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 Abstract : Mining knowledge from large amounts of spatial data is known as spatial data mining. It becomes a 

highly demanding field because huge amounts of spatial data have been collected in various applications 

ranging from geo-spatial data to bio-medical knowledge. The amount of spatial data being collected is 

increasing exponentially. So, it far exceeded human’s ability to analyze. Recently, clustering has been 

recognized as a primary data mining method for knowledge discovery in spatial database. The development of 

clustering algorithms has received a lot of attention in the last few years and new clustering algorithms are 

proposed. DBSCAN is a pioneer density based clustering algorithm. It can find out the clusters of different 

shapes and sizes from the large amount of data containing noise and outliers. This paper shows the results of 

analyzing the properties of density based clustering characteristics of three clustering algorithms namely 
DBSCAN, k-means and SOM using synthetic two dimensional spatial data sets. 
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I. INTRODUCTION  
Clustering is considered as one of the important techniques in data mining and is an active research 

topic for the researchers. The objective of clustering is to partition a set of objects into clusters such that objects 

within a group are more similar to one another than patterns in different clusters. So far, numerous useful 

clustering algorithms have been developed for large databases, such as K-MEANS [4], CLARANS [6], BIRCH 

[10], CURE [3], DBSCAN [2], OPTICS [1], STING [9] and CLIQUE [5]. These algorithms can be divided into 

several categories. Three prominent categories are partitioning, hierarchical and density-based. All these 
algorithms try to challenge the Clustering problems treating huge amount of data in large databases. However, 

none of them are the most effective.  

In density-based clustering algorithms, which are designed to discover clusters of arbitrary shape in 

databases with noise, a cluster is defined as a high-density region partitioned by low-density regions in data 

space. Density Based Spatial Clustering of Applications with Noise (DBSCAN) [2] is a typical density-based 

clustering algorithm. In this paper, we analyze the properties of density based clustering characteristics of three 

clustering algorithms namely DBSCAN, k-means and SOM. 

 

II. DBSCAN ALGORITHM 
Density-Based Spatial Clustering and Application with Noise (DBSCAN) was a clustering algorithm 

based on density. It did clustering through growing high density area, and it can find any shape of clustering. 

The idea of it was, 

 ε-neighbor: the neighbors in ε semi diameter of an object 

 Kernel object: certain number (MinP) of neighbors in ε semi diameter 

 To a object set D, if object p is the ε-neighbor of q, and q is kernel object, then p can get “direct density 

reachable” from q. 

 To a ε, p can get “direct density reachable” from q; D contains Minp objects; if a series object p1,p2,...,pn, 

p1=qn  then pi+1 can get “direct density reachable” from Pi, Pi€D, 1<i<n. 

 To ε and MinP, if there exist a object o(o€D) , p and q can get “direct density reachable” from o, pand q 

are density connected.z 
 

III. EXPLANATION OF DBSCAN STEPS 
DBSCAN requires two parameters: epsilon (eps) and minimum points (minPts). It starts with an 

arbitrary starting point that has not been visited. It then finds all the neighbor points within distance eps of the 

starting point. The possibility of outcomes are.., 
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 If the number of neighbors is greater than or equal to minPts, a cluster is formed. The starting point and its 

neighbors are added to this cluster and the starting point is marked as visited. The algorithm then repeats the 

evaluation process for all the neighbors recursively. 

 If the number of neighbors is less than minPts, the point is marked as noise. 

 If a cluster is fully expanded (all points within reach are visited) then the algorithm proceeds to iterate 

through the remaining unvisited points in the dataset. 

 

IV. RESEARCH BACKGROUND AND RELATED WORKS 
The company is using a legacy application for their day to day works. Though it helps in tracking the 

work progress of various aspects like labor, item, construction and accounting, there still remains some 

ambiguity. They feel complexity in executing certain process. This ambiguity makes them to turn towards a 

prolific package of software that prevails over the ease of construction. 
The continuing development of enterprise resource planning (ERP) systems has been considered by 

many researchers and practitioners as one of the major IT innovations in this decade. ERP solutions seek to 

integrate and streamline business processes and their associated information and work flows. What makes this 

technology more appealing to organizations is its increasing capability to integrate with the most advanced 

electronic and mobile commerce technologies. However, research in the ERP area is still lacking and the gap in 

the ERP literature is huge. Attempts to fill this gap by proposing a novel taxonomy for ERP research. Also 

presents the current status with some major themes of ERP research relating to ERP adoption, technical aspects 

of ERP and ERP in IS curricula. The discussion presented on these issues should be of value to researchers and 

practitioners. Notable issues to be handled are depicted below 

 

4.1 Intrinsic complexity in achieving results: 
As a customized work flow there are „N‟ levels of approvals for each transaction and there remain 

multiple hierarchies for master records, since then the need of categorized view and supplementary filtering 

options for various data sets cannot be retrieved. 

Since there are portals for buyers and vendors, there remains difficulty in tracking the payments phase 

by phase and grouping by dimensions. 

Due to multiple projects running simultaneously the civil works carried out at different stages requires 

stream lined supply of materials. So there comes the necessity of knowing the consumption Vs estimated 

material cost which leads to know the actual profit of the business. Provision for vendor rating based on various 

factors such as supply methods, timed delivery, quality in supply etc., will help in quoting and tender evaluation. 

This remains one of the major issues lacking in the existing system. 

Maintaining stock management has been a challenging task in the construction industry and it resides 
the way of representing the stock quantity and value by segregating the materials based on its usage, but the 

existing system provides only the flat cost for the stock and not the moving average because of this the 

possibility of tracking the consumed and estimated comparison will not provide the accuracy in result. 

 

4.2 Implication of poor data selection. 

According to the survey (as on January 2013) made in the construction industries around Coimbatore, 

with respect to addressing the common mistakes that lead to poor selection of data are emphasized below. 

 The requirement analysis data for material cost and labor cost gets varied before and after estimation, it 

means at the time of estimation and once the production kicks off. 

 If tried to get the variation data and reason behind the cost, then there occurs the scenarios for different 

dimensions to be analyzed. This may consume adequate man power and to fine tune the results there 

requires several stages of verification for data correction. 

 The dimension factors will then lead to integrate with other modules too. For example, if involved in 

finding the facts that influence the delay of production works, the company has to step into stock 

management which in turn directs them to find the vendor evaluation in purchase management which in 

turn tends to go for accounts management for payment history and finally to funds flow and so on. 

 

4.3 Fact finding results: 

As per the research made on technical aspects on ERP system in companies that are follow 

systemized process, It is find to be more negative replies towards the progression which means the success 

ratio is below average. Few of them are depicted below. 

 65% of company‟s executives believe that ERP will not be flexible to their practical scenarios when facing 

emergency issues. It means the data correction or rollback the process is not so easy but which is needed in 
certain situations. 
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 30% of management faculties feel if concentrated on the data flow in ERP for budget plans, then they could 

miss their completion dates by wise margin.  

 25% of organizations adopting ERP systems are facing significant resistance from staff and 10% of 
organizations also encountered resistance from managers. 

 End level users provide their suggestion in terms of limitation if further customization is required over 

different dimensions of data entry. 

 

V. PROPOSED WORKS 
During the last years some researchers have studied the topic of critical success factors in ERP 

implementations, out of which „training‟ is cited as one of the most ones. Up to this moment, there is not enough 

research on the management and operationalization of critical success factors within ERP implementation 

projects. This technical research report proposes a framework for monitoring and evaluating training in ERP 
implementation projects. In order to develop a set of metrics for such monitoring and evaluating tasks, we have 

used the Goals/Questions/Metrics (GQM) approach. The GQM approach is a mechanism for defining and 

interpreting operational, measurable goals. Because of its intuitive nature the approach has gained widespread 

appeal. As a result, we propose a GQM preliminary plan with different metrics to monitor, control and evaluate 

training while implementing an ERP system. We also propose a three dimensional framework to interpret the 

metrics defined. 
 

5.1  Implementation through GQM: 

The GQM approach is a mechanism that provides a framework for developing a metrics program. It 
was developed at the University of Maryland as a mechanism for formalizing the tasks of characterization, 

planning, construction, analysis, learning and feedback. GQM does not provide specific goals but rather a 

framework for stating measurement goals and refining them into questions to provide a specification for the data 

needed to help achieve the goals. The GQM method contains four phases: planning phase, definition phase, data 

collection phase and interpretation phase. 

The definition phase is the second phase of the GQM process and concerns all activities that should be 

performed to formally define a measurement program. One of the most important outcomes of this phase is the 

GQM plan. A GQM plan or GQM model documents the refinement of a precisely specified measurement goal 

via a set of questions into a set of metrics. Thus, a GQM plan documents which metrics are used to achieve a 

measurement goal and why these are used - the questions provide the rationale underlying the selection of the 

metrics. The definition phase has three important steps: 

 Define measurement goals. 

 Define Questions 

 Define metrics. 

 

5.2 K-Means Algorithm: 

The naive k-means algorithm partitions the dataset into „k‟ subsets such that all records, from now on 

referred to as points, in a given subset "belong" to the same center. Also the points in a given subset are closer to 

that center than to any other center. The algorithm keeps track of the centroids of the subsets, and proceeds in 

simple iterations. The initial partitioning is randomly generated, that is, we randomly initialize the centroids to 

some points in the region of the space. In each iteration step, a new set of centroids is generated using the 

existing set of centroids following two very simple steps. Let us denote the set of centroids after the ith iteration 
by C(i).  

  

The following operations are performed in the steps:  

 Partition the points based on the centroids C(i), that is, find the centroids to which each of the points in the 

dataset belongs. The points are partitioned based on the Euclidean distance from the centroids. 

 Set a new centroid c(i+1) € C (i+1) to be the mean of all the points that are closest to c(i+1) € C(i) The new 

location of the centroid in a particular partition is referred to as the new location of the old centroid. 

The algorithm is said to have converged when recomputing the partitions does not result in a change in 

the partitioning. In the terminology that we are using, the algorithm has converged completely when C(i) and 

C(i – 1) are identical. For configurations where no point is equidistant to more than one center, the above 

convergence condition can always be reached. This convergence property along with its simplicity adds to the 
attractiveness of the kmeans algorithm. The k-means needs to perform a large number of "nearest-neighbour" 

queries for the points in the dataset. If the data is „d‟ dimensional and there are „N‟ points in the dataset, the cost 

of a single iteration is O(kdN). As one would have to run several iterations, it is generally not feasible to run the 

naïve k-means algorithm for large number of points.  
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Sometimes the convergence of the centroids (i.e. C(i) and C(i+1) being identical) takes several iterations. Also 

in the last several iterations, the centroids move very little. As running the expensive iterations so many more 

times might not be efficient, we need a measure of convergence of the centroids so that we stop the iterations 
when the convergence criteria are met. Distortion is the most widely accepted measure. 

 

5.3 SOM Algorithm: 

A Self-Organizing Map (SOM) or self-organizing feature map (SOFM) is a neural network approach 

that uses competitive unsupervised learning. Learning is based on the concept that the behavior of a node should 

impact only those nodes and arcs near it. Weights are initially assigned randomly and adjusted during the 

learning process to produce better results. During this learning process, hidden features or patterns in the data 

are uncovered and the weights are adjusted accordingly. The model was first described by the Finnish professor 

Teuvo Kohonen and is thus sometimes referred to as a Kohonen map. 

The self-organizing map is a single layer feed forward network where the output syntaxes are arranged in low 

dimensional (usually 2D or 3D) grid. Each input is connected to all output neurons. There is a weight vector 
attached to every neuron with the same dimensionality as the input vectors. The goal of the learning in the self 

organizing map is to associate different parts of the SOM lattice to respond similarly to certain input patterns. 

 

5.4 Variables used: 

   is the current iteration  
         is the iteration limit  

   is the index of the target input data vector in the input data set  

               is a target input data vector  
               is the index of the node in the map  

  is the current weight vector of node v  
    is the index of the best matching unit (BMU) in the map  

    is a restraint due to distance from BMU, usually called the neighbourhood function 

    is a learning restraint due to iteration progress 
 

5.5 Algorithm Working: 

STEP-1: Randomize the map's nodes' weight vectors 

STEP-2: Grab an input vector  
STEP-3: Traverse each node in the map  
STEP-3.1: Use the Euclidean distance formula to find the similarity between the input vector                                                                         
and the map's node's weight vector 

STEP-3.2: Track the node that produces the smallest distance (this node is the best matching unit, BMU) 

STEP-4: Update the nodes in the neighborhood of the BMU (including the BMU itself) by pulling them closer 

to the input vector  

Wv(s + 1) = Wv(s) + Θ(u, v, s) α(s)(D(t) - Wv(s)) 

STEP-5: Increase s and repeat from step 2 while  
Table-1: SOM Algorithm applied with 3 weight vectors at different time intervals. 
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5.6Training SOM Algorithm: 

Initially, the weights and learning rate are set. The input vectors to be clustered are presented to the 

network. Once the input vectors are given, based on the initial weights, the winner unit is calculated either by 
Euclidean distance method or sum of products method. Based on the winner unit selection, the weights are 

updated for that particular winner unit. An epoch is said to be completed once all the input vectors are presented 

to the network. By updating the learning rate, several epochs of training may be performed. 

A two dimensional Kohonen Self Organizing Feature Map network is shown in Fig- 1 which is given below 

 

 

 

 

 

 

 
 

 

 

 

 

 

Fig-1: The SOM Network 

 

VI. EVALUATION AND RESULTS 
6.1 The Test Database: 

To evaluate the performance of the clustering algorithms, two dimensional spatial data sets were used 

and the properties of density based clustering characteristics of the clustering algorithms were evaluated. The 

first type of data sets was prepared from the guideline images of some of the main reference papers of DBSCAN 

algorithm. So that data was handled from image format. The Fig- 2 shows the type of spatial data used for 

testing the algorithms 

 

Fig-2: Spatial data used for testing. 

The Fig-3 shows the properties of density based clustering characteristics of DBSCAN and SOM. 

                                                            Original Data 
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Clustering by DBSCAN 
 

 

Clustering by SOM 

 

Clustering by K-means 

Fig-3: Clustering characteristics of DBSCAN, SOM and K-means clustering algorithm. 

From the plotted results, it is noted that DBSCAN performs better for spatial data sets and produces the correct 
set of clusters compared to SOM and k-means algorithms. DBSCAN responds well to spatial data sets  

 

VII. CONCLUSION 
The Clustering algorithms are attractive for the task of class identification in spatial databases. This 

paper evaluated the efficiency of clustering algorithms namely DBSCAN, k-means and SOM for a synthetic, 

two dimensional spatial data sets. The implementation was carried out using MATLAB 6.5. Among the three 

algorithms DBSCAN responds well to the spatial data sets and produces the same set of clusters as the original 

data. 
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