
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 13, Issue 1 (Jul. - Aug. 2013), PP 122-127
www.iosrjournals.org

www.iosrjournals.org 122 | Page

Lossless LZW Data Compression Algorithm on CUDA

Shyni K
1
, Manoj Kumar KV

2

1(Computer Science Department, Government Engineering College, Thrissur, India)
2(Professor in Computer Science Department, Government Engineering College, Thrissur, India)

 Abstract : Data compression is an important area of information and communication technologies it

seeks to reduce the number of bits used to store or transmit information. It will efficiently utilizes the

memory spaces and allows to transmit data within a limited bandwidth. Most compression process is

achieved by removing data redundancy while preserving information content. Data compression

algorithms exploit some characteristics to make the compressed data smaller than the original data. Every

data compression process is working with well defined algorithm. Data compression on graphics processors

(GPUs) has become an effective approach to improve the performance of main memory. CUDA is a

parallel computing platform and programming model invented by NVIDIA. It enables dramatic increases in

computing performance with graphics processing unit (GPU).Data compression algorithms on CUDA

provides better compression process. In this paper, we implement the most power full algorithm LZW

on CUDA architecture. Due to the parallel characteristics of GPU, compression process time is very less

than the CPU environment.

Keywords – Cuda, Gpu, Lzss, Lzw, Lzo.

I. INTRODUCTION
 Compression is an operation that is used frequently on personal computers. One such reason is storage

space conservation, particularly in consumer devices where storage is limited, such as in personal media

players. Data is also compressed in order to facilitate backup operations, allowing a lower cost of

storage media compared to storing uncompressed data. Further, compression is used to save bandwidth

during large file transfers over the Internet. Optimizing compression operations through parallelization could
enable several interesting applications. Modern graphics processing cards contain hardware that can be

exploited for parallel programming. GPUs are optimized for vector processing of graphics data, and

contain on the order of hundreds of parallel units, and up to thousands of threads [4].However, the

GPU can also be extended for general parallel computing. NVIDIA‟s CUDA framework provides a

hardware and software architecture for general purpose parallel programming on GPUs. Parallelizing

compression algorithms on CUDA is interesting because GPUs are common on many personal computers,

and provide a way of scaling the parallelization to hundreds of compute units. It will be interesting to

discover how these architectural considerations affect the speedups of the various compression algorithms.

II. BACK GROUND
 Data compression techniques can be divided into two major families; lossy and lossless. Lossy

compression methods achieve better compression by losing some information. When the compressed stream is

decompressed, the result is not identical to the original data stream. Lossless compression consists of those

techniques guaranteed to generate an exact duplicate of the input data stream after a compression. This is the

type of compression used when storing database records, spread sheets, or word processing files. Lossless

data compression is generally implemented using one of two different types of modeling: statistical or

dictionary-based. Statistical modeling reads in and encodes a single symbol at a time using the probability of that

character‟s appearance. It reads in input data and looks for groups of symbols that appear in a dictionary. If a

string match is found, a pointer or index into the dictionary can be output instead of the code for the

symbol. The longer the match, the better the compression ratio. Instead they select strings of symbols and encode
each string as a token using a dictionary. The dictionary holds strings of symbols and it may be static or dynamic

(adaptive).The former is permanent, sometimes allowing the addition of strings but no deletions, whereas the

latter holds strings previously found in the input stream, allowing for additions and deletions of strings as new

input is being read [2].We will be focusing only on the lossless data compression using dictionary.

A. Lemple-Ziv Algorithms

 It is not a single algorithm, but a whole family of algorithms proposed by Jacob Ziv and

Abraham Lempel in 1977 and 1978.Lempel-Ziv methods are popular for their speed and economy of

memory. The 1977 algorithm is referred to as LZ77uses the past of the sequence as the dictionary.

 LOSSLESS LZW DATA COMPRESSION ALGORITHM ON CUDA

www.iosrjournals.org 123 | Page

 Whenever a pattern recurs within a predetermined window, it is replaced by a pointer to the

beginning of its previous occurrence and the length of the pattern.LZ77 maintains a sliding window during

compression. The window below is divided into two parts. The part on the left is called the search buffer. This is
the current dictionary, and it always includes symbols that have recently been input and encoded. The

part on the right is the look-ahead buffer, containing text yet to be encoded. In practical implementations the

search buffer is some thousands of bytes long, while the look-ahead buffer is only tens of bytes long[1]. The

1978 algorithm is referred to as LZ78, uses a dictionary of previously encountered strings. The encoder

outputs two-field tokens. The first field is a pointer to the dictionary; the second is the code of a symbol

for example, (1,c).Tokens do not contain the length of a string, since this is implied in the dictionary. Each

token corresponds to a string of input symbols, and that string is added to the dictionary after the token is

written on the compressed stream [1].LZW is one of the subversion of LZ78.This paper will focus on LZW

algorithm.

 Limitations with LZ77:

 If the distance between two repeated patterns is larger than the size of the search buffer, the

LZ77 algorithms cannot work efficiently.

 The fixed size of the both buffers implies that the matched string cannot be longer than the

sum of the sizes of the two buffers, meaning another limitation on coding efficiency.

 Increasing the sizes of the search buffer and the look-ahead buffer seemingly will resolve the

problems. Increases in the number of bits required to encode the offset and matched string length as well as

an increase in processing complexity.

Limitations with LZ78:

 No use of the sliding window. Use encoded text as a dictionary which, potentially, does not have a fixed

size.
 Each time a pointer (token) is issued; the encoded string is included in the dictionary.

 Once a preset limit to the dictionary size has been reached, either the dictionary is fixed for the

future (if the coding efficiency is good), or it is reset to zero, i.e., it must be restarted.

 Instead of the triples used in the LZ77, only pairs are used in the LZ78. Specifically, only the position of

the pointer to the matched string and the symbol following the matched string need to be encoded.

 1) LZW algorithm.

 This improved version of the original LZ78 algorithm is perhaps the most famous published by Terry

Welch in 1984. LZW compression replaces strings of characters with single codes. It does not do any analysis of

the incoming text. Instead, LZW builds a string translation table from the text being compressed. The string

translation table maps fixed-length codes to strings. The string table is initialized with all single-character strings.
 Whenever a previously encountered string is read from the input, the longest such previously-

encountered string is determined, and then the code for this string concatenated with the extension

character is stored in the table. The code for this longest previously-encountered string is output and the

extension character is used as the beginning of the next word. Compression occurs when a single code is

output instead of a string of characters. Although LZW is often explained in the context of compressing

text files, it can be used on any type of file. However, it generally performs best on files with repeated

substrings, such as text files. It removed the second item in the double (the index of the symbol following the

longest matched string) and hence, it enhanced coding efficiency. In other words, the LZW only sends the

indexes of the dictionary to the decoder [1].The actual algorithm as follows.

a) LZW compression Algorithm

 Codes 0-255 in the code table are always assigned to represent single bytes from the input file. When
encoding begins the code table contains only the first 256 entries, with the remainder of the table being blanks.

 Compression is achieved by using codes 256 through 4095 to represent sequences of bytes. As

the encoding continues, LZW identifies repeated sequences in the data, and adds them to the code table [1].

Initialize Dictionary with 256 single character strings and their corresponding ASCII codes;

Prefix ← first input character;

CodeWord← 256;

while(notend of character stream){

Char← next input character;

if(Prefix + Charexists in the Dictionary)

Prefix ← Prefix + Char;

 LOSSLESS LZW DATA COMPRESSION ALGORITHM ON CUDA

www.iosrjournals.org 124 | Page

else{

Output: the code for Prefix ;

insertInDictionary((CodeWord , Prefix + Char)) ;
CodeWord++;

Prefix ← Char;

}

}

Output: the code for Prefix ;

b) LZW Decompression Algorithm

 In LZW decompression algorithm, it needs to take the stream of code output from the

compression algorithm, and use them to exactly recreate the input stream.

Decompression algorithm is shown as:

Initialize Dictionary with 256 ASCII codes and corresponding single character strings as their translations;

 PreviousCodeWord ← first input code;

Output:string(PreviousCodeWord) ;

Char ← character(first i nput code);

CodeWord ← 256;

while(not end of code stream){

CurrentCodeWord ← next input code ;

if(CurrentCodeWordexists in the Dictionary)

String ← string(CurrentCodeWord) ;

else

String ← string(PreviousCodeWord) + Char ;
Output:String;

Char ← first character of String ;

insertInDictionary((CodeWord , string(PreviousCodeWord)

+ Char));

PreviousCodeWord ← CurrentCodeWord ;

CodeWord++ ;

}

 In decompression algorithm, code will be searched in dictionary and its character will be output.

Consider the BABAABAAA string. First 256 (0- 255) entries of the dictionary are already occupied with 256

ASCII characters. So start with 256th entry of the dictionary. Here B is already included so consider BA to check

whether it is in dictionary or not, if it is not present in the dictionary then enter BA to the dictionary and encode
the prefix B as 66 as so on. , see Table I

 Encoded form of the above the input is <66><65><256><257><65><260>. The decompressor will

then build a dictionary so that it can receive the indices that refer to the same symbol that are in the compressors

dictionary.. For Example to encode the <65>, we know it is the letter „A‟. After decoding create the dictionary

entry as previous output plus current output first letter in each decoding step. Here BA is added to dictionary. If

dictionary entry of the current code is not decided yet then decoded form will be the combination of current

output and current output first letter. For the code <260> decoded as „AA‟ using this rule, we can see that it is

correct during the dictionary entry creation for the same step, see Table II.

TABLE I. LZW COMPRESSION TABLE II. LZW COMPRESSION

B. CUDA Architecture

 In this section, we briefly introduce GPUs and CUDA, the underlying platform upon which our

compression schemes are implemented. GPUs, originally designed for graphics rendering tasks, have evolved

 LOSSLESS LZW DATA COMPRESSION ALGORITHM ON CUDA

www.iosrjournals.org 125 | Page

into massively multi-threaded many-core co-processors, as illustrated in Figure 1, for general-purpose

computing. The GPU consists of many SIMD (Single Instruction, Multiple Data) multi-processors, all sharing a

piece of device memory. CUDA, a general-purpose programming framework for NVIDIA GPUs, exposes the
hierarchy of GPU threads. GPU threads exe-cute the same code of a kernel function concurrently on different

data. Warps, each of which consists of the same number of threads, are scheduled across multiprocessors.

 Within each multiprocessor, warps are further grouped into thread blocks. Threads in the same thread

block share resources on one multiprocessor, e.g., registers and local memory (or called shared memory in

NVIDIA‟s term).

 CUDA also exposes the memory hierarchy to developers. Multiprocessors share the device memory,

which has a high bandwidth and high access latency. For example, NVIDIA GTX 280 GPU has a device

memory of size 1 GB, a bandwidth of 141 GB/s, and a latency of 400 to 600 cycles. If threads in a half warp

access consecutive device memory addresses, these accesses are coalesced into one memory access transaction.

By utilizing the memory coalesced access feature, we can significantly reduce the number of device memory

accesses, and improve the memory bandwidth utilization. Each multiprocessor also has a low latency and small
sized local memory, and accesses to the local memory must be explicitly programmed through CUDA [6].Each

block of threads can be scheduled on any of the available multiprocessors within a GPU, in any order,

concurrently or sequentially, so that a compiled CUDA program can execute on any number of multiprocessors

as illustrated by Figure 2, and only the runtime system needs to know the physical multiprocessor count. A

GPU is built around an array of Streaming Multiprocessors (SMs). A multithreaded program is partitioned into

blocks of threads that execute independently from each other, so that a GPU with more multiprocessors will

automatically execute the program in less time than a GPU with fewer multiprocessors [3].

Fig 1. The GPU Manycore Architecture. Figure 2: Program blocks assignment to GPU

 with different number of Multiprocessors.

III. RELATED WORK
 As data compression is an effective way to reduce the storage space and increasing the speed of data
transmission it has an important role in information and communication technologies. Performance of

compression process can be increased by using the opportunities in GPU based systems by exploiting the

parallelism in compression algorithms. Porting lossless data compression algorithms on CUDA is a field that

has not been fully investigated yet but some works have done.

 CULZSS :LZSS lossless data compression on CUDA by Adnan Ozsoy and Martin Swany.[6]gives the

implementation of LZSS lossless data compression algorithm on CUDA and analyses the performance with five

different types of dataset, see Figure 3. Implementation of the LZSS algorithm on GPUs significantly improves

the performance of the compression process compared to CPU based implementation without any loss in

compression ratio. This system outperforms the serial CPU LZSS implementation by up to 18x, the parallel

threaded version up to 3x and the BZIP2 program by up to 6x in terms of compression time, showing the

promise of CUDA systems in lossless data compression. To give the programmers an easy to use tool, also
provides an API for in memory compression without the need for reading from and writing to files, in addition

to the version involving I/O[1].

 Another work is done by L. Erdődi , File compression with LZO algorithm[5]using NVIDIA CUDA

architecture discusses the possible ways for the implementation of LZO for GPU Fermi architecture.

 Three different algorithms are provided and compared and finally it is also shown that the use of

GPU can significantly decrease the time of the file compression [7].

 LOSSLESS LZW DATA COMPRESSION ALGORITHM ON CUDA

www.iosrjournals.org 126 | Page

Figure 3: compression speed up against the serial LZSS implementation compared to all other

implementations [6].

IV. IMPLEMENTATION
 Dictionary based algorithms on CUDA architecture is not implemented yet. LZW can be parallelized

by coding each block independently. LZW is one of the powerful subversion of LZ78 dictionary based
algorithm. Implementation of LZW dictionary based compression algorithm on GPU architecture will take

lesser time compared to its implementation on CPU for some input data.

 In this paper LZW algorithm working on CUDA will be simulated using Matlab2012 and the

result is comparison study of the LZW algorithm in CPU and GPU architecture. Processing efficiency of

GPU implementation will be much more efficient than CPU implementation. Following table shows the

comparison study of the CUDA architecture with normal CPU architecture. From the figure GPU

performance far better than CPU. For large size of files GPU takes less time than CPU, compression ratio also

decreasing.

V. CONCLUSION
 GPU has become a powerful device for the execution of data-parallel in which the same operations

are carried out on many elements of data in parallel.LZO on CUDA improves the performance than the CPU

implementation. Three algorithms are considered to compare the calculation efficiency. Algorithm #3 exceeds

the efficiency of the CPU compression implementation. Using NVIDIA GTX580 (512 cores)

graphical processing unit with Intel Core i7-2600 CPU with Algorithm #3 the compression process is 20%

faster than with CPU. Performance of the algorithm on latest GPU processors gives much more results.

NVIDIA GTX680 model possesses 1024 cores, provides calculation speed two times greater than CPU. LZSS

on CUDA also improves the performance than CPU. This implementation is tested on several data sets and

compared with the serial implementation. The compression ratios between the serial and CUDA

implementations are very similar which concludes the CUDA implementation doesn‟t introduce any additional

storage and doesn‟t drop the compression ratio.LZW (Lempel-Ziv-Welch) which is an adaptive technique.
 As the algorithm runs, a dictionary of the strings which have appeared is updated and maintained. The

algorithm is adaptive because it will add new strings to the dictionary. Compared to sliding window

dictionary based algorithms increases the speed of compression process because of this adaptive

technique. Implementation of these dictionary based algorithms should produce better result.

 LOSSLESS LZW DATA COMPRESSION ALGORITHM ON CUDA

www.iosrjournals.org 127 | Page

Acknowledgements
 The authors wish to thank all the reviewers of the work for their valuable suggestions and advices to

successfully complete the work.

REFERENCES
Books:

[1] David Salomon,”Data Compression The Complete Reference”,Third Edition, Department of Computer ScienceCalifornia

State University, USA.

[2] Mark Nelson and Jean-loupGailly, ”Data Compression Techniques “,College of Applied Studies, University of Bahrain.

[3] Wenbin Fang, Bingsheng He, Qiong Luo.”Database Compression on Graphics Processors”. Hong Kong University of

Science and Technology.

Websites:

[4] “NVIDIA CUDA Compute Unified Device ArchitectureProgramming Guide” www.nvidia.com, 2012.

[5] M. F. X. J Oberhumer “LZO source code” www.oberhumer.com/opensource/lzo

Proceedings Papers:

[6] Adnan Ozsoy, Martin Swany, “CULZSS: LZSS Lossless Data Compression on CUDA,” Department of Computer &

Information Sciences University of Delaware Newark, DE 19716, 2011 IEEE International Conference on Cluster

Computing.

[7] L. Erdődi, “File compression with LZO algorithm using NVIDIA CUDA architecture”LINDI 2012 • 4th IEEE International

Symposium on Logistics and Industrial Informatics • September 5-7, 2012; Smolenice, Slovakia.

