
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 14, Issue 6 (Sep. - Oct. 2013), PP 43-52
www.iosrjournals.org

www.iosrjournals.org 43 | Page

Enhance similarity searching algorithm with optimized fast

population count method based on parallel design

SeyedVahid Dianat
1
, Yasaman Eftekharypour

2
, Nurul Hashimah Ahamed

Hassain Malim
3
 and Nur'Aini Abdul Rashid

4

1,2,3,4(School of Computer Science, Universiti Sains Malaysia, Malaysia)

Abstract: In chemoinformatics, drug discovery helps the chemists find new drugs with minimum side effects.

The new drug should have similar behavior in terms of the chemical molecular formula to a known drug by
applying similarity searching algorithms. A lot of previous works speedup the mentioned task by applying a

predefined function, popc, which is only available on new GPUs. This research attempt to provide optimized

design using different parallel hardware such as Multicore and GPU processors. Here the aim is to minimize

hardware memory allocation by proposed data conversion method and improve data transmission speed. We

achieved significant results in terms of performance and execution time in both CUDA and OPENMP designs of

fast population count method with data conversion when compared to the sequential code.

Keywords :CUDA, graphics processing unit, multicore architecture, OPENMP, similarity searching algorithm

I. INTRODUCTION
Chemoinformatics is an area that makes a link or bridge between chemical science and algorithms in

computer science [4]. One of the researches in chemoinformatics is drug discovery. Its lifecycle can take many

years and it can cost up to hundreds of million dollars [5]. The content of the databases now has exceeded 30

million chemical molecules.

A. Motivations

 Chemoinformatics has become an emerging topic for computer science. High Performance Computing

(HPC) contributed to chemoinformatics by improving the speedup of computation of the optimized methods on

modern CPUs and GPUs. To reach this aim, researchers and even medical industries attempted to do research

and study in this area[6].

 Nowadays, computer science researchers attempt to apply optimized algorithm on many applications.

This application could be listed as: biochemical, drug discovery, image processing and other applications with
different architecture of parallel system such as CUDA platform (Compute Unified Device Architecture is based

on shared memory systems and GPU programming). The CUDA platform is used to harness the power of the

GPU [7].

B. Research contributions

 The contributions of this research are:

 Overcome hardware dependency of popc algorithm in modern GPUs by applying optimized fast

population count method with proposed data conversion strategy in existing GPUs.

 An accelerated sequential similarity searching algorithm with fast population count and data

conversion methods on OpenMP and CUDA platforms.

II. RESEARCH BACKGROUNDS
A. General purpose computation on GPU

 Usually GPU (Graphic Processor Unit) is used to process graphic computation part but nowadays is

used as general purpose that is named GPGPU. In parallelization by using GPU, it is not applied alone even

GPU is applied beside the CPU and data is transferred between them [8].

 The use of graphic processing units (GPU) for general-purpose computation (GPGPU) has been as an

active research field for many years which has begun on machines such as the Ikonas in 1978, the Pixel

Machine, which is a parallel image computer [9], and Pixel-Planes 5 (graphics engine). The wide experimental

research of GPUs in the last years has resulted to increase developments of the types of computation on recent
GPUs [10].

Enhance similarity searching algorithm with optimized fast population count method based on parallel design

www.iosrjournals.org 44 | Page

B. Shared memory architecture

 In shared memory systems, there is only one shared global memory between processors which is

connected with bus-based or switch-based network. So tasks on different processors communicate with each

other by writing to global memory and reading from it[11]. The illustration of shared memory architecture is

depicted in Figure 1. In the following subsections, two platforms of OpenMP and CUDA platforms are

explained as shared memory architecture.

1) CUDA platform

 In 2006, Compute Unified Device Architecture (CUDA) was introduced as a compiler which increases

the performance of computing in parallelism concepts and made parallel programming easy. As a result, it

makes many applications in science to compute and render the data. Also, it provides direct access to compute

units. Even these features are improving with each version of CUDA APIs that are released for developers.

CUDA is a GPGPU API platform for multithreaded Single Instruction Multiple Data (SIMD) model for GPGPU

programmers. Sequential source code is executed on the single core of machine (host) as sequential code and

parallel code is implemented as a group of kernel functions to be executed in an SIMD model which is arranged

by a set of threads[12].

 In CUDA, GPGPU functionality is defined by writing device functions for C language kernels. Only
one kernel can be run at a time on the GPGPU. A thread is a sequence of instructions which has been defined in

many papers and books. Groups of threads are called thread blocks and are executed on the Symmetric Multi-

Processing (SMPs). The blocks are divided into Single Instruction Multiple Data (SIMD) groups of 32 threads

called warps, which are divided into groups of 16 threads called half-warps[13]. A grid contains groups of

blocks with many threads inside. The structure of CUDA architecture has been illustrated in Figure 2.

 The memory hierarchy in CUDA platform is categorized into a set of registers (on-chip), local memory

(residing in an off-chip DRAM) for each thread, a private shared memory for thread blocks, a global memory

for all launched threads, read-only texture cache and constant memory. The CUDA platform offers three

primary optimization strategies such as the Memory Optimization (MO), Execution Configuration Optimization

(ECO) and Instruction Optimization (IO)[13]. At present CUDA is based on C/C++ language as its extension

that supports only NVIDIA hardware but OPENCL supports both ATI and NVIDIA hardware [14].

2) OPENMP platform

 Generally, it is a portable shared memory threading API (Application Program Interface) that

standardizes tasks and loops into the parallelism system. It has provided some OpenMP clauses for both logical

and dynamic extension. Another key advantage is that it allows a developer to parallelize its applications

Figure 2. The CUDA structure of threads, blocks and grids of blocks[3].

Figure 1. Shared memory architecture[2].

Enhance similarity searching algorithm with optimized fast population count method based on parallel design

www.iosrjournals.org 45 | Page

incrementally. Since OpenMP is a directive based compiler for developers, it can compile serial and parallel

code together inside a single source code easily [15].

C. Similarity searching algorithm

 Similarity searching is one of the most important tasks in chemoinformatics. It tries to retrieve

molecules data from a large database. This way is based on exploring the data of molecules which is searching

in a big chemical database that needs thousands of comparisons to return high level of similarity degree between

database compounds and a query compound [16].

III. PREVIOUS WORKS
 Chao Ma et.al (2011) applied predefined function of “popc()” in CUDA platform to calculate the

number of one bits in the string of fingerprint in chemical compounds, but this function is not available for

general GPUs in public servers or laptops. Its limitation is that it could be executed only on modern and a new

version of GPUs [17].

 Peter Bakkum and Kevin Skadron (2010) in their paper have focused on an acceleration way of

SELECT queries and investigation of an efficient GPU implementation related to the SQLite command library.

They have provided results of execution on NVIDIA Tesla family C1060. They achieved speed up around 20 to

70 times. They believed the results depended on the size of the dataset. They explained the exist limitations of
GPU technology in that day. They mentioned limitations such as the GPU memory size and the transfer time of

data memory transmission from the host (CPU) to the device (GPU). These two limitations are the most relevant

technical limitations. Their project only supports for numeric data types[18].

 Pu Liu et al. (2011) proposed a method to accelerate similarity searching algorithm on the chemical

databases by using GPU. This method is called lossless feature count fingerprints and integer entropy coding. It

has comparable results better than using fixed length 1024 bits fingerprint because of using lossless fingerprint

compression algorithms. They claimed this method can increase the efficiency of storage. There is an obvious

drawback of using this method that the compressed fingerprints on a large database need to be decompressed

then they can be used. This process takes extra time to do decompress task. They invested around $500 to buy

GPU NVIDIA GeForce GTX 580 model. This GPU card has 1536MB GDDR5 off chip DRAM Memory, 64KB

constant memory, 16 multiprocessors and each of its processors have 32 CUDA cores with 1.54GHz speed.

Also, it supports both single-precision and double-precision data computing. They could search and scan the
entire PubChem database which contains around 32 million chemical compounds by using this GPU around 0.2

to 2 second on average. They achieved 2 orders of magnitude faster compare to conventional CPU. They

illustrated if multiple query patterns are processed in a batch of queries, then the speedup become substantially

around 0.02 to 0.2 seconds per query for 1000 queries. They have applied the Elias gamma compression

algorithm with a compression rate of 0.097 [19].

 As Liao et al. (2011) achieved around 73 to 143 times speedup on GPU based common 2D Tanimoto

selection compound algorithms in comparing with running on conventional CPU. But, their work was not

optimized enough [20].

 Imran S.Haque et al. (2011) in their paper described an efficient method for population count on

modern x86 processors, cache efficient matrix traversal and leader clustering algorithms reduce bottleneck

problem because of memory bandwidth in clustering and similarity matrix construction. They combined two
methods of fast population count primitive (which is a method to count the number of 1 bits in the vector) and

architecture agnostic algorithms to reduce the traffic of memory. It enabled around 20 to 40 times speedup

against traditional CPU methods and achieved 65% of performance in theoretical peak. Also, they demonstrated

the performance of their methods based on two models of problems: first, similarity matrix construction and

second, leader clustering [1].

IV. RESEARCH METHODOLOGY
 One parts of similarity searching algorithm is Tanimoto similarity coefficient calculation. It has high

level of time consumption in sequential design because this calculation should be done for a huge database with
many fingerprints of chemical compounds. That’s why the recent researches attempt to improve this part of

algorithm based on parallelism concepts. We parallelized this part of the algorithm based on OPENMP and

CUDA designs.

 We have applied the optimized algorithm on MDL Drug Data Report (MDDR) database. This type of

database has been used to apply single reference similarity searching algorithm for this work. The database file

has two columns such as compound Ids and 1024 bit binary fingerprints (fixed length fingerprints). The type of

fingerprints are ECFP4 (binary strings). We have duplicated the database row, which is number of compounds

in database, with the different amount of compounds in the database such as 12817, 25635, 51270, 102540,

Enhance similarity searching algorithm with optimized fast population count method based on parallel design

www.iosrjournals.org 46 | Page

205080 and 410160 compounds in this work. At the following section, it presents the pre-computing stage

which is same in both OPENMP and CUDA design.

A. Pre-computing with data conversion strategy

 This step read the data from the database files, fetch and store the data in 1D arrays also data

conversion process are done to keep less memory allocation. We used 1D arrays in this design because when 2D

arrays had higher execution times in sequential design of drug discovery in experimental tests. This part of are

done in CPU part with single core. The details of this step with applying data conversion are described in the

following:
1) Read and store the compound Id and fingerprints of query and database files into the 1D respective arrays.

In this step, 1024 binary fingerprints are 1024 chars (after fetching from file). This 1024 chars are divided

into 128 chunks of 8 character. Finally 8 chars are converted to one unsigned integer so we will have 128

unsigned integer values for each compound. Next 128 unsigned integer values represent the second

fingerprint and so on. So the 1D array contains 128*102540 for all 102540 compounds.

2) Initialize and allocate memory for 1D arrays (access to 1D memory is only one time but access to 2D

memory are twice).

This strategy called by data conversion method that has some benefits to carry data in GPU design very fast. In

addition, the execution process on the 2D arrays is a heavy task for GPU. That’s why, the program stored

compound fingerprints in 1D arrays to achieve high speed of transferring results for the CUDA design with the
less memory allocation by data conversion strategy. It helps to manage memory. The pseudocode of data

conversion strategy is described in Figure 3.

B. Fast population count method with converted data structure

 Each query and data fingerprints has 1024 binary bits that is used in this work. It has already

decomposed and converted to 128 unsigned integer numbers that each unsigned integer described 8 binary bits.

To calculate the number of one’s bits, fast population count method [1] is applied on each 128 unsigned integer

values in the program, and sums all 128 results to calculate all numbers of one’s bits for all 128 unsigned integer

values. This process is done for both respective compounds A and B, also it is done on the result of (compound

A & compound B). The pseudocode of population count calculation for each unsigned integer value is described

in Figure 4.

1. For int=1 to the number of total row in data.txt total

2. Read the fingerprints from Data.txt and Query.txt files each as a string of characters

3. Convert each 8 character to an integer

4. Store in arrays of integers

5. End for
6. For int=1 to the number of total row in query.txt

7. Read the fingerprints from Query.txt files each as a string of characters

8. Convert each 8 character to an integer

9. store in arrays of integers

10. End for

Figure 3. Pseudocode of data conversion strategy.

1.m1= 0x55; //constant value of 01010101

2.m2= 0x33; //constant value of 00110011

3.m4= 0x0f; //constant value of 00001111

4.//input=input number

5.input = (input & m1) + ((input >> 1) & m1);

6.input = (input & m2) + ((input >> 2) & m2);

7.output = (input & m4) + ((input >> 4) & m4);

8.convert output variable to unsigned integer value;

9.//output is the result of number of one’s bits in the first chunk and will be done for all chunks

Figure 4. Pseudocode of population count calculation.

Enhance similarity searching algorithm with optimized fast population count method based on parallel design

www.iosrjournals.org 47 | Page

C. OPENMP design

 The sequential code could be parallelized with OpenMP platform by adding only OpenMP directives,

so the new code is compiled on OpenMP compiler and the compiled file is executed by multicore system.In this

design, we decided to keep the default of OpenMP about applying two threads, which are default number of

threads with two cores. Also, the directives such as “#pragma omp parallel” and “#pragma omp for schedule

(static)” should be added to achieve parallelization. We apply fast population count method to evaluate its

ability on CUDA design against sequential design in terms of increasing datasize. The details of each function

have been explained in sequential part of previous sections. In OpenMP design, it makes the sequential code

parallelized based on OpenMP platform and data parallelism.

D. CUDA design with data conversion strategy

 There is a pop count function, known as predefined CUDA function, in CUDA APIs to count the

number of 1 bits in a binary string. It could be easy for developers to implement this part of Tanimoto

calculation with high speed programming and good performance of computation. It is only available on the new

versions of GPU cards with special hardware specific which is not available on any portable laptop. This type of

GPU cards could be found in special research laboratories, big drug discovery research groups and may be

available in rich companies. On the other hand, the fast population count method is a method that does not have

this type of hardware dependency with special GPU cards. By applying this method, it is possible to achieve

good results in similarity searching algorithm in terms of good performance and saving time without buying

expensive GPU cards and without paying a lot of money.
 This method is based on counting the number of one’s bits in query fingerprints and fingerprints inside

the database also it calculates the number of one’s bits in the results of “&” operation between each query

fingerprint and each fingerprint of the database. Each query and database compounds have two same parts

which are compound Id and 1024 bits (128 unsigned integer values) fingerprint. In the other hand, we have 10

query compounds and 102540 compounds in the database. At the first, this method counts the number of one’s

bits for fingerprint of the first query compound and the first compound in the database to calculate Tanimoto

similarity coefficient between each query compound and database compounds. All fingerprints have fixed

length of 1024 bit binary numbers to count the number of one’s bits inside of the fingerprint. The steps are

described with more details below:

1) 1024 bits fingerprint has been converted to 128 unsigned integer values for each fingerprint. Each unsigned

integer value is presented as eight binary bits in the code.

2) Parallel reduction population count calculation is applied on 8 bits from left to right side of fingerprint in
Figure 5. Its structure has showed in Figure 4 as Pseudocode.

3) After calculating the number of one’s bits in the first 8 bits (first unsigned integer value) then the result is

stored.

4) The steps 2 and 3 are repeated until the index reach to the last chunk of 1024 bit binary fingerprints (128

unsigned integer values) which means the number of one’s bits for each chunk are calculated.

5) To count and store for all query fingerprints, step 4 are executed in parallel. It means one thread attempt on

each unsigned integer value to count the number of one’s bits, so the program applies 128 threads for each

query fingerprint since the number of query fingerprints is ten. 128 multiply by 10 is equal to 1280 threads.

That means it needs minimum 1280 threads. In the other hand, we defined 512 threads per block so the

number of blocks should be rounded to 3.

6) Next step is to calculate the sum of all 128 unsigned integer values for each query fingerprint. Also, this
part is done in parallel with 512 threads per blocks. It returns number of one’s bits in each query fingerprint.

7) Then the program runs step 4 to count and store for all database fingerprints in parallel. It means one thread

attempt on each unsigned integer value (128 unsigned integer value for each fingerprint) to count the

number of one’s bits, so the programs applies 128 threads for each database fingerprint. Since the number

of database fingerprints are based on datasize (102540 compound) so 128 multiply by datasize is equal to

the number of threads that need to do this task. We defined 512 threads per block, so the number of blocks

are calculated by (datasize*128/threads)+1.

8) The next step is the sum of all 128 unsigned integer values for each database fingerprint. Also, this part is

done in parallel with 512 threads per block. As we defined 512 threads per block, so the number of blocks is

calculated by (datasize/threads)+1. Then it returns the number of one’s bits in each database fingerprint.

9) In this step, the number of one’s bits in the “&” operation result of each query fingerprint and all database

fingerprints are calculated same calculation of the number of one’s bit in each query fingerprint. The
parallel part for 10 query is done ten times and the number of threads per block has been defined 512

threads. Also, the number of blocks is same as step 8 in this step.

 Since we have different number of compounds in the database to evaluate the results, so we have

different datasize for each database. That’s why, we defined number of blocks dynamically. At this stage, all

Enhance similarity searching algorithm with optimized fast population count method based on parallel design

www.iosrjournals.org 48 | Page

three parameters for the Tanimoto similarity coefficient formula are available. Its formula are mentioned in

Eq.(1).

 𝑇𝑎𝑛𝑖𝑚𝑜𝑡𝑜𝐴 ,𝐵 =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
=

|𝐴 ∩ 𝐵|

 𝐴 + 𝐵 − |𝐴 ∩ 𝐵|
 (1)

E. CUDA design without data conversion strategy

 In this design, fast population count method is applied without using data conversion to show their

differences. Here, each character (its ASCII code minus 48) of fingerprint is considered as an integer value.

Each fingerprint will be 1024 integer values. The other steps are same as previous designs where data

conversion strategy has been applied in CUDA design with fast population count method. So the amount of

(1024*4*datasize bytes) allocated for database fingerprints after fetching the database text file without data

conversion process and amount of (128*4*datasize bytes) with the data conversion process.

F. Popc sequential algorithm

 Each fingerprint has 1024 bits of zero and one bits that are applied in this work. We have already
converted the fingerprint to 128 unsigned integer value which each one has 8 binary bits. The popc algorithm is

run for each chunk (each unsigned integer value) then it sums each chunk of 128 results with each other. This

function will be done on results of logical operation for (compound A & compound B) to calculate the number

of one’s bits for compound A&B. The pseudo code of this algorithm based on its semantic code[21] are

described in Figure 6.

G. CUDA design with popc method

 In this design, popc method has been applied instead of fast population count method and only this part

is replaced with the popc method. Popc is one of the predefined APIs of CUDA platform that known as integer

arithmetic instruction in CUDA. These types of functions have some advantages such as fast computation, high

performance, easy to develop and even in the less time in comparing with implementing the method manually.

Regular implementation of the algorithm by developer does not have that type of mentioned hardware

dependency [21]. CUDA design with popc method should be compiled with CUDA Capability of version 2.0
and above. So there is hardware dependency because it needs to buy modern and new expensive model of GPUs

that support this feature.

V. EVALUATION
 Results of execution times show the ability and optimization feature of the CUDA design of the fast

population count method with data conversion strategy. The mentioned CUDA design of this work is executed

on my laptop (GeForce GT325M) and second device (GeForce GTX260) of the server that both device do not
support CUDA capability of higher than version 2.0 to use fast predefined functions of CUDA.

We illustrated the CUDA design with fast population count method on the second device in the server

provides very near results of performance in comparing with the results of the CUDA design with predefined

popc method on the first device (Tesla C2050) in the server. The GPGPU University server machine supports

1) Repeat until (input value!= 0){ //check input value isn’t zero

2) if (input value &0x1==1){//bitwise and with hexadecimal of 1

3) count++; //plus one because it has found one bit
4) }

5) shift one bit to right; //check next bit

6) }

Figure 6. Pseudocode of popc algorithm in sequential.

Figure 5. Parallel reduction population count[1].

Enhance similarity searching algorithm with optimized fast population count method based on parallel design

www.iosrjournals.org 49 | Page

CUDA capability version that both methods need. The CUDA design with popc method needs the minimum

CUDA capability of version 2.0, but CUDA design with fast population count method needs the minimum

version 1.0. It shows that the proposed design can achieve good performance and acceptable execution times

without using popc method. So we can do drug discovery based on similarity searching with the single reference

by applying CUDA design with fast population count method. That’s why, we do not have to buy modern GPUs

to achieve good results. The CUDA design with fast population count method reduces hardware dependency

without losing the time by using data conversion strategy.

Another issue is that when the database is growing every day in many fields and the memory

allocations in the programs is increasing so in this work was attempted to reduce hardware dependency in terms
of memory usage in memory allocation. This is achieved by using data conversion, reduce memory allocations

which is one type of memory managements. It helps to reduce hardware dependency that forces users to buy

new GPUs and new hardware devices with more capacity of memory. We defined execution times as a running

time of each design to solve the problem. The performance gained percentages are calculated by Eq.(2) and

Eq.(3).

 𝑃𝐺𝑐𝑢𝑑𝑎 =
𝑇𝑠𝑒𝑞 − 𝑇𝑐𝑢𝑑𝑎

𝑇𝑠𝑒𝑞
∗ 100 (2)

According to the Table 4.1, the execution times go down when we use pre-computing with data

conversion. The data conversion method chunks 1024 char to 8 char then the program converts each 8 char to

one integer value, and this process is done 128 times for each 1024 binary character fingerprints. The program

without data conversion converts 1024 binary character fingerprints to 1024 integer values that it is done 1024

times for each fingerprint. The ability of data conversion strategy is illustrated in pre-computing step by Table 1.
Table 2 shows execution times of fast population count design after pre-computing step with and

without the data conversion strategy on sequential code and CUDA. According to Table 2, execution times of

both designs with data conversion are faster than same design without data conversion. Because the program has

to do the process for each integer value. On the other hand, the program has fewer tasks when we have applied

the data conversion strategy in fast population count design because the fingerprint length reduced with data

conversion. As a result, the design with conversion have been optimized as it is faster than the design without

data conversion strategy. It is obviously clear by increasing the datasize. The data conversion makes the

memory traffic reduction in data transmission between host and device, also it has less memory allocation.

Table 1. Effect of data conversion strategy on pre-computing in terms of execution time

Table 2. Effect of data conversion on CUDA and sequential design in terms of execution time

Figure 7 shows the speedup of each platform which is calculated by dividing sequential execution time to

parallel execution time. The Figure 7 illustrated the speedup of CUDA design with data conversion strategy has

 𝑃𝐺𝑂𝑝𝑒𝑛𝑀𝑃 =
𝑇𝑠𝑒𝑞 − 𝑇𝑜𝑚𝑝

𝑇𝑠𝑒𝑞
∗ 100 (3)

Enhance similarity searching algorithm with optimized fast population count method based on parallel design

www.iosrjournals.org 50 | Page

best speedup in compare with other mentioned design. The reason is the fast computation and applying many

GPU cores in CUDA design. There is no result for 410160 compounds when CUDA design is applied without

conversion strategy because of GPU memory limitation weakness.

According to the Figure 8, execution time on sequential design is the highest result because it is executed on

single core system. About OPENMP design, it has better results in compare with the sequential design because

it is executed based on multicore system. We executed OPENMP design with two threads and cores by default.

In CUDA design, we executed it on the first device of server and device of laptop. We applied many cores of

GPU in this design that’s why it has very better results in terms of performance and execution times against

sequential even OPENMP design. The results of CUDA design on server is better results in compare with its

execution on laptop. The reason is that the memory and speed of the cores in device of server is higher than my

laptop device feature.

 Table 3 shows the execution times of both methods of fast population counts and popc has very fast

computation even in sequential design. The execution times when we use predefined popc function has better

Figure 8. Execution times and performance gained percentages of fast population count implementation.

Figure 7. Speedup of each design against sequential.

Enhance similarity searching algorithm with optimized fast population count method based on parallel design

www.iosrjournals.org 51 | Page

results in compare with applying fast population count method. We executed CUDA design with popc method

on the first device of USM GPGPU server and we executed another design on the second device. Because popc

function is only available in GPU cards that have CUDA capability version of above 2.0. It needs to be

mentioned that although first device has faster cores against second device but both design has very near

execution time and performance gained percentage results. The Figure 9 shows the power of both design with

more than 94% performance against sequential design by increasing the datasize.

Table 3. Execution times of fastpopcount and popc methods with their sequential code.

VI. CONCLUSION
The aims of this work are to achieve an optimized similarity searching algorithm on different platforms

such as OpenMP and CUDA platforms. The algorithm minimizes hardware dependency by applying the parallel

design based on the fast population count method with data conversion. The fast population count method with

data conversion strategy is used in similarity searching algorithm instead of applying predefined intrinsic popc

function which needs special and expensive modern GPU. We have illustrated that the CUDA design with
optimized fast population count method with data conversion could be run on general laptops that have general

family of NVIDIA GPU device. My laptop and second device in the USM GPGPU server machine is a possible

hardware to implement the algorithm and it produces very near results for execution times in comparison with

applying the predefined intrinsic popc function.

According to the trend of OpenMP version of the parallel algorithm, the OpenMP design has good

results in compared with the sequential code. However compared to the CUDA design it has longer execution

times when we have a small amount of data. This work provided some features such as overcome the hardware

dependency and memory reduction by data conversion strategy. As a result, users do not have to buy special and

Execution

time

(seconds)

12817

Compounds

25635

Compounds

51270

Compounds

102540

Compounds

205080

Compounds

410160

Compounds

POPC

(Sequential

on server)

0.39 0.77 1.54 3.11 6.32 12.43

Fast

population

count

(Sequential

on server)

0.46 0.95 1.90 3.89 7.96 15.42

POPC

(CUDA on

server,

device1)

0.01 0.03 0.05 0.11 0.22 0.43

Fast

population

count (CUDA

on server,

device2)

0.02 0.05 0.11 0.21 0.42 0.85

Figure 9. Performance percentages gain for each method on different devices.

Enhance similarity searching algorithm with optimized fast population count method based on parallel design

www.iosrjournals.org 52 | Page

modern GPU device because the user can achieve good performance and execution times against sequential

code.

Acknowledgements
The authors thank from Universiti Sains Malaysia (USM) that provided us GPGPU server to test and

develop our implementation. This is the place to thanks from the anonymous reviewers for their professional

comments about our work.

REFERENCES

[1] I. S. Haque, V. S. Pande, and W. P. Walters, "Anatomy of high-performance 2D similarity calculations," Journal of chemical

information and modeling, vol. 51, pp. 2345-2351, 2011.

[2] S. Deshpande, P. Ravale, and S. Apte, "Cache Coherence in Centralized Shared Memory and Distributed Shared Memory

Architectures," International Journal on Computer Science and Engineering (IJCSE) Special Issue, 2010.

[3] J. Nickolls and W. J. Dally, "The GPU Computing Era," Micro, IEEE, vol. 30, pp. 56-69, 2010.

[4] N. Brown, "Chemoinformatics—an introduction for computer scientists," ACM Computing Surveys (CSUR), vol. 41, p. 8, 2009.

[5] J. A. DiMasi, R. W. Hansen, and H. G. Grabowski, "The price of innovation: new estimates of drug development costs," Journal

of health economics, vol. 22, pp. 151-186, 2003.

[6] J. Pitera, "Current developments in and importance of high-performance computing in drug discovery," Current opinion in drug

discovery & development, vol. 12, p. 388, 2009.

[7] G. Rastelli, "Emerging Topics in Structure-Based Virtual Screening," Pharmaceutical Research, pp. 1-6, 2013.

[8] H. El-Rewini and M. Abd-El-Barr, Advanced computer architecture and parallel processing vol. 30: Wiley. com, 2005.

[9] A. R. Brodtkorb, T. R. Hagen, and M. L. Sætra, "Graphics processing unit (GPU) programming strategies and trends in GPU

computing," Journal of Parallel and Distributed Computing, vol. 73, pp. 4-13, 2013.

[10] I. Rajani and G. N. Gopal, "Advanced Trends of Heterogeneous Computing with CPU-GPU Integration: Comparative Study."

[11] A. Sivasubramaniam, A. Singla, U. Ramachandran, and H. Venkateswaran, "An approach to scalability study of shared memory

parallel systems," ACM SIGMETRICS Performance Evaluation Review, vol. 22, pp. 171-180, 1994.

[12] Nvidia. (2012, NVIDIA’s Next Generation CUDA Compute Architecture Kepler GK110. Available:

http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf

[13] M. Misic, D. Durdevic, and M. Tomasevic, "Evolution and trends in GPU computing," in MIPRO, 2012 Proceedings of the 35th

International Convention, 2012, pp. 289-294.

[14] J. Ghorpade, J. Parande, M. Kulkarni, and A. Bawaskar, "GPGPU Processing in CUDA Architecture," arXiv preprint

arXiv:1202.4347, 2012.

[15] B. Chapman, G. Jost, and R. Van Der Pas, Using OpenMP: portable shared memory parallel programming vol. 10: The MIT

Press, 2008.

[16] M. Maggioni, M. D. Santambrogio, and J. Liang, "GPU-accelerated Chemical Similarity Assessment for Large Scale Databases,"

Procedia Computer Science, vol. 4, pp. 2007-2016, // 2011.

[17] C. Ma, L. Wang, and X.-Q. Xie, "GPU Accelerated Chemical Similarity Calculation for Compound Library Comparison,"

Journal of chemical information and modeling, vol. 51, pp. 1521-1527, 2011.

[18] P. S. Bakkum, Kevin, "Accelerating SQL database operations on a GPU with CUDA: Extended results," University of Virginia

Department of Computer Science Technical Report CS-2010-08, 2010.

[19] P. Liu, D. K. Agrafiotis, D. N. Rassokhin, and E. Yang, "Accelerating Chemical Database Searching Using Graphics Processing

Units," Journal of chemical information and modeling, vol. 51, pp. 1807-1816, 2011.

[20] Q. Liao, J. Wang, and I. A. Watson, "Accelerating Two Algorithms for Large-Scale Compound Selection on GPUs," Journal of

chemical information and modeling, vol. 51, pp. 1017-1024, 2011.

[21] Nvidia. (2012, Parallel thread execution. Available: http://docs.nvidia.com/cuda/pdf/ptx_isa_3.1.pdf

http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://docs.nvidia.com/cuda/pdf/ptx_isa_3.1.pdf

