T \) are then compared starting at index \(n \) in \(P \) and \(k \) in \(T \), moving downward: the strings are matched from the end and toward the beginning of \(P \). The comparisons continue until either a mismatch occurs or the beginning of \(P \) is reached (which means there is a match), after which the alignment is shifted to the right according to the maximum value permitted by a number of rules. The comparisons are performed again at the new alignment, and the process repeats until the alignment is shifted past the end of \(T \). The shift rules are implemented as constant-time table lookups, using tables generated during the preprocessing of \(P \).

3.2.1 Geocode Service Web Services

Geocoding is the process of finding associated geographic coordinates (often expressed as latitude and longitude) from other geographic data, such as street addresses, or ZIP codes (postal codes). With geographic coordinates the features can be mapped and entered into Geographic Information Systems, or the coordinates can be embedded into media such as digital photographs via geotagging. A geocoder is a piece of software or a (web) service that helps in this process.

3.2.2 Reverse Geocoding Web Service

Reverse geocoding is the process of back (reverse) coding of a point location (latitude, longitude) to a readable address or place name. This permits the identification of nearby street addresses, places, and/or areal subdivisions such as neighborhoods, county, state, or country. Combined with geocoding and routing services, reverse geocoding is a critical component of mobile location-based services and Enhanced 911 to convert a coordinate obtained by GPS to a readable street address which is easier to understand by the end user. Public reverse geocoding services are becoming increasingly available through APIs and other web services as well as mobile phone applications. These services require manual input of a coordinate, capture from a GPS, or selection of a point on an interactive map; to look up a street address or neighboring places.

3.2.3 Route Web Service

Routing web service, which provides highly accurate point to point routing and route re-calculation using web services. Routing web services deliver turn-by-turn directions across multiple devices and platforms. With this flexible, easy to use web service you can:
- Quickly and easily integrate vehicle, bicycle or pedestrian routing into your existing web, mobile and desktop applications
- Build navigation applications that provide real-time, turn-by-turn routing to your users
- Integrate with other services to create rich interactive experience on the web, iPhone, Symbian, J2ME and beyond.
Routing service is the only web-service that allows you to build applications that deliver real-time, turn-by-turn routing across a global database that includes roads, cycle-ways and footpaths. Whether you are developing for web, desktop or mobile, our fast, reliable Routing service helps you build applications that will surpass your user’s expectations.

3.2.4 Imagery Web Service

Imagery Services is a set of programmable SOAP services that allow you to match addresses to the map, search for points of interest, integrate maps and imagery, return driving directions, and incorporate other location intelligence into your Web application.

IV. Conclusion

Our design provides web service discovery services to personal applications running on mobile devices, where composite services can be used to extend the functionality of such applications. However, the applications from accessing composite web services that performs computationally intensive tasks, as in bioinformatics, data mining, and multimedia processing. But, since web service entities are usually autonomous and heterogeneous, how to connect and coordinate them is a challenging task that is not suited for mobile devices. So, the Intermediate Based Server can be programmed with the intelligence to identify a set of services whose collective functionality can serve the user’s request. In fact, the Intermediate Based Server is well suited to coordinate the functions of such services and provide an interface to the mobile device with the architecture.

REFERENCES

www.iosrjournals.org 48 | Page