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 Abstract : Data  compression  is  an  important  area  of information  and  communication  technologies  it  

seeks  to reduce  the  number  of  bits  used  to  store  or  transmit information. It  will efficiently utilizes the 

memory spaces and allows  to  transmit  data  within  a  limited  bandwidth.  Most compression  process  is  

achieved  by  removing  data redundancy  while  preserving  information  content.  Data compression  

algorithms  exploit  some  characteristics  to  make the compressed data smaller than the original data. Every 

data compression  process  is  working  with well defined  algorithm. Data compression on graphics processors 

(GPUs) has become an  effective approach  to  improve  the  performance  of  main memory.  CUDA  is  a  

parallel  computing  platform  and programming model invented by NVIDIA. It enables dramatic increases in 

computing performance with  graphics processing unit (GPU).Data compression algorithms  on CUDA 

provides better    compression  process.  In  this  paper,  we  implement  the most  power  full  algorithm  LZW  

on  CUDA  architecture.  Due to  the  parallel  characteristics  of  GPU,  compression  process time is very less 

than the CPU environment. 
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I. INTRODUCTION  
 Compression is an operation that is used frequently on personal computers. One  such reason is  storage 

space  conservation,  particularly  in  consumer  devices  where storage  is  limited,  such  as  in  personal  media  

players.  Data  is also  compressed  in  order  to  facilitate  backup  operations, allowing  a  lower  cost  of  

storage  media  compared  to  storing uncompressed  data.  Further,  compression  is  used  to  save bandwidth  

during  large  file  transfers  over  the Internet. Optimizing compression operations through parallelization could 
enable several interesting applications. Modern  graphics  processing  cards  contain  hardware  that  can be  

exploited  for  parallel  programming.  GPUs  are  optimized for  vector  processing  of  graphics  data,  and  

contain  on  the order  of  hundreds  of  parallel  units,  and  up  to  thousands  of threads  [4].However,  the  

GPU  can  also  be  extended  for general parallel computing. NVIDIA‟s CUDA framework provides a 

hardware and software architecture for general purpose parallel programming on GPUs. Parallelizing  

compression  algorithms on CUDA  is  interesting because GPUs are common on  many personal  computers,  

and  provide  a  way  of  scaling  the parallelization  to  hundreds  of  compute  units.  It will be interesting to 

discover how these architectural considerations affect the speedups of the various compression algorithms. 

 

II. BACK GROUND 
 Data compression  techniques  can  be  divided  into  two  major families;  lossy  and  lossless.  Lossy 

compression methods achieve better compression by losing some information. When the  compressed  stream  is  

decompressed,  the  result  is  not identical  to  the  original  data  stream.  Lossless compression consists of  those  

techniques  guaranteed  to  generate  an  exact duplicate of the input data stream after a compression. This is the  

type  of compression  used  when  storing  database  records, spread sheets, or word processing files. Lossless  

data  compression is  generally  implemented using  one  of  two  different  types  of modeling:  statistical  or 

dictionary-based. Statistical modeling reads in and encodes a single symbol at a time using the probability of that 

character‟s appearance.  It reads in input data and looks for groups of symbols that appear in a dictionary. If a 

string match is  found,  a  pointer  or  index  into the  dictionary  can  be  output instead of the code for the  

symbol. The longer the match, the better the compression ratio.  Instead they select strings of symbols and encode 
each string as a token using a dictionary. The dictionary holds strings of symbols and it may be static or dynamic 

(adaptive).The former is permanent, sometimes allowing the addition of strings but no deletions, whereas the 

latter holds strings previously found in the input stream, allowing for additions and deletions of strings as new 

input is being read [2].We will be focusing only on the lossless data compression using dictionary.  

 

A. Lemple-Ziv Algorithms 

              It  is  not  a  single  algorithm,  but  a  whole  family  of algorithms  proposed  by  Jacob  Ziv  and  

Abraham  Lempel  in 1977  and  1978.Lempel-Ziv  methods  are  popular  for  their speed and economy of 

memory. The 1977 algorithm is referred to  as  LZ77uses  the  past  of  the  sequence  as  the  dictionary. 
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 Whenever  a  pattern  recurs  within  a  predetermined  window, it is  replaced  by  a  pointer  to  the  

beginning  of  its  previous occurrence  and  the  length  of  the  pattern.LZ77  maintains a sliding  window during  

compression. The window below is divided into two parts. The part on the left is called the search buffer.  This  is  
the  current  dictionary,  and  it  always  includes symbols  that  have  recently  been  input  and  encoded.  The 

part on the right is the look-ahead buffer, containing text yet to be encoded.  In practical implementations the 

search buffer is some  thousands  of  bytes  long,  while  the  look-ahead  buffer  is only tens of bytes long[1]. The 

1978 algorithm  is  referred  to  as  LZ78,  uses  a dictionary  of  previously  encountered  strings. The encoder 

outputs two-field tokens.  The first field is  a  pointer  to  the dictionary;  the  second  is  the  code  of  a  symbol 

for  example, (1,c).Tokens do not contain the length of a string, since this is implied  in  the  dictionary. Each 

token  corresponds  to  a  string of  input  symbols,  and  that  string  is  added  to  the dictionary after the token is 

written on the compressed stream [1].LZW is one of the subversion of LZ78.This paper will focus on LZW 

algorithm. 

            Limitations with LZ77:   

 
 If the  distance  between  two  repeated  patterns  is  larger than  the  size  of  the  search  buffer,  the  

LZ77  algorithms cannot work efficiently.  

 The  fixed  size  of  the  both  buffers  implies  that  the matched  string  cannot  be  longer  than  the  

sum  of  the sizes  of  the  two  buffers,  meaning  another  limitation  on coding efficiency.  

 Increasing  the  sizes  of  the  search  buffer  and  the  look-ahead  buffer  seemingly  will  resolve  the  

problems. Increases  in  the  number  of  bits  required  to  encode  the offset and matched string length as well as 

an increase in processing complexity.   

 

Limitations with LZ78:   

 

 No use of the sliding window. Use encoded text as a dictionary which, potentially, does not have a fixed 

size.   
 Each time a pointer (token) is issued; the encoded string is included in the dictionary.   

 Once  a  preset  limit  to  the  dictionary  size  has  been reached,  either  the  dictionary  is  fixed  for  the  

future  (if the coding efficiency is good), or it is reset to zero, i.e., it must be restarted. 

 Instead of the triples used in the LZ77, only pairs are used in the LZ78. Specifically, only the position of 

the pointer to the matched string and the symbol following the matched string need to be encoded.  

 1)  LZW algorithm. 

  

   This improved version of the original LZ78 algorithm is perhaps the most famous published by Terry 

Welch in 1984. LZW compression replaces strings of characters with single codes. It does not do any analysis of 

the incoming text. Instead, LZW builds a string translation table from the text being compressed. The string 

translation table maps fixed-length codes to strings. The string table is initialized with all single-character strings. 
 Whenever a previously encountered string  is  read  from  the  input,  the  longest  such  previously-

encountered  string  is  determined,  and  then  the  code  for  this string  concatenated  with  the  extension  

character  is  stored  in the  table. The  code  for  this  longest  previously-encountered string  is  output  and  the  

extension  character  is  used  as  the beginning  of  the  next  word. Compression occurs  when  a single  code  is  

output  instead  of  a  string  of  characters. Although LZW is  often  explained  in  the  context  of compressing  

text  files,  it  can  be  used  on  any  type  of  file. However, it generally performs best on files with repeated 

substrings, such as text files. It removed the second item in the double (the index of the symbol following the 

longest matched string) and hence,  it  enhanced  coding  efficiency.  In  other words,  the  LZW  only  sends  the  

indexes of  the  dictionary  to the decoder [1].The actual algorithm as follows. 

 

a)  LZW compression Algorithm  

   Codes 0-255 in the code table are always assigned to represent single bytes from the input file. When 
encoding begins the code table contains only the first   256 entries, with the remainder of the table being blanks.  

 Compression  is achieved  by  using  codes  256  through  4095  to  represent sequences  of  bytes. As 

the encoding continues, LZW identifies repeated sequences in the data, and adds them to the code table [1].  

Initialize Dictionary with 256 single character strings and their corresponding ASCII codes;  

  

Prefix ← first input character;   

CodeWord← 256;  

while(notend of character stream){  

Char← next input character;  

if( Prefix + Charexists in the Dictionary)  

Prefix  ← Prefix + Char;  
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else{  

Output: the code for  Prefix ;  

insertInDictionary(  (CodeWord ,  Prefix + Char) ) ;  
CodeWord++;  

Prefix ← Char;    

}  

}  

Output: the code for  Prefix ;  

  

b)  LZW Decompression Algorithm   

   

 In  LZW  decompression  algorithm,  it  needs  to  take the  stream  of  code  output  from  the  

compression  algorithm, and  use  them  to  exactly  recreate  the  input  stream.  

 
Decompression algorithm is shown as:   

Initialize Dictionary with 256 ASCII codes and corresponding single character strings as their translations;  

 PreviousCodeWord ← first input code;  

Output:string(PreviousCodeWord) ;  

Char ← character(first i nput code);  

CodeWord ← 256;   

while(not end of code stream){  

CurrentCodeWord ← next input code ;  

if( CurrentCodeWordexists in the Dictionary)  

String  ← string(CurrentCodeWord) ;  

else     

String  ← string(PreviousCodeWord) + Char ;  
Output:String;  

Char ← first character of String ;  

insertInDictionary(  ( CodeWord , string(PreviousCodeWord)  

+ Char)   );  

PreviousCodeWord ← CurrentCodeWord ;  

CodeWord++ ;  

} 

 In decompression algorithm, code will be searched in dictionary and its character will be output. 

Consider the BABAABAAA string. First 256 (0- 255) entries of the dictionary are already occupied with 256 

ASCII characters. So start with 256th entry of the dictionary. Here B is already included so consider BA to check 

whether it is in dictionary or not, if it is not present in the dictionary then enter BA to the dictionary and encode 
the prefix B as 66 as so on. , see Table I 

 Encoded form of the above the input is <66><65><256><257><65><260>. The decompressor will 

then build a dictionary so that it can receive the indices that refer to the same symbol that are in the compressors 

dictionary.. For Example to encode the <65>, we know it is the letter „A‟. After decoding create the dictionary 

entry as previous output plus current output first letter in each decoding step. Here BA is added to dictionary. If 

dictionary entry of the current code is not decided yet then decoded form will be the combination of current 

output and current output first letter. For the code <260> decoded as „AA‟ using this rule, we can see that it is 

correct during the dictionary entry creation for the same step, see Table II.    

 

TABLE I.  LZW COMPRESSION                                              TABLE II.  LZW COMPRESSION 

 
 

B. CUDA Architecture 

 In this section, we briefly introduce GPUs and CUDA, the underlying platform upon which our 

compression schemes are implemented. GPUs, originally designed for graphics rendering tasks, have evolved 
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into massively multi-threaded many-core co-processors, as illustrated in Figure 1, for general-purpose 

computing. The GPU consists of many SIMD (Single Instruction, Multiple Data) multi-processors, all sharing a 

piece of device memory. CUDA, a general-purpose programming framework for NVIDIA GPUs, exposes the 
hierarchy of GPU threads. GPU threads exe-cute the same code of a kernel function concurrently on different 

data. Warps, each of which consists of the same number of threads, are scheduled across multiprocessors. 

 Within each multiprocessor, warps are further grouped into thread blocks. Threads in the same thread 

block share resources on one multiprocessor, e.g., registers and local memory (or called shared memory in 

NVIDIA‟s term). 

 CUDA also exposes the memory hierarchy to developers. Multiprocessors share the device memory, 

which has a high bandwidth and high access latency. For example, NVIDIA GTX 280 GPU has a device 

memory of size 1 GB, a bandwidth of 141 GB/s, and a latency of 400 to 600 cycles. If threads in a half warp 

access consecutive device memory addresses, these accesses are coalesced into one memory access transaction. 

By utilizing the memory coalesced access feature, we can significantly reduce the number of device memory 

accesses, and improve the memory bandwidth utilization. Each multiprocessor also has a low latency and small 
sized local memory, and accesses to the local memory must be explicitly programmed through CUDA [6].Each 

block of threads can be scheduled on any of the available multiprocessors within a GPU, in any order, 

concurrently or sequentially, so that a compiled CUDA program can execute on any number of multiprocessors 

as illustrated by Figure 2, and only the runtime system needs to know the physical multiprocessor count.  A 

GPU is built around an array of Streaming Multiprocessors (SMs). A multithreaded program is partitioned into 

blocks of threads that execute independently from each other, so that a GPU with more multiprocessors will 

automatically execute the program in less time than a GPU with fewer multiprocessors [3]. 

 

 
Fig 1. The GPU Manycore Architecture.          Figure 2: Program blocks assignment to GPU                                                                                                                                  

       with different number of Multiprocessors. 

 

III. RELATED WORK 
 As data compression is an effective way to reduce the storage space and increasing the speed of data 
transmission it has an important role in information and communication technologies. Performance of 

compression process can be increased by using  the opportunities in GPU based systems by exploiting the 

parallelism in compression algorithms. Porting lossless data compression algorithms on CUDA is a field that 

has not been fully investigated yet but some works have done.  

 CULZSS :LZSS lossless data compression on CUDA by Adnan Ozsoy and Martin Swany.[6]gives the 

implementation of LZSS lossless data compression algorithm on CUDA and analyses the performance with five 

different types of dataset, see Figure 3. Implementation of the LZSS algorithm on GPUs significantly improves 

the performance of the compression process compared to CPU based implementation without any loss in 

compression ratio. This system outperforms the serial CPU LZSS implementation by up to 18x, the parallel 

threaded version up to 3x and the BZIP2 program by up to 6x in terms of compression time, showing the 

promise of CUDA systems in lossless data compression. To give the programmers an easy to use tool, also 
provides an API for in memory compression without the need for reading from and writing to files, in addition 

to the version involving I/O[1].  

 Another work is done by L. Erdődi , File compression with LZO algorithm[5]using NVIDIA CUDA 

architecture discusses the possible ways   for   the   implementation   of   LZO   for   GPU   Fermi architecture.   

 Three   different   algorithms   are   provided   and compared and finally it is also shown that the use of 

GPU can significantly decrease the time of the file compression [7]. 
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Figure 3: compression speed up against the serial LZSS implementation compared to all other 

implementations [6]. 

 

IV. IMPLEMENTATION 
 Dictionary based algorithms on CUDA architecture is not implemented yet. LZW can be parallelized 

by coding each block  independently. LZW  is  one  of  the  powerful  subversion of LZ78 dictionary based 
algorithm. Implementation of  LZW dictionary  based  compression  algorithm  on  GPU  architecture will  take 

lesser  time  compared  to  its  implementation  on  CPU for some input data.  

 

 
 In this paper LZW  algorithm working  on CUDA  will  be simulated  using  Matlab2012 and  the  

result is  comparison  study  of  the  LZW  algorithm  in  CPU  and  GPU architecture. Processing  efficiency  of  

GPU  implementation will  be  much  more  efficient  than  CPU  implementation. Following  table  shows  the  

comparison  study  of  the  CUDA architecture with normal CPU architecture. From  the  figure  GPU  

performance  far  better  than  CPU. For large size of files GPU takes less time than CPU, compression ratio also 

decreasing. 

 

V. CONCLUSION 
 GPU has become a powerful device for the execution of data-parallel  in  which  the  same  operations  

are  carried  out on many elements of data in parallel.LZO on CUDA improves the  performance  than  the  CPU  

implementation.  Three algorithms are considered to compare the calculation efficiency. Algorithm #3 exceeds 

the      efficiency      of      the   CPU      compression      implementation.  Using  NVIDIA GTX580 (512 cores) 

graphical processing unit with Intel Core i7-2600 CPU with Algorithm #3 the compression   process   is  20%  

faster  than   with CPU. Performance of the algorithm on latest GPU processors gives much more results.  

NVIDIA GTX680 model possesses 1024 cores, provides calculation speed two times greater than CPU. LZSS 

on CUDA also improves the performance than CPU.  This  implementation  is  tested  on  several  data  sets and  

compared  with  the  serial  implementation.  The compression  ratios  between  the  serial  and  CUDA 

implementations are very similar  which concludes the CUDA implementation doesn‟t introduce any additional 

storage and doesn‟t drop the compression ratio.LZW  (Lempel-Ziv-Welch)  which  is  an  adaptive technique.  
 As the algorithm runs, a dictionary of the strings which have appeared is updated and maintained.  The 

algorithm  is  adaptive  because  it  will  add  new  strings  to  the dictionary.  Compared to sliding window  

dictionary  based algorithms  increases  the  speed  of  compression  process because  of  this  adaptive  

technique. Implementation of these dictionary based algorithms should produce better result. 
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