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Abstract: The visual extent of an object reaches beyond the object itself. It is reflected in image retrieval 

techniques which combine statistics from the whole image in order to identify the image within. Nevertheless, it 

is still unclear to what degree and how this visual extent of an object affects the classification performance. 

Here we analyze the visual extent of an object on the Pascal VOC dataset using bag of words implementation 

with SIFT Descriptors. Our analysis is performed from two angles: (a) Not knowing the object location, we 

determine where in the image the support for object classification resides (normal situation) and (b) Assuming 

that the object location is known, we evaluate the relative potential of the object and its surround, and of the 

object border and object interior (ideal situation). 
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I. Introduction: 
            COMPUTER VISION is a field that includes methods for acquiring, processing, analyzing, and 

understanding images and, in general, high-dimensional data from the real world in order to produce numerical 

or symbolic information, e.g., in the forms of decisions. A theme in the development of this field has been to 

duplicate the abilities of human vision by electronically perceiving and understanding an image. This image 

understanding can be seen as the disentangling of symbolic information from image data using models 

constructed with the aid of geometry, physics, statistics, and learning theory. Computer vision has also been 

described as the enterprise of automating and integrating a wide range of processes and representations for 

vision perception. 

In the early days of computer vision the visual extent of the object was sought to be precisely confined 
to its silhouette. And for good reasons as object boundaries (i) are more stable against lighting changes than the 

rest of the surface, (ii) indicate the object geometry directly, and (iii) reduce the processing requirements. This 

gave birth to the fact that an object should be accurately segmented before it can be recognized. However, the 

task of finding the contour- bounded location of an object is very hard to solve and not mainly necessary of 

object recognition. Recently, the use of powerful local descriptors, the ever increasing size of data sets to learn 

from and the advances in statistical pattern recognition have rendered obsolete the necessity to know the object 

location before object-based image classification. The first step on the road to less localization of the object was 

to use local region descriptors in a specific spatial arrangement. This allowed the object to be found based on 

only its discriminative features. The second step was the introduction of the Bag-of-Words method which 

selects interesting regions, converts them to visual words, and uses word counts followed by a spatial 

verification step to retrieve matching image regions. This is followed by the generalized Bag-of- Words to 

image classification and removed the spatial verification, relying on interest point detectors to extract visual 
words from the object. In the final step, the quantity of visual words was found to be more important than the 

quality of the location of the visual words. 

 

II. Procedure 
In Bag of Words a SIFT variant is used. Normally, SIFT divides a patch into 4 by 4 sub patches where for 

each sub-patch a Histogram of Oriented Gradients is calculated. Two lines of investigation are followed, as 

visualized in  Fig. 1. The first line is the normal situation where we a visual concept detection algorithm is 

applied and which image parts contribute how much in identifying the target object are determined. The second 
line is the ideal situations where we use the known object locations to isolate the object, surround, and object 

interior and object border. The first line shows what currently is measured, and the second reveals what could be 

measured. 

We evaluate the visual extent of an object in the Bag of-Words framework in terms of the object 

surround, object  border, and object interior. First we investigate the influence of the surround with respect to 

the complete object. Then we investigate the influence of the object border with respect to the object interior. 

The ground truth object locations are used to isolate the object from its surround in both aspects. As the Bag-of-
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Words framework thrives using lots of data, a large dataset where the locations are given in terms of bounding 

boxes is used. In the normal situation the distinction is made between object/surround and interior/border after 

classification on the test set only. In the ideal situation this distinction is made beforehand on both the training 
and test set. When there are multiple instances of the same class their measurements are combined to avoid 

measuring object features in its surround. 

 

1.1 The Dataset 

  We choose to use datasets from the widely used Pascal VOC challenge as this allows for a good 

interpretation and comparison with respect to other work. We benchmark our Bag of-Words algorithm on the 

Pascal VOC 2007 classification challenge to show our framework is competitive. Our analysis is done on two 

Pascal VOC 2010 datasets. First, we use the classification dataset which provides the object locations in terms 

of bounding boxes. In this dataset we emphasize quantity of annotations over the quality of annotations. Second, 

we use the segmentation dataset which is much smaller but provides more accurate object locations in terms of 

segments. For the Pascal VOC 2010 datasets we use the predefined train set for training and the val set for 
testing. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

FIGURE 1 

 

1.2 The Confusion Average Precision Matrix (CAMP) 

To facilitate analysis, a confusion matrix is developed based on the Average Precision, which we call 

Confusion Average Precision Matrix or CAMP. The CAMP includes the Average Precision in its diagonal 

elements and, similar to a confusion matrix, shows which classes are confused. We define the confusion or off-

diagonal elements of the CAMP as the total loss of Average Precision of encountering a specific non-target class 
in the ranked list. To calculate the loss we traverse the ranked list in decreasing order of importance. When a 

non-target class is encountered at position i, the loss L is the difference between the AP assuming a perfect 

ranking from position i and the AP assuming a perfect ranking from position i + 1. 

The total confusion with a non-target class d is the sum of loss to that class, calculated by_xi∈d L(xi ). As we 

measure 

confusion in terms of loss, by definition the AP plus the sum of the loss over all classes adds to one. 

 

1.3 Bag-of-Words Framework 

A condense overview of our Bag-of-Words implementation (Uijlings et al. 2010) is given in Table 1. 

We sample small regions at each pixel which is an extreme form of sampling using a regular, dense grid (Jurie 

and Triggs 2005; 

Nowak et al. 2006). From these regions we extract SIFT (Lowe 2004) and four colour SIFT variants 
(van de Sande et al. 2010) which have been shown to be superior for image retrieval (Mikolajczyk and Schmid 

2005; van de Sande et al. 2010; Zhang et al. 2007). Thus we use intensity-based SIFT, opponent-SIFT, rg-SIFT 

(normalised RGB), RGBSIFT, and C-SIFT. Normally, SIFT consists of 4 by 4 subregions. However, we want 

our descriptors to be as small as possible in our experiments to be able to make the distinctions between object 

interior, object border, and object surround as crisp as possible.We therefore extract SIFT features of 2 by 2 

subregions, which degrades performance no more than 0.02 MAP. The size of such SIFT patch is 8 by 8 pixels.  
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Table 1 Overview of our Bag-of-Words implementation. In our two lines of analysis we divide the image into 

subregions by either using the Spatial Pyramid or the ground truth object locations 

 
Descriptor extraction          Word assignment                       Classification 

• Sampling each pixel            • PCA dimension                               • SVM: 

                                   • Size: 8×8 pixels                  reduction by 50%                   – Hist Int kernel 

                                   • Descriptors:                         • Random Forest:                    • Image Divisions: 

                                     – 2×2 SIFT                           4 binary decision                       Spatial Pyramid 

                                     – 2×2 opp-SIFT                      trees of depth 10                           – 1×1, 1×3 

                                     – 2×2 rg-SIFT                                                                          Ground truth loc. 

                                      – 2×2 RGB-SIFT                                                                    – object/surround 

                                      – 2×2 C-SIFT                                                                         – interior/border 

 

1.4 Analysis Without Knowing the Object Location 
The line of analysis where the object locations are unknown shows how all parts of the image are used 

for classification by current state-of-the-art methods. We first classify images using a standard, state-of-the-art 

Bag-of-Words framework. After classification, we project the output of the classifier back onto the image to 

obtain a visualisation of pixel-wise classifier contributions; the sum of the pixel-wise contributions is equal to 

the output of the original classifier, which measures the distance to the decision boundary. After we have created 

the pixel-wise classifier contributions, we use the ground truth object locations to determine how much each 

image part (i.e. surround, object, object interior,object border) contributes to the classification. When an image 

contains multiple objects of the same class, we add contributions of all its locations together. When an image 

contains the target class, its location is used to make the distinction into object, surround, object interior, and 

object border. If the image does not contain the target class, we use the class with the highest classification 

contribution to make this distinction. This allows us to create a partitioning for both target and non-target 

images, which we need in order to calculate the Average Precision that is defined over the whole dataset (there 
is no “true” partitioning into the object and its surround for non-target images). 

 

1.5 Distinguishing Object, Surround, Interior, and Border 

For boxes, the ground truth locations separate the object from the surround. Note that the nature of the 

boxes cause some surround to be contained in the object. To separate the object interior from the object border, 

we define an object interior box as being a factor n smaller than the complete object box while its centre pixel 

remains the same. To determine the interior box we use the idea that object border contains the shape and the 

object interior contains texture and interior boundaries, which should be complementary. Separating 

complementary information should yield better results for the combination, hence we find the optimal interior 

boxes by optimising classification accuracy over n on the training set using cross-validation.We found a factor 

0.7 to be optimal. This means that 49% of the object is interior and the rest border. For segments the Pascal 
VOC dataset only annotates the interior of the object while there is a 5 pixel zone around where the borders of 

the objects are. We want to ensure that no surround descriptors measure this border zone, and no interior 

descriptors measure this border zone. As we use the middle of our descriptor as point of reference in the ideal 

situation, we extend this border zone with half our descriptor size both inwards and outwards. Extending the 

border outwards yields our outlines of the object. Extending the border inwards yields the separation between 

object interior and object border. Our object border hence becomes 13 pixels wide. We measured that on 

average over all objects, 46% of the object becomes interior and the rest border. 

 

III. Proposed Results 
3.1 Classification Without Knowing the Object Location 

We first benchmark our Bag-of-Words system on the Pascal VOC 2007 dataset, on which most results 

are published. For our normal Bag-of-Words system where we do not know the object location we achieve an 

accuracy of 0.57 MAP, sufficiently close to recent state-of-the-art Bagof- Word scores obtained by Harzallah et 

al. (2009) and van de Sande et al. (2010), which are respectively 0.60MAP and 0.61 MAP. To enable back-

projection with (6) we use the Histogram Intersection kernel instead of the widely accepted χ2 kernel (Harzallah 

et al. 2009; Jiang et al. 2007; van de Sande et al. 2010; Zhang et al. 2007). This does not influence classification 

accuracy: with the χ2 kernel performance stays at 0.57 MAP. Instead, most of the difference in accuracy between 

our work and Harzallah et al. (2009), van de Sande et al. (2010) can be attributed to our use of 2×2 SIFT 

patches: using the four times as large 4×4 SIFT descriptor results in a classification accuracy of 0.59 MAP. 

However, in most of our experiments we favour small SIFT descriptors to minimise the overlap between object 

and surround, and interior and border descriptors. From now on all results are reported on the Pascal VOC 2010 
dataset using 2×2 SIFT descriptors, unless otherwise noted. 



Computer Vision: Visual Extent Of An Object 

www.iosrjournals.org                                                             25 | Page 

     
FIGURE 2 : Pixel-wise contribution to the classification for top ranked images for the categories boat and cat. The 

original image is followed by the contribution of 2×2 and 4×4 SIFT respectively. Dark-blue means a negative and light-yellow 

means a positive contribution to the classifier. Notice that high positive or high negative contributions are often located on small 

details. The 4 ×4 SIFT images resemble a blurred version of their 2×2 counterparts 
 

3.2 Classification in Ideal Setting with Known Object Location 

In this experiment we use the object location to create a separate representation for the surrounding and 

the object, where the representation of the object may be split into the interior and the border of the object. We 

compare this with the results of normal situation where the object location is not known. Clearly, for all classes 
knowledge of the object location greatly increases performance. The overall accuracy of the normal situation is 

0.54 MAP, the accuracy of the ideal situation when making the distinction between object and surround is 0.68 

MAP (where no Spatial Pyramid is applied to the object). When creating separate representations for the 

surround, object interior, and object border performance increases to 0.73 MAP. This shows that the potential 

gain of knowing the object locations is 0.19 MAP in this dataset. Similarly, on the segmentation dataset, in the 

normal situation where the object location is not known the classification accuracy is 0.44MAP.When 

separating the object from the surround accuracy rises to 0.62 MAP. If we make a separation between surround, 

object interior, and object border accuracy improves to 0.69 MAP. The huge difference between the accuracy 

without and without knowing the object location shows that the classifier cannot distinguish if visual words 

belong to the object or surround. We investigate the cause by determining for each visual word the probability 

that it occurs in an object (i.e. in any of the specified object classes). This graph shows that 1% of the words 

have a larger than 90% probability of describing background. We 
found that these words describe mostly homogeneous texture (e.g. sky). In contrast, no single word has a larger 

than 90% probability of occurring on an object and less than 2% of the visual words occur on an object more 

than 75% of the cases. Note that these numbers are the same when using 4×4 SIFT. This means that no visual 

words exclusively describes objects and that these visual words are less specific than generally thought. 

 

3.3 Object Versus Surround Using Segments 

We repeated the experiments to analyse the influence of the  object and the surround, but this time on 

fewer data but using more accurate object locations in terms of segments. The comparison of the influence 

between the object and its surround in the normal situation for segments looks similar, except that performance 

of using only the object is worse. Hence with fewer training examples the classifier is still able to learn the 

appearance of the surrounding but has less success in learning the appearance of the object itself. This means 
that the appearance of the context is simpler than that of an object.  To verify whether this change in behaviour 

comes from the omission of any context while using segments, we repeated the experiment on the segmentation 

dataset but using boxes. Results were the same. Hence we conclude that the behaviour results from using fewer 

training examples: to accurately learn the appearance of these relatively difficult classes more training data is 

needed. 

 

3.4 Interior versus Border 

The object interior consists of texture and of interior boundaries, reasonably captured by a Bag-of-

Words representation. However, this representation may be less appropriate for the object boundary as the 

object shape is intuitively better represented by larger fragments with more geometric constraints. 

Hence while the conclusions made on the relative contribution of the border and the interior may not 
extend to object recognition in general, it will still be indicative of the relative difficulty of obtaining 

information of the object border and object interior. 
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IV. Conclusion: 
 This paper investigated the visual extent of an object in terms of the object and its surround, and in 

terms of the object interior and the object border. Our investigation was performed from two perspectives: The 

normal situation where the location of the objects are unknown, and an ideal situation with known object 

locations. For the normal perspective we visualised how the Bag-of-Words framework classifies images. These 

visualisations indicate that the support for the classifiers is found throughout the whole image occurring 

indiscriminately in both the object and its surround, supporting the notion that context facilitates image 

classification (Divvala et al. 2009; Oliva and Torralba 2007). While for some classes with a highly varying 

surround Bag-of-Words learns to ignore the context, as observed by Zhang et al. (2007), this does not generalise 

to all classes. We found that the role of the surroundings is significant for many classes. For boat the object area 

is even a negative indicator of its presence. At the same time, we have demonstrated that when the object 

locations are known a priori, the surroundings do not help to increase the classification performance 
significantly. After ideal localisation, regardless of the size of the object, the object appearance alone predicts its 

presence equally well as the combination of the object appearance and the surround. 

We showed that no visual words uniquely describe only object or only surround. However, by making 

the distinction between object and surround explicit using the object locations, performance increases 

significantly by 0.20 MAP. This suggests that modelling the object location can lead to further improvements 

within the Bag-of-Words framework, where we see the work of Harzallah et al. (2009) as a promising start. 

Regarding the surround the following view arises. The surroundings are indispensable to distinguish between 

groups of classes: furniture, animals, and land-vehicles. When distinguishing among the classes within one 

group the surroundings are a source of confusion. Regarding the object features, we have observed differences 

how classes are being recognised: (1) For the physically rigid aeroplane, bicycle, bus, car, and train classes 

interior and exterior boundaries are important, while texture is not. (2) The non-rigid animals dog, cat, cow, and 
sheep are recognised primarily by their fur while their projected shape varies greatly. While SIFT feature values 

respond to interior boundaries, exterior boundaries, and texture at the same time, the recognition differences 

suggest that using more specialised features could be beneficial. Bag-of-Words with SIFT measure texture, 

interior object boundary fragments, and shape boundary fragments as local details. For identifying the context of 

an image this is adequate, especially considering that context partially consists of shapeless mass-goods such as 

grass, sky, or water. In contrast, for objects features more spatial consistency could help. This suggests that 

future features would render more improvements on recognising objects than on recognizing context. This is 

consistent with the observation by Biederman (1981) in human vision that objects viewed in isolation are 

recognised as easily as objects in proper context. 
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