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Abstract: Generalization and Bucketization, have been designed for privacy preserving microdata 

publishing.  Recent work has shown that generalization loses considerable amount of information, 
especially for high-dimensional data. Bucketization, on the other hand, does not prevent membership 

disclosure and does not apply for data that do not have a clear separation between quasi- identifying 

attributes and sensitive attributes. 

In this paper, we present a novel technique called slicing, which partit ions  the data both horizontally and 

vertically. We show that slicing preserves better data utility than gen- eralization and can be used 

for membership disclosure protect ion.   Another important advantage of slicing is that it can handle 

high-dimensional data. We show how slicing can be used for attribute disclosure  protection and 

develop an ef- ficient algorithm for computing the sliced data that obey the ℓ-diversity requirement.Our 

workload experiments confirm that slicing preserves  better utility than generalization and is more  

effective than  bucketization in workloads  involving the sensitive  attribute.  Our e xpe ri me nt s  also 

demonstrate that slicing can be used to prevent membership disclosure. 

 

 

I. Introduction 
 Privacy-preserving publishing of microdata has been stud- ied extensively in recent  years.   

Microdata  contains records each  of which  contains information  about an individual  en- tity, 

such  as  a  person,   a  household,  or  an  organization. Several microdata anonymization 

techniques have been pro- posed.   The  most  popular  ones  are  generalization  [29, 31] for  k-

anonymity  [31] and  bucketization  [35,  25,  16] for  ℓ- diversity [23]. In both approaches, 

attributes are partitioned into three categories:  (1) some attributes are identifiers that can uniquely  

identify an individual, such as Name  or Social Security Number; (2)  some  attributes  are  Quasi-

Identifiers (QI), which the adversary may already know (possibly  from other  publicly-available 

databases) and  which,  when  taken together, can potentially identify an individual,  e.g.,  Birth- 

date,   Sex,  and  Zipcode ;  (3)  some  attributes  are  Sensitive Attributes (SAs),  which  are  
unknown  to the adversary and are considered sensitive, such as Disease and Salary. 

 In both generalization and bucketization, one first removes identifiers  from  the data and  

then  partitions  tuples  into buckets. The  two techniques differ in the next step.  Gener- alization  

transforms  the QI-values  in each  bucket into “less specific but semantically consistent” values so 

that tuples in the  same  bucket  cannot  be  distinguished  by  their  QI  val- ues.   In  

bucketization,  one separates  the SAs  from the QIs by randomly permuting the SA values in each  

bucket.  The anonymized data consists of a set of buckets with permuted sensitive attribute values. 

 

II. Slicing 
 It has  been  shown  [1, 15,  35] that generalization  for  k- anonymity losses considerable amount of 

information, espe- cially for high-dimensional data.  This is due to the following three reasons.   First,  

generalization  for k-anonymity suffers from the curse of dimensionality. In order  for generalization to be 

effective, records  in the same  bucket must be close to each other so that generalizing  the records would not 

lose too much information.  However, in high-dimensional data, most data points have similar distances with 

each other, forcing a great amount of generalization  to satisfy  k-anonymity even for  relative  small  k’s.    

Second,  in  order  to perform  data analysis  or data mining  tasks on the generalized  table,  the data analyst 

has to make  the uniform distribution assump-  tion that every value in a generalized  interval/set is equally 

possible,  as no  other  distribution  assumption  can  be justi- fied.  This significantly reduces  the data utility 

of the gen- eralized  data.  Third, because  each  attribute is  generalized separately, correlations between 

different attributes are lost. In  order  to study attribute  correlations  on  the generalized  table,  the data  
analyst  has  to assume  that every  possible combination  of attribute values  is equally  possible.  This  is an 

inherent problem  of generalization that prevents effective analysis  of attribute correlations. 
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 While  bucketization [35,  25,  16] has  better data  utility than generalization, it has  several  

limitations.  First, buck- etization does not prevent membership disclosure [27].  Be- cause bucketization 

publishes the QI values in their original forms,  an adversary can find out whether an individual has a  record  
in  the published  data or  not.   As shown in  [31], can  be  inferred  from  the bucketized table.   Second,  

buck- etization  requires  a clear  separation  between  QIs and  SAs. However, in many datasets, it is unclear 

which attributes are QIs and  which  are  SAs.  Third, by separating the sensitive attribute from  the QI  

attributes,  bucketization  breaks  the attribute correlations between the QIs and the SAs. In  this  paper, we 

introduce  a  novel  data  anonymization technique called  slicing  to improve  the current  state  of the art. 

 Slicing partitions the dataset both vertically and hori- zontally.  Vertical partitioning is done by 

grouping attributes into columns based on the correlations among the attributes. Each column contains a subset 

of attributes that are highly correlated.  Horizontal partitioning is done by grouping tu- ples into buckets.  

Finally, within each bucket, values in each column are randomly permutated (or  sorted)  to break  the linking  

between different columns. 

 The basic idea of slicing is to break  the association  cross columns,   but  to preserve   the association  
within  each  col- umn.  This  reduces  the dimensionality  of the data and pre- serves  better  utility than 

generalization and  bucketization. Slicing preserves  utility because  it groups  highly-correlated attributes 

together, and  preserves  the correlations  between such  attributes.  Slicing  protects privacy  because  it breaks  

the associations between uncorrelated attributes, which are infrequent and thus identifying.  Note that when the 

dataset contains  QIs  and  one SA, bucketization  has  to break  their correlation; slicing, on the other hand, 

can group some QI at- tributes with the SA, preserving attribute correlations with the sensitive attribute. 

 

III. Formalization 
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IV. Slicing Algorithms 
4.1 Attribute Partitioning 
 Our    algorithm   partitions   attributes   so   that   highly- correlated attributes are  in the same  

column.  This  is good for both utility and privacy. In terms of data utility, group- ing  highly-correlated  

attributes  preserves   the correlations among  those attributes. In terms of privacy, the association of 

uncorrelated attributes presents higher identification risks than the association of highly-correlated attributes 

because the association of uncorrelated attribute values  is much less frequent  and  thus more  identifiable.  

Therefore, it  is better to break  the associations  between  uncorrelated  attributes, in order  to protect privacy. 

 In  this phase,  we first compute the correlations  between pairs of attributes and then cluster attributes 
based on their correlations. 

 

4.2 Column Generalization 
 In the second phase, tuples are generalized  to satisfy some minimal  frequency  requirement.  We 

want to point out that column  generalization  is not an  indispensable phase  in  Algorithm  tuple-partition(T , 

ℓ) provides  the same  level of privacy  protection  as generaliza-  tion, with respect to attribute disclosure. 

1. Q = {T }; SB = ∅ . 

2. while Q is not empty 

3. remove  the first bucket B  from Q; Q = Q − {B}. 

4. split B  into two buckets B1    and B2  , as in Mondrian. 

5. if diversity-check(T , Q ∪  {B1 , B2  } ∪  SB , ℓ) 
6. Q = Q ∪  {B1 , B2  }. 

7. else SB = SB ∪  {B}. 

8. return SB . 

 Figure  1:  The tuple-partition  algorithm 

 

Algorithm  diversity-check(T , T ∗ , ℓ) 

1.  for each tuple t ∈  T , L[t] = ∅ . 

2.  for each bucket B  in T ∗  

3.  record  f (v) for each column  value  v in bucket B. 

4.  for each tuple t ∈  T 

5.  calculate p(t, B) and find D(t, B). 
6.  L[t] = L[t] ∪  {hp(t, B), D(t, B)i}. 

7.  for each tuple t ∈  T 

8.  calculate p(t, s) for each s based  on L[t]. 

9.  if p(t, s) ≥ 1/ℓ, return false. 

10. return true. 
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Figure  2:  The diversity-check algorithm 

 

4.3 Tuple Partitioning 
 In the tuple partitioning phase, tuples are partitioned into buckets.  We modify  the Mondrian  [17] 

algorithm  for tuple partition.  Unlike  Mondrian  k-anonymity, no generalization is applied  to the tuples; we 

use Mondrian for the purpose  of partitioning tuples into buckets. 

 Figure  1 gives the description of the tuple-partition algo- rithm.   The  algorithm maintains two data  

structures:   (1) a  queue  of buckets  Q  and  (2)  a  set  of sliced  buckets  SB . Initially,  Q contains  only  one  

bucket which  includes  all tu- 

 ples and  SB  is empty  (line  1).   In  each  iteration  (line  2 to line  7),  the algorithm  removes  a 

bucket  from  Q  and  splits the bucket  into  two  buckets  (the  split  criteria  is described in Mondrian [17]). If 

the sliced table after the split satisfies ℓ-diversity (line 5), then the algorithm puts the two buckets at the end of  

the queue  Q (for  more  splits, line 6).  Other- wise, we cannot split the bucket anymore and the algorithm puts 

the bucket into SB  (line  7).  When  Q becomes empty, we have computed the sliced table.  The set of sliced 
buckets is SB  (line 8). 

 The main  part of the tuple-partition algorithm is to check whether a sliced table satisfies ℓ-diversity 

(line 5).  Figure  2 gives a description of the diversity-check algorithm.  For each tuple t, the algorithm 

maintains a list of statistics L[t] about t’s matching buckets.  Each  element in the list L[t] contains statistics 

about one matching bucket B:  the matching prob- ability  p(t, B)  and  the  distribution  of candidate  sensitive 

values  D(t, B). 

 The algorithm first takes one scan of each bucket B (line 2 to line 3) to record  the frequency  f (v) of 

each column  value v in bucket  B.  Then  the algorithm  takes  one scan  of each tuple t in the table T (line 4 to 

line 6) to find out all tuples that match B and record  their matching probability p(t, B) and  the  distribution  of 

candidate  sensitive  values  D(t, B), which  are  added  to the list  L[t] (line 6).  At the end of line 

6,  we have  obtained,  for each  tuple  t, the list  of  statistics L[t]  about  its  matching buckets.  A final scan of 

the tuples in T will compute the p(t, s) values based  on the law of total probability described in Section 3.2.  
Specifically, 

The  sliced  table  is  ℓ-diverse  iff for  all  sensitive  value  s, p(t, s) ≤ 1/ℓ (line 7 to line 10). 

 

 We now analyze  the time complexity of the tuple-partition algorithm.   The  time complexity of  

Mondrian [17] or  kd- tree  [10] is O(n log n)  because  at each  level of the kd-tree, the whole dataset need to 

be scanned which takes O(n)  time and the height of  the tree is O(log n).   In our  modification, each  level  

takes  O(n2 )  time  because  of the diversity-check algorithm  (note  that the number  of buckets  is at  most  

n). The  total time complexity is therefore O(n2 log n). 

 

V. Membership Disclosure Pro- Tection 
 Let us first examine  how an adversary can infer member-  ship information from bucketization.  

Because bucketization releases  the QI values  in their original  form and most indi- viduals  can  be uniquely  

identified  using  the QI values,  the adversary can  simply  determine  the membership of an  in- dividual in 

the original  data by examining the frequency  of the QI values  in the bucketized data. Specifically,  if the fre- 

quency is 0, the adversary knows for sure that the individual  is not in  the data.  If the frequency  is  greater  

than 0, the adversary knows  with  high  confidence  that the individual is in the data, because this  matching 

tuple must  belong  to that individual  as  almost  no other individual  has  the same QI values. 

The   above   reasoning  suggests  that  in   order   to   pro- tect  membership information,  it is  required  that, 

in  the anonymized data, a tuple  in the  original  data should  havea  similar  frequency   as  a  tuple  that is  not 

in  the  original 
Data. 

 

VI. Experiments 
 We conduct two experiments.  In the first experiment, we evaluate the effectiveness of slicing in 

preserving data utility and protecting against attribute disclosure,  as compared to generalization  and  

bucketization.  To  allow direct  compari-  son, we use the Mondrian algorithm [17] and ℓ-diversity for all  

three  anonymization  techniques:  generalization,  bucke- tization, and  slicing.   This  experiment  

demonstrates  that: (1) slicing preserves  better data utility than generalization; (2) slicing is more effective 

than bucketization in workloads  involving  the  sensitive attribute;  and  (3)  the sliced  table can be computed 
efficiently. Results for this experiment are presented in Section 6.2. 

 In  the second  experiment,  we  show  the  effectiveness of slicing  in  membership disclosure  

protection.   For  this  pur- pose, we count the number of fake tuples in the sliced data. We also compare  the 

number  of matching buckets for origi-nal tuples and that for fake tuples.  Our  experiment results show that 
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bucketization does  not prevent  membership dis- closure  as almost every  tuple is uniquely  identifiable in the 

bucketized  data. Slicing  provides  better protection against membership disclosure:  (1) the number  of fake 

tuples in the sliced data is very large, as compared to the number  of orig- inal tuples and (2) the number  of 
matching buckets for fake 

  

                 Attribute               Type              values 

1  Age                    Continuous 74 

2  Workclass      Categorical 8 

3  Final-Weight     Continuous NA 

4  Education    Categorical 16 

5  Education-Num   Continuous 16 

6  Marital-Status    Categorical 7 

7  Occupation    Categorical 14 

8  Relationship    Categorical 6 
9  Race                  Categorical 5 

10  Sex                     Categorical 2 

11  Capital-Gain              Continuous NA 

12  Capital-Loss              Continuous NA 

13  Hours-Per-Week             Continuous NA 

14  Country                           Categorical 41 

15  Salary                            Categorical 2 

Table 2:  Description  of  the Adult dataset 

 

 tuples and  that for original  tuples are  close enough,  which makes  it difficult  for the adversary to  

distinguish  fake  tu- ples  from  original  tuples.   Results  for  this  experiment  are presented in Section 6.3 

 Experimental Data.  We use the Adult dataset from the UC  Irvine  machine   learning   repository  
[2],  which  is  com- prised  of data collected from the US census.  The  dataset is described in Table  2.  

 Tuples with missing  values  are  elimi- nated and  there are  45222 valid  tuples in total.  The  adult 

dataset contains 15 attributes in total. 

 In our experiments, we obtain two datasets from the Adult dataset.  The  first  dataset is the “OCC-7” 

dataset, which includes  7 attributes:  QI = {Age, W orkclass, Education, M arital-Status, Race,   Sex}  and  S  

=  Occupation.  The second dataset is the “OCC-15” dataset, which  includes  all 15 attributes and the sensitive 

attribute is S = Occupation. In the “OCC-7” dataset, the attribute that has the closest correlation  with  the 

sensitive  attribute  Occupation is Gen- der, with the next closest attribute being Education. In the “OCC-15” 

dataset, the closest  attribute  is also  Gender but 

the next closest attribute is Salary. 

 

VII. Discussions And Future Work 
 This   paper   presents  a  new  approach  called  slicing  to privacy-preserving microdata publishing.  

Slicing overcomes the limitations of generalization and bucketization and pre- serves better utility while 

protecting against privacy  threats. We illustrate how to use slicing to prevent attribute disclo- sure and 

membership disclosure.  Our experiments show that slicing preserves  better data utility than generalization 

and is more  effective  than  bucketization in workloads  involving the sensitive attribute. 

 The  general  methodology proposed by this work  is  that: before anonymizing the data, one can 

analyze the data char- acteristics and use these characteristics in data anonymiza- tion. The   rationale  is  that 

one  can  design  better  data anonymization  techniques  when  we know  the data better. In [21], we show that 
attribute correlations can be used for privacy  attacks. 

 This work motivates several directions for future research. First, in this paper, we consider  slicing 

where each attribute is in exactly one column.  An extension is the notion of over- lapping  slicing,  which  

duplicates an  attribute in more  than one columns.  This  releases more attribute correlations.  For example,  in 

Table  1(f ), one could choose to include the Dis- ease  attribute  also  in  the first  column.    That  is,  the two 

columns  are  {Age, Sex, Disease} and  {Z ipcode, Disease}. This  could  provide  better  data  utility,  but  the 

privacy  im- plications need to be carefully  studied and understood.  It is interesting  to  study  the tradeoff  

between  privacy  and  util-ity [22]. 

 Second, we plan  to study membership disclosure  protec- tion in  more  details.   Our  experiments 

show  that random  grouping  is not very effective.  We plan to design more effec- tive tuple grouping  

algorithms. 

Third, slicing is a promising technique for handling high- dimensional data. By partitioning attributes into 
columns, we  protect  privacy   by  breaking the  association  of  uncor- 
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related  attributes and  preserve   data utility by  preserving the association  between  highly-correlated  

attributes.   For example,   slicing  can  be  used  for  anonymizing transaction databases, which has been 

studied recently in [32, 37, 26]. 
 Finally, while a number  of anonymization techniques have been  designed,  it remains  an  open  

problem  on  how to use the anonymized data. In our experiments, we randomly gen- erate  the associations  

between  column  values  of a  bucket. This  may lose data utility.  Another direction to design data mining  

tasks  using  the anonymized data [13] computed by various anonymization techniques. 
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