
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 12, Issue 6 (Jul. - Aug. 2013), PP 49-53
www.iosrjournals.org

www.iosrjournals.org 49 | Page

User Priority Based Search on Organizing User Search Histories

with Security

Gogula. Vijay Kumar
1,

A. Krishna Chaitanya
2

1 M.Tech (CSE), Vardhaman College of Engineering, Hyd, A.P, INDIA
2 Associate Professor in IT Dept, Vardhaman College of Engineering, Hyd, A.P, INDIA

Abstract: Presently, users are facing many complicated and complex task-oriented goals on the search engine.

Those are managing finances, making travel arrangements or any other planning and purchases. To reduce this

problem, usually break down the tasks into a few codependent steps and issuing multiple queries, and which

store repeatedly over a long period of time, whatever the user search in the search engine, that information

search engines keep track of their queries and clicks while search in the search engine or online. In this paper

we become skilled at the complexity of organizing user’s historical queries into in an active and expected

manner. Automatic identifying query groups are compassionate for the number of different search engines,

deals with applications. Those are result status, query suggestions, query alterations. In this we are proposing

security for the related query groups. When we work in the single or any organization, security will provides the

security for the user’s data or information in the search engine or any data base.

Keywords - User history, search history, query clustering, query reformulation, click graph, task recognition,

security.

I. Introduction
 Now a days we have large information or data in the web, but we have some complex problems while

searching in the online for the required data.whn the user enter a query in the search engine , then the user may

or may not get the required information within the short time and minimum clicks. Various studies on query

logs like, Yahoo’s and AltaVista’s has reveal that only 20-30 percent of queries are navigational[1]. That is

since user’s now pursuing broader information and task leaning goals, such as arranging for outlook tour,

organization their assets, scheduling and their obtain decisions. The searching will start by entering a keyword

in the search engine. A complicated task such as travel scheduling has to be broken down into a number of

codependent steps over a period of time. User may primary search on probable destinations, time lines,

proceedings, etc., and then the user may search for most proper planning for rental cars, air tickets, temporary
housing and meals etc. Each step requires one or more queries, and each query results in one or more clicks on

related pages.

 To decrease the trouble on the user’s while searching in the search engine. Some of major search

engines introduced a new “Search History” feature. Which helps to the users during their complex search quests

online is the capability to identify group related queries together, which allows the user’s to track their online

searches by recording their queries and clicks. For example, user interested to search some queries in the online,

that queries will be stored in the search history, which helps to the users to make sense and keep track of queries

and clicks in the search history[2]. This query grouping allows the users to better understanding which the user

searched before. For example, if the user searched for a query that already in the history log, then that will be

displayed in the related query group, by which the user can select required query from the query group. The

query group consists of correlated queries, and it will show only significant query as an alternative of

Wikipedia.
 In this paper we study the problem of organizing a user’s search history into a set of query groups in an

automated and dynamic fashion. Every query group is a group of queries by the similar user that are related to

each other. And the user searched for new query groups may be created over time. In particular, we develop an

online query grouping method over the query fusion graph that combines a probabilistic query reformulation

graph[3], which captures the relationship between queries frequently issued together by the user’s, and query

click graph, which captures the relationship between queries and clicks on similar URLs.

Time Query

01:05:33

01:06:21

01:10:42

01:12:44

01:22:55

01:45:12

Crick info

Hotel

Bangalore

Ipl

Taj banjara hotel

Eenadu

User Priority Based Search on Organizing User Search Histories with Security

www.iosrjournals.org 50 | Page

01:56:33

02:02:33

02:05:22

02:06:34

02:12:22

02:35:34

03:05:22

03:12:23

04:34:44

Sitara hotel

Live score

Vaartha

Cricket

Madhura hotel

Hyderabad

Chennai

sakshi

Mumbai

Fig (a): Users search history

Group 1

Group 2

Group 3

Hotels

Taj banjara

Sitara hotel

Madhura hotel

Cric info

Ipl

Cricket

Live score

Bangalore

Chennai

Hyderabad

Mumbai

Fig (b): Search history of a user’s one day together with query groups

II. Preliminary Results
2.1 Objectives

Our major objective is organizing a user’s search history into correlated query groups automatically, which

consists of one or more related queries and their correlated clicks.
 Select Best Query Group

 Input:

1) The current singleton query group sc containing query qc and set of clicks clks

2) A set of existing query groups S={s1……,sm}

3) A similarity threshold Tsim, 0<_Tsim<_1

 Output:

 The query group s that best matches sc, or a new one if necessary

(0) S= 

(1) Tmax=Tsim

(2) For i=1 to m

(3) If sim(sc,si)>tmax

(4) S=si

(5) Tmax= sim(sc,si)

(6) If s= 

(7) S=s sc

(8) S=sc
(9) Return s

Fig: Algorithm for query group

2.2 Dynamic Query Grouping

 In which, identification of user’s search history into a related query group and then merge these query

groups in an iterative fashion, there will not be any undesirable effect of changing a user’s existing query group.

So that, which involves high-computational cost for every new query, so it is not possible to create single group

to every new query entered by the user. When the user enter a query in the search engine, we first place the

current query and clicks into a singleton query group Sc= {qc,clkc}, and then we compare with existing query

group si within a user’s history[4]. If there is an existing query group sufficiently relevant to Sc. If so, we merge

with the Sc with the query group S having highest similarity Tmax above or equal to the threshold Tsim, otherwise

we keep Sc as a new singleton query group and insert it into S.

III. Query Relevance
 If the user entered an existing query in the search engine, that is the query relevant and appear close to

each other in time in the user’s history, in that situation we define time-based relevance metric as follows,

3.1 Query Import Ants

 (3.1.1) Time

User Priority Based Search on Organizing User Search Histories with Security

www.iosrjournals.org 51 | Page

Simtime (Sc,Si) =
1

() ()c itime q time q

Where, simtime(Sc,Si) is defined as the inverse of the time interval between the times

 (3.1.2) Jacquards

If the query group textually similar then we use jaccard similarity, as follows,

Simjaccard(Sc,Si)=
() ()

() ()

c i

c i

words q words q

words q words q





Simjaccard(Sc,Si) is defined as the fraction of common words between qc and qi
Above two time-based and text-based relevance metrics may work well in some cases, but they cannot capture

query similarity. If the user is multitasking means, more than one tab opens in his browser. Then we can follow

the co-retrieval method as follows,

 (3.1.3) Co-Retrieval

Simcor(Sc,Si) =
() ()

() ()

c i

c i

retrieved retrieved

retrieved retriev

q

q ed

q

q





Simcor(Sc,Si) is defined set of retrieved pages retrieved (qc) and (qi)

3.2 Query Relevance Using Search Logs

 Let us know about, how to define the query relevance based on web search logs, means that relevance

is aimed at capturing two important properties of relevant queries. Let us know how we can use these graphs to

calculate query weight and how we can integrate the click.

Search behavior graphs:

Three types of graphs from the search logs of a commercial search engine. They are

(3.2.1) Query reformulation graph (QRG)

 This represents, the correlation between a pair of queries that possible reformulation of each other.
Query reformulation graph, is one way to identify relevant queries that are typically found within the query logs

of a search engine. If two queries that are issued repeatedly by the several users happen repeatedly, then they are

likely to reformulations of each other[5]. Simtime is a time based metric between two queries and which makes

use of the distance between the time stamps of the queries within the users search history. Based on the query

logs, we create the query reformulation graph, QRG = (vQ, ∑QR) and set of edges ∑QR. Every pair (qi,qj), where qi

is issued before qj and we count number of such occurrences across all users daily activities, denotes countr

(qi,qj). If the two pairs are not relevant[6], then we filter out infrequent pairs and include only the query pairs

whose counts exceed a threshold value, Tr. For each (qi,qj) with countr (qi,qj) >_ Tr, we add a direct edge from qi

to qj to ∑QR, the edge weight wr (qi,qj),

wr (qi,qj): =

,

(,)

(,)

i k

r i j

r i j

q q QR

count q q

count q q



 (3.2.2) Query click graph (QCG)

 This represents the correlation between two queries repeatedly lead to clicks on related URLs.
One way to capture relevant queries from the search logs are to be consider queries that are likely to induce

users to click frequently on the same set of URLs. First start by considering a bipartite click through graph, CG

= (Vq Vu , ∑ c) used by fuxman. CG has two different set of nodes related to queries, Vq, and URLs, Vu,

extracted from the click logs[7]. The edge (qi.uk) ∈ ∑ c, if query qi was issued and URL uk was clicked by the

users. We weight each edge (qi, uk) by number of times qi was issued and uk was clicked, countc (qi, uk). the

weight edge (qi,qj) in QCG, wc (qi,qj) is defined as follows,

min((,), (,))

(,) :
(,)

k

k

c i k c c ku

c i j

c i ku

count q u count q u

W q q
count q u






 (3.2.3) Query fusion graph (QFG)

This merges the queries in the earlier two graphs. These three graphs have the same set of vertices VQ, but those

edges are defined differently.

User Priority Based Search on Organizing User Search Histories with Security

www.iosrjournals.org 52 | Page

We combine both the query reformulation graph and query click graph within QRG and query click information

within QCG into a single graph QFG = (vq ,

 ∑QF

) that we refer as the fusion graph.

the weight of edge(qi,qj) in

QRG, wf(qi,qj) and taken to be a linear sum of the edge weights, wr(qi,qj) in EQR and wc(qi,qj) in EQC, as follows:

(,) * (,) (1)* (,)f i j r i j c i jw q q w q q w q q   

 The relative contribution of the two weights is controlled by[7] , and we denote a query fusion graph

constructed with a particular value of α as QFG (α).

Algorithm for calculate the query relevance

Input:

(1) Query fision graph , QFG

(2) The jump vector, g

(3) The damping factor, d

(4) Total number of random walks, numRWs

(5) The size of neighbourhood, maxHops

(6) The given query, q

Output:
(0) Initialize rel q

F =0

(1) Numwalks=0; numvisit=0

(2) While numwalks<numRWs

(3) numHops=0;v=q

(4) while v  NULL  numHops < maxHops

(5) numHops ++

(6) rel q
F (v)++; numvisits++

(7) v=selectnext node to visit(v)

(8) numwalks++

(9) for each v, normalize rel q
F (v)= rel q

F (v)/numvisits

SELECT NEXT NODE TO VISIT:
Algorithm for selecting next node to visit

Input:

(1) the query fusion graph, QFG

(2) the jump factor, g

(3) the damping factor, d

(4) the current node, v

Output:

(0) if random()<d

(1) v={qi|(v,qi) ∈ ∑QF}

(2) pick a node qi∈v with probability wf (u,qi)
(3) else

(4) v={qi|g(qi)>0}

(5) pick a node qi ∈ v with probability g(qi)

(6) return qi

IV. Conclusion
 In this paper, we show how such queries are stored in the search history while searching in the online.

And we used reformulation graph and click graphs, which contains useful data on use behavior when searching

online. We have seen how the historical queries into groups in a active and automatic manner. Frequently
identifying query groups are compassionate to the number of users. In addition, we are enhancing security;

provide the security to the query group, in an organization security is more important to secure the data or

information. The security plays a key role for providing security to the user’s data. With no security, data will be

losses by the unofficial users. Security, it will provide the data, if we were authenticated otherwise it will not

provide anything.

User Priority Based Search on Organizing User Search Histories with Security

www.iosrjournals.org 53 | Page

References
[1] Heasoo Hwang, Hady W. Lauw, Lise Getoor, and Alexandros Ntoulas “Organizing User Search Histories” ”, Knowledge ang Data

Engineering, IEEE Transactions on volume:24 ,Issue:5 , 2012.

[2] J. Teevan, E. Adar, R. Jones, and M.A.S. Potts, “Information Re Retrieval: Repeat Queries in Yahoo’s Logs,” Proc. 30th Ann. Int’l

ACM SIGIR Conf. Research and Development in Information Retrieval

[3] J.-R. Wen, J.-Y. Nie, and H.-J. Zhang, “Query Clustering Using User Logs,” ACM Trans. in Information Systems,

[4] R. Baeza-Yates and A. Tiberi, “Extracting Semantic Relations from Query Logs,” Proc. 13th ACM SIGKDD Int’l Conf. Knowledge

Discovery and Data Mining (KDD), 2007.

[5] J. Han and M. Kamber," Data Mining: Concepts and Techniques". Morgan Kaufmann, 2000.

[6] W. Barbakh and C. Fyfe, “Online Clustering Algorithms,” Int’l J. Neural Systems, vol. 18, no. 3, pp. 185-194, 2008.

[7] Data Mining Concepts M. Berry, and M. Browne, eds. World Scientific Publishing Company, 2006.

