
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 14, Issue 3 (Sep. - Oct. 2013), PP 58-62
www.iosrjournals.org

www.iosrjournals.org 58 | Page

Software effort estimation through clustering techniques of RBFN

network

Usha Gupta
1
, Manoj Kumar

2

1(Assistant Professor, Department of Computer Science, MDU Rohtak, India)
2(Mtech. Scholar, Department of Computer Science, MDU Rohtak, India)

Abstract: Now a day’s software cost/effort estimation is a very complex job to do. Several estimation

techniques have been developed in this regard. This assessment of parameters like, time, cost, and number of

staff required sequentially which in turn is to be done at an early stage. Constructive Cost model which is also

known as COCOMO model was one of the best model to estimate the cost and time in person month of a

software project. The estimation of cost and time supports the project planning and tracking, as well as also

controls the expenses of software development process. The accurate effort estimation will lead to improve the

project success rate. In this paper, the main focus is on finding the accuracy of estimation of effort/cost of
software using radial basis function neural network (RBFN) incorporating ANN-COCOMO II which can be

used for functional approximation. This model estimates the total effort of software development according to

the characteristics of COCOMO-II along with radial basis clustering techniques. The RBFN network is much

faster than other network because the learning process in this network has two stages and both stages can be

made efficient by appropriate learning algorithms. The RBFN network uses COCOMO-II dataset for training.

Keywords:- COCOMO-2, RBFN, Clustering techniques, K-means, APC-III.

I. Introduction
Effort estimation consist the assessment of how many hours of work needed and as well as how many

workforces are required to develop a software project. Predicting the software development effort/cost with

accurate results is a very challenging job for project managers. These estimation can be categorize in to three

categories including Algorithmic Models (AM) [1] and Expert Judgment (EJ), and Machine Learning (ML)

techniques. Among estimation techniques, COCOMO (Constructive Cost Model) is the most commonly used

algorithmic cost modeling technique [2] because of its simplicity for estimating the effort in person-month for a

project at different stages.

COCOMO uses the mathematical formulae to predict project cost estimation. The Constructive Cost

Model (COCOMO) is the well known software effort estimation model based on regression techniques. The

COCOMO model is used to calculate the amount of effort then on the basis of the effort calculated, the time,

cost and number of staff required for software project are estimated. The Post-Architecture [3], [4] Level of

COCOMO II consists of 17 cost drivers represented in the form of project attributes, programmer abilities,

developments tools, and etc. These cost drivers and scale factors for COCOMO II are then rated on a scale from
Very Low to Extra High in the same way as in COCOMO 81 dataset. The effort calculation formulas for

COCOMO II post architecture level are calculated as given below [4]:

𝐸𝑓𝑓𝑜𝑟𝑡 = 𝐴 ∗ 𝑠𝑖𝑧𝑒 𝑆𝐹 ∗ 𝐸𝑀

Where

SF= Scale Factor usually lies between 1 and 1-5.

EM= Effort Multiplier
A: Multiplicative Constant depends upon types of software developed

Size: Size of the software measures in terms of KSLOC (kilo source line of code).

The scale factors (SF) are based on a significant source of exponential variation on a project’s effort or

productivity variation. COCOMO is the most commonly used model because of its simplicity for estimating the

effort in person-month for a project at different stages.

An RBFN architecture [2], [5], [6] configured for software development effort is a three-layer feed forward

network consisting of one input layer, one middle layer and an output layer. The RBFN generates output (effort)

by propagating the initial inputs (cost drivers) through the middle-layer to the final output layer. The activation

functions of each middle layer neurons are usually the Gaussian function. The output layer consists of one

Software effort estimation through clustering techniques of RBFN network

www.iosrjournals.org 59 | Page

output neuron that computes the software development effort as a linear weighted sum of the outputs of the

middle layer.

II. constructive cost model (COCOMO)
COCOMO- Post Architecture model determines the efforts (in Person-Months) required for a project

based on software project's size in KSLOC (Kilo Source Line Of Code) as well as other cost factors known as

scale factors and effort multipliers. The estimated effort in person-month is given below [4]:

𝑃𝑀 = 𝐴. 𝑆𝑖𝑧𝑒 1.01+ 𝑆𝐹𝑖
5
𝑖=1 . 𝐸𝑀17

𝑖=1 i

Where A is a multiplicative constant, and the set of SF (Scale Factor) and EM (Effort Multiplier) are defined in

table given below [9]:
Symbol Abbreviation Name

SF1 PREC Precedentedness

SF2 FLEX Development Flexibity

SF3 RESL Architecture and Risk Resolution

SF4 TEAM Team Cohesion

SF5 PMAT Process Maturity

EM1 RELY Required Software

EM2 DATA Database Size

EM3 CPLX Product Complexity

EM4 RUSE Required Reusability

EM5 DOCU Documentation match to life-

cycle needs

EM6 TIME Time Constraints

EM7 STOR Storage Constraints

EM8 PVOL Platform Volatility

EM9 ACAP Analyst Capability

EM10 PCAP Programmer Capability

EM11 AEXP Application experience

EM12 PEXP Platform Experience

EM13 LTEX Language and Tool Experience

EM14 PCON Personnel Continuity

EM15 TOOL Use of Software tools

EM16 SITE Multi-site Development

EM17 SCED Required Development Schedule

In this paper, the main focus is on assessing the accuracy of the estimation using RBFN network. The aim of

this study is to check if RBFN network can be used for prediction of effort on the basis of effort multipliers, size

of the project, scale factor used in project development.

III. Radial Basis Function Neural Network
An RBFN architecture [2] configured for software development effort is a three-layer feed forward

network consisting of one input layer, one middle layer and an output layer. The RBFN generates output (effort)

by propagating the initial inputs (cost drivers) through the middle-layer to the final output layer. Each input

neuron corresponds to a component of an input vector. The input-layer contains M neurons, plus, eventually,

one bias neuron. Each input neuron is fully connected to the middle-layer neurons. The activation function of

each middle neuron is usually the Gaussian function. The Gaussian function decreases rapidly if the width σi is

small, and slowly if it is large. The output layer consists of one output neuron that computes the software

development effort as a linear weighted sum of the outputs of the middle layer. Clustering is the key technique

to be used as a preprocessing phase in the design of the RBFN networks [7]. This procedure initially distributes
the respective fields of hidden layer neurons across the space of input variables.

Software effort estimation through clustering techniques of RBFN network

www.iosrjournals.org 60 | Page

IV. Clustering Algorithms for RBFN network
As in general, clustering is a method of finding the most similar groups of given data, which means that

the data belonging to one cluster are the most similar, and data belonging to the different clusters are the most

dissimilar ones. Clustering techniques have been used in many applications like: medicine, biology, pattern
recognition etc. There are two types of clustering techniques briefly explained in this paper are as below:

 K-means

 APC-III.

 K-means clustering algorithm has many successful applications such as pattern recognition and data

compression. It is a multi-pass and time-consuming clustering algorithm.

4.1 K-means algorithm
This algorithm helps in determining the receptive fields at hidden layer of a Radial Basis Neural

Network for estimating the cost of any software. In this algorithm, total vectors or datasets (say ‘N’) of
COCOMO-2 model are partitioned in to clusters (say ‘c’).The objective of this algorithm is to find out the

centers of the clusters known as centroids by minimizing the distance (or dissimilarity) between clusters. As per

the calculations, this approach is very time consuming and also multi pass process.

This approach starts with defining the total number of clusters in advance before estimating the cost of software.

This K-means approach [2], [6], [7] can be used with two variants/ criteria’s in order to measure the coherence

of clusters as:

 J function value

 Dunn’s validity index function value

4.1.1 K-means with J function value criteria (J value):
In J function value criteria, the data points or datasets are assigned to different clusters on the basis of

Euclidean distance values. The algorithmic approach is explained below:

Algorithm: RBFN_K-means J-value (c, x, C, J)

(Here c=total number of clusters

x=dataset from COCOMO-2 dataset model.

C=cluster.

J=dissimilarity or distance function).

Step 1: start the K-means procedure for radial basis function for neural network with J function value.

Step 2: define the total number of clusters desired, say ‘c’.
Step 3: initialize the centers of clusters to 1, say ci,, where ‘c’ is the total number of clusters. And ‘i’ is used for

iteration and for i=1 to c.

Step 4: now compute the Euclidean distance between xj and ci, for j=1 to N, and i=1 to c. here xj represents a

dataset from dataset collection of COCOMO-2 model, j indicates iteration for each dataset.

Step 5: now according to the Euclidean distance values, assign the xj to the most closer cluster Ci on the basis of

less distance value (compare the distance values for xj to each and every cluster ci).

Step 6: now again recalculate the centers of each and every cluster say ‘ci’.

Step 7: now calculate the distance or dissimilarity function say ‘J’ as given below:

𝐽 = 𝑑(𝑥𝑗, 𝑐𝑖)
𝑥𝑗 ∈𝐶𝑖

𝑐

𝑖=1

Here d(xj,ci) is the measure of distance value between ith center (ci) and the kth data point of dataset of

COCOMO-2 model.

All for the sake of simplicity this d value can be taken as Euclidean distance value and hence the J function

value can be represented as given below:

𝐽 = 𝑥𝑗 − 𝑐𝑖 2

𝑥𝑗 ∈𝐶𝑖

𝑐

𝑖=1

Step 8: check if the improvement is below a certain threshold value, and then stop the iteration.

Step 9: else go to step 3.

Step 10: exit.

Software effort estimation through clustering techniques of RBFN network

www.iosrjournals.org 61 | Page

The main goal of this approach is to minimize the J function value.

4.1.2 Dunn’s validity index function value (D value):
In case of Dunn’s validity index function, the data points are assigned to the clusters on the basis of

inter-cluster distance as well as intra-cluster distance. The algorithmic approach [5], [7] is explained below:

Algorithm: RBFN_K-means D-value (c, x, C, D)

(Here c=total number of clusters

x=dataset from COCOMO-2 dataset model.

C=cluster.

D=Dunn’s validity index function value).

Step 1: start the K-means procedure for radial basis function for neural network with Dunn’s validity index.

Step 2: define the total number of clusters desired, say ‘c’.

Step 3: now compute the Euclidean distance between two randomly selected clusters say Ci and Cj, for i=1 to c,

and j=2 to c. The distance d(Ci, Cj) is referred to as the minimum inter-cluster distance as given below:

d(Ci, Cj)=𝑚𝑖𝑛𝑥𝑖∈𝐶𝑖 ,𝑥𝑗 ∈𝑐𝑗 𝑑(𝑥𝑖 , 𝑥𝑗)

Step 4: now compute the Euclidean distance with in a randomly selected cluster say Ck for k=1 to c. The

distance d(Ck) is referred to as the maximum intra-cluster distance calculated as below:

d(Ck)=𝑚𝑎𝑥𝑥𝑖 ,𝑥𝑗 ∈𝐶𝑘𝑑(𝑥𝑗 , 𝑥𝑘)

Step 5: now calculate the dunn’s validity index say ‘D’ on the basis of inter-cluster distance and intra-cluster

distance values. This D value can be calculated by the formula given below:

𝐷 = 𝑚𝑖𝑛1≤𝑖≤𝑐 𝑚𝑖𝑛𝑖+1≤𝑗≤𝑐−1
𝑑(𝐶𝑖 ,𝐶𝑗)

𝑚𝑎𝑥 1≤𝑘≤𝑐 𝑑(𝐶𝑘)
 …(1)

Step 7: this D value calculated from equation 1 is used as an idea of identifying whether the clusters are compact

and well separated or not.

Step 8: exit.

The main goal of the measure of the D value is to maximize the inter-cluster distances and minimizing the intra-

cluster distances.

As per the algorithm or procedure given above, it is very much obvious that the performance of the RBFN K-

means algorithm depends only upon the initial positions of the cluster centers as the number of clusters is taken

as an initial value to start off the procedure. And the data points or the datasets are assigned to these clusters one
by one. So there lies no guarantee for the optimality of the solutions for estimating the cost of software. And

hence it is said to be a quite lengthy approach, also known as multi pass approach.

4.2 APC-III approach:
 This is a one pass clustering algorithm. This approach works by calculating the constant radius of

cluster through the following formula:

𝑅0 = 𝛼 ∗
1

𝑁
∗ 𝑚𝑖𝑛𝑖≠𝑗

𝑁

𝑖=1

 𝑃𝑖 − 𝑃𝑗

Where
N=number of historical software projects

α=predetermined constant

R0=radius of each cluster which in turn controls the number of clusters provided.

APC-III approach [5], [7] works by generating clusters for each dataset. As the classification generated by the

APC-III algorithm depends on the number of α that defines the radius R0. The number of clusters generated is

inversely proportional to the radius.

 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 ∝
1

𝑅0

As the value of R0 decreases, the numbers of clusters generated are also increases. In short, APC-III approach

generates many clusters if R0 is small and few numbers of clusters if it is large.

Software effort estimation through clustering techniques of RBFN network

www.iosrjournals.org 62 | Page

Algorithm: RBFN_APC-III (c, C, N, Pi, R0)

(Here c=total number of clusters

C=center of cluster.

N=number of historical software projects

Pi =dataset from COCOMO-2 dataset model.

R0=radius of clusters).

Step 1: start the APC-III procedure for radial basis function for neural network.
Step 2: set the total number of clusters initially to 1, i.e. c=1.

Step 3: now set P1 as the center of this cluster C1, here P1 represents the first software project in the datasets.

Step 4: now for i=2 to N (N=total number of historical software projects), repeat the following steps.

Step 4(a): for j=1 to c (c=number of clusters)

i. Calculate the dij (dij is the Euclidean distance of Pi and cj, cj is the center of the cluster Cj).

ii. now check if dij < R0 then,

i. Add the Pi dataset into Cj and correspondingly adjust the center of Cj.

ii. Exit from the loop.

Step 4(b): else, if Pi is not included in to any of the clusters then,

i. Create a new cluster that contains Pi as a center.

Step 5: stop the criteria.

According to Hwang and Bang, the APC-III is quite an efficient technique for constructing the middle layer of

an RBFN because it can finish making clusters by going through all the training patterns only once. However it

still proves to be dependent on the order of the data presentation.

V. Conclusion
In this paper, there are three most popular clustering approaches were presented to predict the software

cost estimation. In one hand COCOMO which has been already proven and successfully applied in the software

cost estimation field and in other hand the Radial Basis Function Neural Network that has been extensively used
in incorporating COCOMO estimation and have proven its strength in estimating the cost. Furthermore, the

APC-III clustering algorithm is used to estimate the efforts on the basis of historical projects and by calculating

the radius function. On the other hand, the K-means clustering algorithm is used to predict the mean value

which is useful in Gaussian function for network. To get accurate results the proposed network depends only

on adjustments of weights from hidden layer of network to output layer of RBFN network. RBFN network with

the APC-III clustering algorithm performs better, in terms cost estimation accuracy as compared to that of K-

means approach because of its complexity and simplicity. This work can be extended by integrating with Fuzzy

C-means clustering algorithm as well as with genetic algorithm approach.

References:
[1] A New Approach For Estimating Software Effort. Using RBFN Network. Ch. Satyananda Reddy, P. Sankara Rao, KVSVN Raju,

V. Valli Kumari, IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008.

[2] A new approach of Software Effort Estimation Using Radial Basis. Sriman Srichandan Balasore College of Engineering and

Technology,Balasore,Odisha ,India, International Journal on Advanced Computer Theory and Engineering (IJACTE), ISSN (Print) :

2319 – 2526, Volume-1, Issue-1, 2012, pp. 113-120.

[3] M. Jorgensen, and M. Shepperd, "A Systematic Review of Software Development Cost Estimation Studies", IEEE

Transactions on Software Engineering, Vol. 33, No. 1, 2007, pp. 33-53.

[4] K. Molokken, and M. Jorgensen, "A Review of Surveys on Software Effort Estimation", in International Symposium on

Empirical Software Engineering, 2003, pp. 223-231.

[5] G. R. Finnie, and G. Witting, and J.-M. Desharnais, "A Comparison of Software Effort Estimation Techniques: Using Function

Points with Neural Networks, Case-Based Reasoning and Regression Models", Systems and Software, Vol. 39, No. 3, 1997,

pp. 281-289.

[6] A. Idri, and A. Abran, and S. Mbarki, "An Experiment on the Design of Radial Basis Function Neural Networks for Software

Cost Estimation", in 2nd IEEE International Conference on Information and Communication Technologies: from Theory to

Applications, 2006, Vol. 1, pp. 230-235.

[7] A. Idri, and A. Zahi, and E. Mendes, and A. Zakrani, "Software Cost Estimation Models Using Radial Basis Function Neural

Networks", in International Conference on Software Process and Product Measurement, 2007, pp. 21-31.

