
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 13, Issue 4 (Jul. - Aug. 2013), PP 63-68
www.iosrjournals.org

www.iosrjournals.org 63 | Page

Protecting Attribute Disclosure for High Dimensionality and

Preserving Publishing of Microdata

1
Shaik. Mahammad Rafi,

2
 P. Venkata Ramanaiah M.Tech,

2Assistant Professors in CSE Department , GCET ,Kadapa,YSR(D.t).
1 PG (M.Tech) Student in CSE Department, Global College of Engineering and Technology ,Kadapa, YSR(D.t).

Abstract: Generalization and Bucketization, have been designed for privacy preserving microdata

publishing. Recent work has shown that generalization loses considerable amount of information,
especially for high-dimensional data. Bucketization, on the other hand, does not prevent membership

disclosure and does not apply for data that do not have a clear separation between quasi- identifying

attributes and sensitive attributes.

In this paper, we present a novel technique called slicing, which partit ions the data both horizontally and

vertically. We show that slicing preserves better data utility than gen- eralization and can be used

for membership disclosure protect ion. Another important advantage of slicing is that it can handle

high-dimensional data. We show how slicing can be used for attribute disclosure protection and

develop an ef- ficient algorithm for computing the sliced data that obey the ℓ-diversity requirement.Our

workload experiments confirm that slicing preserves better utility than generalization and is more

effective than bucketization in workloads involving the sensitive attribute. Our e xpe ri me nt s also

demonstrate that slicing can be used to prevent membership disclosure.

I. Introduction
 Privacy-preserving publishing of microdata has been stud- ied extensively in recent years.

Microdata contains records each of which contains information about an individual en- tity,

such as a person, a household, or an organization. Several microdata anonymization

techniques have been pro- posed. The most popular ones are generalization [29, 31] for k-

anonymity [31] and bucketization [35, 25, 16] for ℓ- diversity [23]. In both approaches,

attributes are partitioned into three categories: (1) some attributes are identifiers that can uniquely

identify an individual, such as Name or Social Security Number; (2) some attributes are Quasi-

Identifiers (QI), which the adversary may already know (possibly from other publicly-available

databases) and which, when taken together, can potentially identify an individual, e.g., Birth-

date, Sex, and Zipcode ; (3) some attributes are Sensitive Attributes (SAs), which are
unknown to the adversary and are considered sensitive, such as Disease and Salary.

 In both generalization and bucketization, one first removes identifiers from the data and

then partitions tuples into buckets. The two techniques differ in the next step. Gener- alization

transforms the QI-values in each bucket into “less specific but semantically consistent” values so

that tuples in the same bucket cannot be distinguished by their QI val- ues. In

bucketization, one separates the SAs from the QIs by randomly permuting the SA values in each

bucket. The anonymized data consists of a set of buckets with permuted sensitive attribute values.

II. Slicing
 It has been shown [1, 15, 35] that generalization for k- anonymity losses considerable amount of

information, espe- cially for high-dimensional data. This is due to the following three reasons. First,

generalization for k-anonymity suffers from the curse of dimensionality. In order for generalization to be

effective, records in the same bucket must be close to each other so that generalizing the records would not

lose too much information. However, in high-dimensional data, most data points have similar distances with

each other, forcing a great amount of generalization to satisfy k-anonymity even for relative small k’s.

Second, in order to perform data analysis or data mining tasks on the generalized table, the data analyst

has to make the uniform distribution assump- tion that every value in a generalized interval/set is equally

possible, as no other distribution assumption can be justi- fied. This significantly reduces the data utility

of the gen- eralized data. Third, because each attribute is generalized separately, correlations between

different attributes are lost. In order to study attribute correlations on the generalized table, the data
analyst has to assume that every possible combination of attribute values is equally possible. This is an

inherent problem of generalization that prevents effective analysis of attribute correlations.

Protecting Attribute Disclosure for High Dimensionality and Preserving Publishing of Microdata

www.iosrjournals.org 64 | Page

 While bucketization [35, 25, 16] has better data utility than generalization, it has several

limitations. First, buck- etization does not prevent membership disclosure [27]. Be- cause bucketization

publishes the QI values in their original forms, an adversary can find out whether an individual has a record
in the published data or not. As shown in [31], can be inferred from the bucketized table. Second,

buck- etization requires a clear separation between QIs and SAs. However, in many datasets, it is unclear

which attributes are QIs and which are SAs. Third, by separating the sensitive attribute from the QI

attributes, bucketization breaks the attribute correlations between the QIs and the SAs. In this paper, we

introduce a novel data anonymization technique called slicing to improve the current state of the art.

 Slicing partitions the dataset both vertically and hori- zontally. Vertical partitioning is done by

grouping attributes into columns based on the correlations among the attributes. Each column contains a subset

of attributes that are highly correlated. Horizontal partitioning is done by grouping tu- ples into buckets.

Finally, within each bucket, values in each column are randomly permutated (or sorted) to break the linking

between different columns.

 The basic idea of slicing is to break the association cross columns, but to preserve the association
within each col- umn. This reduces the dimensionality of the data and pre- serves better utility than

generalization and bucketization. Slicing preserves utility because it groups highly-correlated attributes

together, and preserves the correlations between such attributes. Slicing protects privacy because it breaks

the associations between uncorrelated attributes, which are infrequent and thus identifying. Note that when the

dataset contains QIs and one SA, bucketization has to break their correlation; slicing, on the other hand,

can group some QI at- tributes with the SA, preserving attribute correlations with the sensitive attribute.

III. Formalization

Protecting Attribute Disclosure for High Dimensionality and Preserving Publishing of Microdata

www.iosrjournals.org 65 | Page

Data Flow Diagram:

RegisterDoctor Patient

Login

Admin CheckOriginal Data

Generalized Data

Bucketized Data

Multiset Data

One Attribute Per Column

data

Sliced Data Change Password

Login Patient

Original Data

Doctor

Doctor Login

Search User Data

IV. Slicing Algorithms
4.1 Attribute Partitioning
 Our algorithm partitions attributes so that highly- correlated attributes are in the same

column. This is good for both utility and privacy. In terms of data utility, group- ing highly-correlated

attributes preserves the correlations among those attributes. In terms of privacy, the association of

uncorrelated attributes presents higher identification risks than the association of highly-correlated attributes

because the association of uncorrelated attribute values is much less frequent and thus more identifiable.

Therefore, it is better to break the associations between uncorrelated attributes, in order to protect privacy.

 In this phase, we first compute the correlations between pairs of attributes and then cluster attributes
based on their correlations.

4.2 Column Generalization
 In the second phase, tuples are generalized to satisfy some minimal frequency requirement. We

want to point out that column generalization is not an indispensable phase in Algorithm tuple-partition(T ,

ℓ) provides the same level of privacy protection as generaliza- tion, with respect to attribute disclosure.

1. Q = {T }; SB = ∅ .

2. while Q is not empty

3. remove the first bucket B from Q; Q = Q − {B}.

4. split B into two buckets B1 and B2 , as in Mondrian.

5. if diversity-check(T , Q ∪ {B1 , B2 } ∪ SB , ℓ)
6. Q = Q ∪ {B1 , B2 }.

7. else SB = SB ∪ {B}.

8. return SB .

 Figure 1: The tuple-partition algorithm

Algorithm diversity-check(T , T ∗ , ℓ)

1. for each tuple t ∈ T , L[t] = ∅ .

2. for each bucket B in T ∗

3. record f (v) for each column value v in bucket B.

4. for each tuple t ∈ T

5. calculate p(t, B) and find D(t, B).
6. L[t] = L[t] ∪ {hp(t, B), D(t, B)i}.

7. for each tuple t ∈ T

8. calculate p(t, s) for each s based on L[t].

9. if p(t, s) ≥ 1/ℓ, return false.

10. return true.

Protecting Attribute Disclosure for High Dimensionality and Preserving Publishing of Microdata

www.iosrjournals.org 66 | Page

Figure 2: The diversity-check algorithm

4.3 Tuple Partitioning
 In the tuple partitioning phase, tuples are partitioned into buckets. We modify the Mondrian [17]

algorithm for tuple partition. Unlike Mondrian k-anonymity, no generalization is applied to the tuples; we

use Mondrian for the purpose of partitioning tuples into buckets.

 Figure 1 gives the description of the tuple-partition algo- rithm. The algorithm maintains two data

structures: (1) a queue of buckets Q and (2) a set of sliced buckets SB . Initially, Q contains only one

bucket which includes all tu-

 ples and SB is empty (line 1). In each iteration (line 2 to line 7), the algorithm removes a

bucket from Q and splits the bucket into two buckets (the split criteria is described in Mondrian [17]). If

the sliced table after the split satisfies ℓ-diversity (line 5), then the algorithm puts the two buckets at the end of

the queue Q (for more splits, line 6). Other- wise, we cannot split the bucket anymore and the algorithm puts

the bucket into SB (line 7). When Q becomes empty, we have computed the sliced table. The set of sliced
buckets is SB (line 8).

 The main part of the tuple-partition algorithm is to check whether a sliced table satisfies ℓ-diversity

(line 5). Figure 2 gives a description of the diversity-check algorithm. For each tuple t, the algorithm

maintains a list of statistics L[t] about t’s matching buckets. Each element in the list L[t] contains statistics

about one matching bucket B: the matching prob- ability p(t, B) and the distribution of candidate sensitive

values D(t, B).

 The algorithm first takes one scan of each bucket B (line 2 to line 3) to record the frequency f (v) of

each column value v in bucket B. Then the algorithm takes one scan of each tuple t in the table T (line 4 to

line 6) to find out all tuples that match B and record their matching probability p(t, B) and the distribution of

candidate sensitive values D(t, B), which are added to the list L[t] (line 6). At the end of line

6, we have obtained, for each tuple t, the list of statistics L[t] about its matching buckets. A final scan of

the tuples in T will compute the p(t, s) values based on the law of total probability described in Section 3.2.
Specifically,

The sliced table is ℓ-diverse iff for all sensitive value s, p(t, s) ≤ 1/ℓ (line 7 to line 10).

 We now analyze the time complexity of the tuple-partition algorithm. The time complexity of

Mondrian [17] or kd- tree [10] is O(n log n) because at each level of the kd-tree, the whole dataset need to

be scanned which takes O(n) time and the height of the tree is O(log n). In our modification, each level

takes O(n2) time because of the diversity-check algorithm (note that the number of buckets is at most

n). The total time complexity is therefore O(n2 log n).

V. Membership Disclosure Pro- Tection
 Let us first examine how an adversary can infer member- ship information from bucketization.

Because bucketization releases the QI values in their original form and most indi- viduals can be uniquely

identified using the QI values, the adversary can simply determine the membership of an in- dividual in

the original data by examining the frequency of the QI values in the bucketized data. Specifically, if the fre-

quency is 0, the adversary knows for sure that the individual is not in the data. If the frequency is greater

than 0, the adversary knows with high confidence that the individual is in the data, because this matching

tuple must belong to that individual as almost no other individual has the same QI values.

The above reasoning suggests that in order to pro- tect membership information, it is required that,

in the anonymized data, a tuple in the original data should havea similar frequency as a tuple that is not

in the original
Data.

VI. Experiments
 We conduct two experiments. In the first experiment, we evaluate the effectiveness of slicing in

preserving data utility and protecting against attribute disclosure, as compared to generalization and

bucketization. To allow direct compari- son, we use the Mondrian algorithm [17] and ℓ-diversity for all

three anonymization techniques: generalization, bucke- tization, and slicing. This experiment

demonstrates that: (1) slicing preserves better data utility than generalization; (2) slicing is more effective

than bucketization in workloads involving the sensitive attribute; and (3) the sliced table can be computed
efficiently. Results for this experiment are presented in Section 6.2.

 In the second experiment, we show the effectiveness of slicing in membership disclosure

protection. For this pur- pose, we count the number of fake tuples in the sliced data. We also compare the

number of matching buckets for origi-nal tuples and that for fake tuples. Our experiment results show that

Protecting Attribute Disclosure for High Dimensionality and Preserving Publishing of Microdata

www.iosrjournals.org 67 | Page

bucketization does not prevent membership dis- closure as almost every tuple is uniquely identifiable in the

bucketized data. Slicing provides better protection against membership disclosure: (1) the number of fake

tuples in the sliced data is very large, as compared to the number of orig- inal tuples and (2) the number of
matching buckets for fake

 Attribute Type values

1 Age Continuous 74

2 Workclass Categorical 8

3 Final-Weight Continuous NA

4 Education Categorical 16

5 Education-Num Continuous 16

6 Marital-Status Categorical 7

7 Occupation Categorical 14

8 Relationship Categorical 6
9 Race Categorical 5

10 Sex Categorical 2

11 Capital-Gain Continuous NA

12 Capital-Loss Continuous NA

13 Hours-Per-Week Continuous NA

14 Country Categorical 41

15 Salary Categorical 2

Table 2: Description of the Adult dataset

 tuples and that for original tuples are close enough, which makes it difficult for the adversary to

distinguish fake tu- ples from original tuples. Results for this experiment are presented in Section 6.3

 Experimental Data. We use the Adult dataset from the UC Irvine machine learning repository
[2], which is com- prised of data collected from the US census. The dataset is described in Table 2.

 Tuples with missing values are elimi- nated and there are 45222 valid tuples in total. The adult

dataset contains 15 attributes in total.

 In our experiments, we obtain two datasets from the Adult dataset. The first dataset is the “OCC-7”

dataset, which includes 7 attributes: QI = {Age, W orkclass, Education, M arital-Status, Race, Sex} and S

= Occupation. The second dataset is the “OCC-15” dataset, which includes all 15 attributes and the sensitive

attribute is S = Occupation. In the “OCC-7” dataset, the attribute that has the closest correlation with the

sensitive attribute Occupation is Gen- der, with the next closest attribute being Education. In the “OCC-15”

dataset, the closest attribute is also Gender but

the next closest attribute is Salary.

VII. Discussions And Future Work
 This paper presents a new approach called slicing to privacy-preserving microdata publishing.

Slicing overcomes the limitations of generalization and bucketization and pre- serves better utility while

protecting against privacy threats. We illustrate how to use slicing to prevent attribute disclo- sure and

membership disclosure. Our experiments show that slicing preserves better data utility than generalization

and is more effective than bucketization in workloads involving the sensitive attribute.

 The general methodology proposed by this work is that: before anonymizing the data, one can

analyze the data char- acteristics and use these characteristics in data anonymiza- tion. The rationale is that

one can design better data anonymization techniques when we know the data better. In [21], we show that
attribute correlations can be used for privacy attacks.

 This work motivates several directions for future research. First, in this paper, we consider slicing

where each attribute is in exactly one column. An extension is the notion of over- lapping slicing, which

duplicates an attribute in more than one columns. This releases more attribute correlations. For example, in

Table 1(f), one could choose to include the Dis- ease attribute also in the first column. That is, the two

columns are {Age, Sex, Disease} and {Z ipcode, Disease}. This could provide better data utility, but the

privacy im- plications need to be carefully studied and understood. It is interesting to study the tradeoff

between privacy and util-ity [22].

 Second, we plan to study membership disclosure protec- tion in more details. Our experiments

show that random grouping is not very effective. We plan to design more effec- tive tuple grouping

algorithms.

Third, slicing is a promising technique for handling high- dimensional data. By partitioning attributes into
columns, we protect privacy by breaking the association of uncor-

Protecting Attribute Disclosure for High Dimensionality and Preserving Publishing of Microdata

www.iosrjournals.org 68 | Page

related attributes and preserve data utility by preserving the association between highly-correlated

attributes. For example, slicing can be used for anonymizing transaction databases, which has been

studied recently in [32, 37, 26].
 Finally, while a number of anonymization techniques have been designed, it remains an open

problem on how to use the anonymized data. In our experiments, we randomly gen- erate the associations

between column values of a bucket. This may lose data utility. Another direction to design data mining

tasks using the anonymized data [13] computed by various anonymization techniques.

References
[1] C. Aggarwal. On k-anonymity and the curse of dimensionality. In VLDB, pages 901–909, 2005.

[2] A. Asuncion and D. Newman. UCI machine learning repository, 2007.

[3] A. Blum, C. Dwork, F. McSherry, and K. Nissim. Practical privacy: the sulq framework. In PODS, pages 128–138, 2005.

[4] J. Brickell and V. Shmatikov. The cost of privacy: destruction of data-mining utility in anonymized data publishing. In KDD,

pages 70–78, 2008.

[5] B.-C. Chen, R. Ramakrishnan, and K. LeFevre.Privacy skyline: Privacy with multidimensional adversarial knowledge. In VLDB,

pages 770–781, 2007.

[6] H. Cramt’er. Mathematical Methods of Statistics.Princeton, 1948.

AUTHORS PROFILE

 Mr. Shaik.Mahammad Rafi –He was born in Rajampet, Kadapa, A.P, India in 1990.He is studying
M.Tech in the department of Computer Science and Engineering at Global College of Engineering and technology,
Kadapa. He has done Bachelor's of Technology from JNTUA University in the year 2011 in Information Technology.

 Mr. P.Venkata Ramanaiah –He was born in Khajipet,Kadapa,A.P,India. He is Master of Technology in

Computer Science and Engineering at Madanapalle Institute of Technology and Science from JNTUA University in the year

2012. He has given guidance to many students in their thesis work of M.Tech. He has also contributed in the research work

on Data Mining with his papers. He was presently working as Assistant. Professor in Global College of Engineering and

technology,GCET, kadapa.

