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Abstract: The computer aided diagnosis (CAD) problems of detecting potentially diseased structures from 
medical images are typically distinguished by the following challenging characteristics:   extremely 

unbalanced  data  between negative and positive classes; stringent real-time requirement of on- line execution; 

multiple positive candidates generated for the same malignant structure that are highly correlated and 

spatially close to each other. To address all these problems, we propose a novel learning formulation to 

combine cascade classification and multiple instance learning (MIL) in a unified min-max framework, leading 

to a joint optimization problem which can be converted to a tractable quadratic ally constrained quadratic 

program and efficiently solved by block-coordinate optimization algorithms. 

 We apply the proposed approach to the CAD problems of detecting pulmonary embolism and colon 

cancer from computed tomography images. Experimental results show that our approach significantly reduces 
the computational cost while yielding comparable detection accuracy to the current state-of-the-art MIL or 

cascaded classifiers. Although not specifically designed for balanced MIL problems, the pro- posed method 

achieves superior performance on balanced MIL benchmark data such as MUSK and image data sets 

 

I. Introduction 
 Over the years, computer aided diagnosis (CAD) systems have been widely used to assist physicians in 

interpreting medical images from different modalities such as magnetic resonance imaging (MRI), X-ray, and 

computed tomography (CT) and to identify potentially diseased regions like lesions or tumors. Most CAD 

systems comprise of three stages:  identify candidate structures, i.e., potentially unhealthy regions, in the 

image; generate features for each candidate; classify each candidate as normal (negative) or diseased (positive).  

 To maintain high sensitivity, a very large number of candidates are generated in the first stage because 

any malignant regions missed at this stage can never be recovered later in the CAD system.  
 Consequently, majority of the candidates generated, typically more than 99%, are false positives, 

which makes the data extremely unbalanced.  In this situation, cascaded classifiers can be used to speed up 

candidate classification by quickly discarding numerous negative samples with low-cost features at early stages 

and spending more computation on promising disease-like candidates [15]. 

 Moreover, for CAD data, a candidate is labeled as positive if it is sufficiently close to a radiologist’s 

mark (ground truth) and labeled as negative otherwise.  Multiple candidates are usually generated 

corresponding to the same abnormal structure so that if any such candidate is detected, the underlying structure 

is found.  Therefore, CAD problems are better modeled as multiple instance learning (MIL) by enclosing all the 

candidates within a certain distance to a radiologist’s mark into a positive bag [6]. 

 In this paper, we propose a novel approach to combine MIL classifiers in a cascade.   In particular, 

we start out with formulating MIL as an optimization problem in a min- max framework in Section 2.  Section 3 
reviews the joint optimization principle [5] used to construct all hyper plane classifiers of a cascade in one shot, 

and describes a new min-max formulation for optimization of the cascade. The two min-max frameworks are 

fused as discussed in Section 4 to form a unified approach that optimizes a cascade of MIL classifiers 

simultaneously. Experimental results on two CAD applications and MIL benchmark datasets are given in 

Section 5 together with some discussion. We conclude with a review of our contributions and potential ex- 

tensions in Section 6. 

 

II. Multiple Instance Learning 
 Multiple Instance Learning, originally formalized by [4], is a generalization of supervised learning where 
the training class labels are associated with sets of instances, i.e., bags, rather than individual instances. A bag is 

labeled positive if at least one instance in it is positive and negative if all the instances in it are negative. The 
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objective of an MIL problem is to correctly identify at least one positive instance for each positive bag from all 

the other negative instances. In CAD problems, multiple positive candidates are generated within a certain 

distance from a marked lesion. The lesion is detected if only one of these candidates is correctly identified in the 
classification stage and highlighted to the physicians. Therefore, it is reasonable to assume that MIL algorithms 

will outperform other traditional classifiers for CAD tasks. 

 Many MIL algorithms have been proposed over the last decade. Diverse Density (DD), first introduced 

by [9], and its variant EM Diverse Density in [18], assumes that all positive bags intersect at a few points in the 

feature space. However, this doesn’t necessarily hold for all MIL problems. To achieve higher performance, 

various standard classification algorithms for single instance learning have been extended to adapt to the MIL 

scenario, such as mi(MI)-SVM [1], MIL Boost [16], MILR [12] and MI RVM [10]. 

 We propose a min-max framework for MIL problems that can be applied to many standard learning 

algorithms, as Fisher’s linear discriminant analysis or support vector machines (SVM), by generalizing the 

notion of loss functions to bags and minimizing the bag loss directly. In this paper, we use 1-norm SVM as 

an example to illustrate this approach because 1-norm SVM accomplishes automatic feature selection by 
shrinking coefficients of irrelevant features to zero [13, ?], which is particularly desirable in CAD systems for 

computational efficiency at run time. 

 The following notation is used throughout the paper. We Denote x as a feature vector (an instance) and 

y∈ {+1,−1} is the class label assigned to a bag. Keep in mind that class labels are only available to bags. We 

often implicitly apply the bag label to its instances for notational convenience, although not all instances in 

positive bags are truly positive instances. In total, there are N instances,  N + instances in positive bags indexed 

in C+ 

 And N−instances in negative bags indexed in C- Index sets B+ i and B- j contain indices of all instances 

in the ith positive and the j-th negative bags, respectively, and NB+and NB−denote the numbers of positive and 

negative bags. 

 
 The regular 1-norm SVM can be formulated as the following optimization problem: 

 
 where ω, b and γ represent the weighting vector, offset and regularization parameter; ξ and η measure 

the hinge loss of instances in C + and in C −, respectively. 

 The typical objective of MIL problems is to correctly classify the bag rather than each individual 

instance.  For example, in a CAD system, as long as the abnormal structure is found from the medical images, it 

is not important to detect all candidates corresponding to it. Hence, it is natural to extend the notion of hinge loss 

from instances to bags. As shown in Eq. (2), for a positive bag the hinge loss ξ is defined by the minimum hinge 

loss incurred on all instances in the bag, i.e., the hinge loss of the most-likely positive in- stance in bag i; on the 

other hand, the hinge loss η of a negative bag is defined by the maximum loss of all instances in this bag, i.e., the 
hinge loss of the least negative instance in the negative bag i. The definition (2) reflects the asymmetric nature 

between the positive bag where at least one of the instances in it is positive, and the negative bag where all its 

instances are negative. 

 
Using the definition of bag hinge loss, 1-norm SVM can be modified as follows for MIL: 

 
 

 It is important to point out that the formulation (3) implicitly takes all instances in a positive bag as 

positive, which is different from a standard MIL problem where instances in a positive bag can be unlabeled or 

even negative. However, the new formulation aims at detecting at least one instance from each positive bag, 

which corresponds to the identification of the most-likely positive instances for positive bags. Hence our 
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k 

algorithm finds both the positive bags and corresponding positive instances. 

 

III. Cascade of Hyper plane Classifiers 
 The cascade classification approaches have long been used in real time object detection [15, 11, 17]. 

The proposed coarse-to-fine cascade structure, such as cascade AdaBoost, has been shown effective in speeding 

up the detection process by discarding many of negative candidates with fewer features before more complex 

classifiers are called upon to achieve lower false positive rates.  However, this structure also has several 

disadvantages: (1) In each stage of training, a minimum detection rate and maximum false positive rate have to 

be set a priori as a target to achieve, which can be difficult to accomplish especially in later stages as the 

number of stages increases; (2) To meet specific target detection and false positive rates, a classifier is trained 

with a fixed rejection threshold at each stage which is inflexible to explore the trade-off between accuracy and 

speed, and even between detection and false positive rate; (3) The classifiers at each stage are sequentially and 
separately optimized without utilizing the information derived at other stages except the current stage. 

 Bourdev proposed a soft cascade framework to improve detector accuracy by generalizing each stage 

to be a scale- valued decision function based on the values of all prior stages rather than just the current stage 

under consideration, but it still needs to select a rejection distribution vector and fix classifier thresholds at each 

stage in a separate calibration step. 

 In view of these drawbacks of classic cascade approaches, an AND-OR framework has been proposed 

in [5] to jointly optimize all classifiers in the cascade. This framework as depicted in Figure 1 minimizes the 

overall regularized risk of entire system and provides implicit mutual feedback among all involved classifiers. The 

new cascade structure differs from classic ones in several perspectives: 1. It is not required to set any target 

sensitivity and specificity in the training, and thus there are no fixed thresholds, either. 2. Each classifier is 

optimized using all training data with different feature sets, providing the option for users to group features 

based on prior knowledge about features. For instance, computationally inexpensive features may be grouped 

together in earlier stages. 3.  Since the classifiers are trained in parallel, the execution order of classifiers in 

the cascade has no impact on the classification accuracy. The execution order can be determined by 
minimizing the overall computational cost of the system.  For instance, a classifier that removes more false 

positives than other classifiers may be applied earlier. 

 

 
 

 where L is the number of classifiers in the cascade, ωk  and bk  represent the weight vector and offset 

of classifier k, xj,k is the jth training sample with features in the feature set k. 

 In this paper, we present a novel min-max optimization approach to implement the AND-OR 

framework of building a cascade of hyper plane classifiers, which is in the same spirit as that of MIL in Section 

2. Although our algorithm can be extended to construct nonlinear classifiers, we limit our discussion to linear 

cases here for clarity. The new cascade formulation minimizes the maximum hinge loss across all stages on a 

positive instance since all stages have to classify the positive instance correctly for a final detection, and the 
minimum hinge loss across all stages on a negative instance since the negative instance can be rejected out 

of hand at any stage where the hinge loss is 0. 

 

IV. Min-Max Optimization of Cascaded Classifier with MIL 
 Now, we integrate MIL into the cascaded classification framework. In the test phase, each instance is 

labeled jointly by all classifiers in the cascade and then the bag is labeled according to labels of the instances 

in the bag based on the definition of positive and negative bags.  Fig.  2 illustrate the idea.   The dotted 

circles represent the positive bags and solid circles stand for the negative bags.   The bags can be separated by 

two simple cascaded classifiers: 
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y1=sgn(−x)  and y =sgn(−y) where sgn(x)  is equal 

to 1 if x  ≥ 0 and -1 otherwise.  The instances with both 

 y1   = 1 and y2   = 1 are labeled as positive which are represented by solid triangles, and a bag 

containing at least one of these triangles is classified as a positive bag. 

 

 Following the same notation, the unified framework of cascaded MIL classification based on the 1-

norm SVM can 

be formulated as follows: 

 
 The optimization problem (5) is computationally difficult to solve because it involves a min-max of the 

to-be-determined variables ξj,k, and a max-min of ηj,k in the objective function, which is not differentiable or 

convex. Hence we convert it to an equivalent and tractable quadratic ally constrained quadratic program as 

follows: 

 
 The following theorem characterizes the equivalence between the above two optimization problems. 

 Theorem 1 

 The optimal solution of Problem (5) is identical to the optimal solution of Problem(6)when λ j and ν j,k 

are chosen properly.  

Proof. 

 

 
 
  Denote J(ζ, µ, ξ, η, λ, ν, ω, b)as the object function in the optimization problem (6) and assume that 

(ˆζ,ˆµ,ˆξ,ˆη,ˆλ,ˆν,ˆω,ˆb) is the optimal solution to this optimization problem with J as the optimal value attained 

at the optimal solution. Obviously,(ˆ ξ,ˆη,ˆω,ˆb) is feasible to Problem (5). Notice that the hinge loss ˆξand ˆη 

can be uniquely determined by ˆω and ˆb as 
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j=1 

and the inequality constraints in (7) and (8) imply that 

 
furthermore, it is straightforward to derive that 

 
are minimized when ˆλj and ˆν j,k are all zero exceptfor  

 
Respectively. Accordingly, at the optimal solution to problem (6), the objective value ˆJ equates to 

 

 
 which is exactly the same as the objective function of Problem (5) which implies the optimal value of 

Problem (5) is attained at the solution (ξ̂,η̂,ω̂ ,b̂). 
 To solve the optimization problem (6) by applying the block-coordinate optimization algorithms [14], 

we exploit the fact that problem (6) reduces to a linear program that can be solved exactly and quickly if 

parameters λj  and νk,j are fixed to constants. The scheme of the optimization procedure alternating over two 

subsets of the parameters is described as follows: 

 Our algorithm takes training data {xj }N, bag index sets {B+i}NB+i=1, {B−i}NB−i=1, and 

regularization constγas inputs, 

 And automatically computes the weighting vectors{ωk}Lk=1and offsets{bk}Lk=1 of the cascaded 

MIL classifier as out-puts. The algorithm repeatedly alternates between optimizing the classifier parameters 

{ωk},{bk}and the combination coefficients used in the MIL and cascade, i.e. parameters {λj}and{νj,k}until a 

termination rule is satisfied. At each iteration, classifier parameters {ωk},{bk}are Optimized by solving 

Problem (6) with fixed λand ν. Notice Problem (6) becomes a linear program when λandν are fixed. Then the 

bag-level hinge loss can be evaluated as in Eqs. (9) and (10) for the obtained {ωk},{bk}. We then compute j∗ 

and k∗ as in Eqs. (12) and (13), and update λj∗ = 1, other λ’s to 0, and νj,k∗ = 1, other ν’s to 0. There are many 

possibilities to refine the above optimization heuristic strategy, for instance, by starting from different initial 

parameter values, or by performing simulated annealing to avoid unfavorable local minima. How-ever, we have 

been able to achieve competitive results even with this simple optimization heuristic as shown in the next 

section, which validates the cascaded MIL algorithm. Further algorithmic improvements will be addressed in 

future work. 

 

V. Experimental Results and Discussion 
 For the experiments in this paper, we compare our algorithm with three other techniques: regular 1-

norm SVM without MIL and cascading, MI RVM which is reported to achieve the most competitive 

classification accuracy com- pared with other popular MIL classification methods [10], and cascade AdaBoost 

well known for its high computational efficiency [15]. The proposed cascade MIL classification algorithm is 

validated with respect to the generalization performance and computational efficiency. 

 

5.1. CAD applications:  Pulmonary embolism and Colon cancer detection 

 Pulmonary embolism (PE) is a blockage of the pulmonary artery or one of its branches usually from a 

blood clot that breaks off from a large vein and travels to the lungs acterizing emboli. In this experiment, we 

collected the PE CAD data from 193 image volumes comprising 863 posi- tive candidates referring to 435 

pulmonary emboli, which are marked and checked by expert radiologists as ground truth, and 7,722 negative 

candidates. They were randomly split into two datasets: training (255 PE with 520 positive candidates and 
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 4,514 negative candidates) and testing (180 PE with 343 positive candidates and 3,208 negative 

candidates). Each candidate was represented by 90 features [8]. 

 Colorectal cancer is the third most common cancer in both men and women.   It is estimated that 
over 140,000 cases of colon and rectal cancer are diagnosed in the US, with more than 50,000 people dying 

from colon cancer annually [7].  It is critical to identify and remove lesions, or polyps (see Fig. 3(b)) when 

colon cancer is still in an early stage.  If it progresses to an advanced stage, survival rates are very low. CT 

colonography is emerging as a new procedure to help in early diagnosis of colon polyps.  How- ever, hundreds 

of CT slices for each patient makes manual reading demanding and time-consuming.  Here, we have randomly 

partitioned training data from 340 image volumes comprising 243 positive candidates associated with 

198 colon polyps and 67,145 negative candidates; and test- ing data from 395 image volumes comprising 265 

positive candidates corresponding to 197 colon polyps and 79,057 negative candidates.  A total of 236 features 

are extracted for each candidate. 

 

5.1.1ClassifierDesign  
 We randomly set aside 20% training data as validation data for parameter tuning, such as regularization 

parameter γ in 1-norm SVM and thresholds at each stage in cascade AdaBoost.  When the tuning process is 

over, i.e., all the parameters are set, the entire training data is used to train the classifier again. For the cascade 

AdaBoost, each stage classifier is trained in the presence of all features and the number of features used is 

increased in a greedy manner un til no further improvement in the classification performance on the validation 

data is observed. The decision thresholds are set to satisfy the target false positive rate of70%, i.e., to discard at 

least 30%negative candidates at each stage. On the other hand, for the proposed cascaded MIL SVM, the 

features are grouped into different tiers based on their computational cost and each stage classifier is trained 

with feature groups from the simplest to the most complex tier. 

 
 

 As shown above, no fixed thresholds need to be fixed in the training stage. In accordance with our 

AND-OR cascade framework, the minimum output of all stage classifiers is used in testing which implies that 

all these classifiers take the same decision threshold. 

 
5.1.2   Results 

 First, we experiment with different numbers of stages, L, in our cascade framework to examine its 

impact on the overall classification performance. Fig. 4 shows the ROC curves of PE CAD with L from 1 to 3, 

where the performance drops clearly with the increase of L. Although no theoretical justification is derived, it is 

more likely to harm the system robustness when the number of classifiers in the cascade grows and 

accordingly the learning model becomes more complicated. To simplify the training and achieve reason-able 

trade-off between performance and speed, we choose to use two layers in our cascade MIL framework and 
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cascade AdaBoost as well for fair comparison in the following experiments. 

 

 

 

 The overall classification performance obtained by the different classifiers are compared in Fig.  5.  In 
both CAD experiments, the proposed classifier achieves better or com- parable performance than the other 

methods. In particular, it reaches higher or equivalent detection rates at three false positives per volume, which is 

an important measure of clin- ical interest. However, our classifier uses far fewer features, resulting in a system 

that runs faster than all the other meth- ods including the cascade AdaBoost, as shown in Table 1. Taking PE 

CAD for instance, our approach only uses 7 fea- tures in the first stage and an additional 21 features in the 

second stage, which are only required for a small portion (1,108) of the total 3,551 testing samples that pass 

through the first stage, compared with 76 features by SVM, 40 fea- tures by MI RVM, 24 and 29 features by two 

stages of cas- cade AdaBoost with more samples (1,377) progressing to the second stage. 

 

5.2. MIL benchmark data 

 The musk datasets, MUSK1 and MUSK2, consist of de- scriptions of molecules (bags) using multiple 

low energy conformations (instances).  The goal is to predict whether a molecule will bind to a target protein.  
Each conforma- tion is represented by a 166-dimensional feature vector de- rived from surface properties. 

MUSK1 and MUSK2 contain around 6 and 60 conformations, respectively, per molecule on average.  However, 

only one conformation can actually bind with the target for each molecule. 

 The image datasets, FOX, TIGER and ELEPHANT, con- tain images (bags) where each image is 

decomposed into a set of segments (instances), each characterized by color, texture and shape descriptors. The 

task is to identify images containing the objects of interest, such as fox, tiger or ele- phant, which might be 

contained in more than one segment. 

 

5.2.1   Classifier Design 

 In this experiment, the classifiers are evaluated using 10- fold cross validation: the training data is 

randomly divided into 10 subsets on bag level, i.e., the instances in the same bag are kept in one subset, then 
we combine the classifica- tion results of 10 runs to plot the complete ROC curves. For the proposed cascaded 

MIL SVM, because there’s no prior knowledge of the computational cost or exact definition of these features, 

we simply split the features into two groups with the first half features in one group and the second half in the 

other group. The other settings are the same as Sub- section 5.1.1. 

 

5.2.2Results 

 Fig. 6 shows the ROC curves of different approaches with benchmark datasets. Note that in order to 

construct a complete ROC curve for the cascade AdaBoost, we have to de- crease the fixed thresholds at each 

stage one by one from the last stage to the first, as described in [15]. The results show that our approach 

outperforms the other approaches significantly in most of the datasets, even though it is not specifically 

designed for balanced MIL problems where the numbers of positive and negative bags are equivalent. 

 

VI. Conclusion 
 Motivated by CAD applications which can be modeled as MIL problems with extremely unbalanced 

data and stringent real time requirements, we propose a novel approach to integrate MIL and cascade 

classification in one framework to improve both computational efficiency and classification performance. The 

experiments show that the proposed algorithm can significantly reduce the computational cost with comparable 

prediction accuracy on real world CAD problems, and yield higher accuracy on benchmark datasets, compared 

with other competitive MIL or cascade classification methods. Ongoing work will include the study of how to 

separate features into different groups for each classifier in the cascade to gain better classification performance, 
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and we also conjecture that better optimization techniques, e.g., to avoid local minima, may further improve the 

classification accuracy. 

 
 

 
Figure 6. The ROC curves of the different approaches applied on benchmark MIL data. 
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