
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 14, Issue 5 (Sep. - Oct. 2013), PP 70-73
www.iosrjournals.org

www.iosrjournals.org 70 | Page

Incremental Mining of Sequential Patterns Using Weights

Archana Kollu
1
, Vinay Kumar Kotakonda

2

1(Asst.Prof, Department of Computer Engineering, Padmashree Dr.D.Y.P.I.E.T,Pune/India)
2(Software Engineer,Bengaluru/ India)

Abstract : Real life sequential databases are usually not static. They tend to grow incrementally. So after every

update a frequent pattern may no longer remains frequent while some infrequent patterns may appear as

frequent in updated database. It is not a good idea to mine sequential database from scratch every time as the

update occurs. It would be better if we can use the knowledge of already mined sequential patterns to find the
complete set of sequential patterns for updated database. An incremental mining algorithm does the same thing.

The main goal of an incremental mining algorithm is to reduce the time taken to find out the frequent patterns

significantly i.e. it should mine the set of frequent patterns in significantly less time than a non-incremental

mining algorithm. In this work we have approached using weight constraints, in time and space, of an idea of

already existing algorithm called WSM.

Keywords: Frequent patterns, incremental mining, Sequential databases, sequential patterns, weight constrains

I. Introduction

Many real life sequence databases grow incrementally. Discovering sequential patterns from the

dynamic databases is of great importance in many application domains (e.g., fault detection in network, web

access pattern analysis and DNA Sequencing and Bioinformatics). Incremental algorithm should be developed

for sequential pattern mining so that mining can be adapted to incremental database updates. However, it is
nontrivial to mine sequential patterns incrementally, especially when the existing sequences grow incrementally

because such growth may lead to the generation of many new patterns due to the interactions of the growing

subsequences with the original ones. In this study, we develop an efficient algorithm, for incremental mining of

sequential patterns using weights, by exploring some interesting properties. Our performance study shows that

the algorithm can perform better than that of other non-incremental mining algorithm.

Most frequent pattern mining algorithms use a support measure [1] to prune the combinatorial search

space. However, support-based pruning is not enough when taking into consideration the characteristics of real

datasets. Additionally, after mining datasets to obtain the frequent patterns, there is no way to adjust the number

of frequent patterns through user feedback, except for changing the minimum support. Alternative measures for

mining frequent patterns have been suggested to address these issues. One of the main limitations of the

traditional approach for mining frequent patterns [2] is that all items are treated uniformly when, in reality, items
have different importance. For this reason, weighted frequent pattern mining algorithms [3] have been suggested

that give different weights to items according to their significance.

Sequential pattern mining is not a new research topic these days. Many researchers have proposed their

algorithms for mining sequential patterns which outperform their previous algorithms in one way or the other.

All the algorithms have their own advantages and shortcomings. Some algorithms are very efficient in a

particular environment (e.g. on a particular data), but not so efficient or even inefficient in other circumstances.

Sequential mining algorithms can mine a static database. But, nowadays, almost all databases are

dynamic in nature and they grow incrementally. One way to handle this is to mine the whole database every

time an update occurs. But it is highly inefficient and also undesirable. We must find a way to use the already

mined information. An incremental mining algorithm does the same [4, 5]. It utilizes the mined information to

get new set of frequent sequential patterns instead of mining the whole database from scratch. Note that the

ultimate aim of using an incremental mining algorithm instead of non-incremental one is to gain efficiency with
respect to time. Otherwise a non-incremental mining algorithm can also serve our purpose of mining very easily.

So for incremental mining algorithm we must consider the time requirement of the algorithm to mine complete

set of frequent patterns.

II. Problem Definition And Related Work
2.1 Problem Definition

Given an original database D, minimum support threshold min_sup, the set of frequent sequential

patterns FP and an update to the original database, the problem is to mine the complete set of frequent sequential

patterns for the updated database D’, utilizing the already mined information instead of mining it from scratch.
The ultimate aim of an incremental mining algorithm is to reduce the time required to mine D’, at the same time

giving the same result as a non-incremental mining algorithm.

Incremental Mining Of Sequential Patterns Using Weights

www.iosrjournals.org 71 | Page

2.2 Related work

Our work is mainly based on an incremental mining algorithm called WSM [3]. So it would be useful

to discuss WSM and then proceed with the algorithm proposed by us.

WSM : An overview

Algorithm 1 WSM (α, L, SDB|α)

Parameter:

 α is a weighted sequential pattern that satisfies the above pruning conditions;
 L is the length of α;

SDB|α is the sequence database, S if α is null, otherwise, it is the α-projected database.

 1. Scan S once, count the support of each item, and find each weighted frequent item β in sequences,

 such that sup(β)*MeanWeight≥min_sup.

 2. β is a weighted sequential item if the following pruning condition is not satisfied.

 (a) β can be assembled to the last element of α to form a sequential pattern or

 (b) <β > can be appended to α to form a sequential pattern.

 3. for each weighted frequent item β do

 Add it to a to form a sequential pattern α„

 if α„ is not a sub-sequence of a discovered sequence

 then

 output α„.

 end for

 4. for each α„ do

 Construct α„-projected database SDB|α„;

 Call WSM (α„, L+1, SDB|α„);

 end for

2.3 Pruning Strategies

The main consideration in applying a weight constraint to sequential pattern mining is that the

downward closure property [1] may be broken by simply applying a weight constraint. A sequence with lower

weight can be a frequent sequential pattern by combining items with higher weight in the sequence. To tackle
these problems, a mean weight is defined [3].

Condition 1. If sup(α)*MeanWeight<min_sup, then we can prune α.

Condition 2. For all discovered frequent weighted sequential patterns, if the weight of α is lower than

MeanWeight, then we can prune α.

The meaning of Condition 2 is that if the importance of items in α is no higher than the mean weight,

then it is not important enough. We use Condition 1 for pruning because it can also inherits the downward

closure property [1, 4]

Theorem :. Any super sequence of an infrequent weighted sequence is also infrequent. [3]

Proof: Let α be an infrequent weighted sequence, that is sup(α)*MeanWeight<min_sup. Let β be a

super sequence of α, i.e., α⊂β, then we have sup(β)≤sup(α). So sup (β)*MeanWeight≤ sup

(α)*MeanWeight<min_sup. Thus, β is an infrequent weighted sequence.

Given a sequence database S of input sequences and min_sup, the WSM is to find all frequent

weighted maximal sequences in the database. Thus, we also have the following condition for pruning.

Condition 3. Let α be a newly discovered sequence, if α⊆β and β has already been found, then we can

prune α.

So by this theorem we will have one condition , a pattern which is frequent in D is still frequent in D’

When Mean Weight(D’)>Mean Weight(D) i.e. sup(p)*M.W.(D’)>sup(p)*M.W.(D)≥min_sup ,if above

condition hold then only we can proceed further otherwise it will become WSM approach for D’ one more
condition is needed

Given a frequent pattern p in D’, we want to discover whether there is any pattern p’ with p as prefix

where p’ was infrequent in D but is frequent in D’. A sequence p’ which changes from infrequent to frequent

must have Δsup(p’) > (1- µ)*min sup. For every frequent pattern p such that M.W. (D’)*supLDB(p)<(1-

µ)*min_sup Then there does not exist p’ as prefix of p having this property M.W.(D’)*sup(p’)< µ*min_sup

2.3 Proposed Algorithm

Input: An appended database D’, min_sup, FP and BSFP in D

Output: FP’, BSFP’ in D’

Incremental Mining Of Sequential Patterns Using Weights

www.iosrjournals.org 72 | Page

1.FS’ ={} ; SFS’ ={} ;

2. Scan LDB for single items;

3.adjust the min_sup if it is changed due to the increasing of total number of sequences in D’.

4. Add new frequent item into FS’, semi frequent item into SFS according to the updated min-sup.

5. For each new item in FS’ do

 WSM(p,D’|p , µ*min_sup , FS’,SFS’)

 6. For each pattern p in FS do
 If(M.W.(D’)*supLDB(p)≥(1-µ)*min_sup

 WSM(p, D’|p, μ ,min_sup,FS’,SFS’);

 Check Δsup(p);

 7. If(M.W.(D’)*supD’(p)≥min_sup

 Insert(FS’,p);

 8. Else if (M.W.(D’)*supD’(p’)≥µ*min_sup

 Insert(SFS’,p);

III. Experimental Results

The experiments are carried out on a Windows O.S, CPU 2.40 GHz with 4 GB RAM. We have

implemented our algorithm in JAVA programming language using NetBeans editor. The user visits to webpage

data is stored in database, created using MYSQL server 5.1.

The data is an Anonymous web data with discrete sequence. Each sequence in the dataset corresponds

to page views of a user during that twenty-four hour period. Each event in the sequence corresponds to a user's

request for a page. Requests are not recorded at the finest level of detail---that is, at the level of URL, but rather,

they are recorded at the level of page category (as determined by a site administrator). The categories are

"FrontPage", "news", "tech", "local", and “opinion “,” market “,” weather “,” health “,” business, sports “,”

business”, “entertainment” and “travel-package. Any page requests served via a caching mechanism were not

recorded in the server logs and, hence, not present in the data. Each sequence in the dataset corresponds to page

views of a user during that twenty-four hour period. Each event in the sequence corresponds to a user's request
for a page. Requests are not recorded at the finest level of detail---that is, at the level of URL, but rather, they

are recorded at the level of page category (as determined by a site administrator). The categories are

"frontpage", "news", "tech", "local", "opinion", "market", "weather", "health", "business", "sports",

"business",”entertainment” and “travel-package". Any page requests served via a caching mechanism were not

recorded in the server logs and, hence, not present in the data. Each category is associated--in order--with a

character starting with "f". For example, "frontpage" is associated with f, "news" with n, and "tech" with t.

We have studied our algorithm with different attributes. We get results for our algorithm as follows:

The Fig 1 shows the time required by the algorithms on varying minimum support counts. The horizontal axis

represents the minimum support value and vertical axis represents the time required in seconds.

Figure 1 Varying min_sup

The Fig 2 below shows the number of frequent patterns generated for original database, ODB and
appended database, ADB. We also have semi frequent patterns SFP generated and stored in buffer [4]. The

horizontal axis represents the minimum support threshold and the vertical axis represents the number of patterns

to be generated and stored.

Incremental Mining Of Sequential Patterns Using Weights

www.iosrjournals.org 73 | Page

Figure 2 Frequent patterns generated

The Fig 3 demonstrates how our algorithm can be affected by varying buffer ratio . If we set very

high, we will have fewer patterns in SFS, and then the support update for sequences in SFS on LDB will be more

efficient. However, since we keep less information in SFS, we may need to spend more time on projecting

databases. In the extreme case = 1, SFS becomes empty. On the other hand, if we set the very low, we will

have a large number of sequences in SFS, which makes the support update stage very slow.

Figure 3 varying buffer ratios

IV. Conclusion And Futurescope
We have proposed an algorithm for incremental mining of sequential patterns using weights. We have

to check its efficiency with other existing algorithms and then a new concept of “time-interval sequential

patterns” has been proposed recently in which not only the order of events but the time between them is also

considered. This work can be further extended to develop an incremental mining algorithm for time-interval

sequential patterns. We also have the concept of closed sequential patterns. Closed sequential patterns

represent the information in more compact way and so they have gained much attention of the researchers. So an

enthusiastic researcher can also try to develop an efficient algorithm for closed sequential patterns.

References
[1] Agrawal R., Srikant R., “Mining sequential patterns” , Proc. 11th IEEE Int. Conf. on Data Engineering (ICD E‟95), 1995.

[2] Srikant R., Agrawal R., “Mining sequential patterns: Generalizations and performance improvements”, Proc. 5th IEEE Int.

Conf. on Extending Database Technology (IDBT‟96).

[3] WeiCui, Haizhong An “Discovering Interesting Sequential Pattern in Large Sequence Database”, 2009 Second Asia-Pacific

Conference on Computational Intelligence and Industrial Applications.

[4] Cheng H., Yan X., Han J., “Inc Span: Incremental Mining of Sequential Patterns in Large Database”, Proc. ACM KDD Conf. on

Knowledge Discovery in Data, Washington (KDD‟04), 2004.

[5] F. Masseglia, P. Ponce let, and M. Teisseire, “Incremental mining of sequential patterns in large data bases”, Data Knowledge

Eng., 46:97–121, 2003.

