
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 12, Issue 4 (Jul. - Aug. 2013), PP 69-74
www.iosrjournals.org

www.iosrjournals.org 69 | Page

Secure Way of Storing Data in Cloud Using Third Party Auditor

1
Miss. Roopa G,

2
Mr. Manjunath S

1CNE, CMRIT Bangalore, India
2CSE, CMRIT Bangalore, India

Abstract: Cloud computing provides users to remotely store their data and high quality of cloud applications

by reducing risk of local hardware and software management. To protect data from outsourced leakages, we

propose a flexible distributed storage integrity auditing mechanism (FDSIAM), these mechanism utilizes the

homomorphic tokens (MAC address and secret key), blocking and unblocking factors and distributed erasure-
coded data. Suppose user is out of station we can generate alert information to mobile devices, if any attacker

attacks the data immediate message has been given to particular user through mobiles. The auditing results not

only ensure storage correctness, but simultaneously identifies misbehaving server. Our proposed design

provides very lightweight communication and computation cost for users to audit the data. Cloud data are

dynamic in nature, our design supports secure and efficient dynamic operations on outsourced leakages,

including block insertion, modification, append and delete operations. Our experimental results are highly

efficient and secure against malicious data modification attack, server colluding attacks and byzantine failures.

Keywords- Data integrity, dependable distributed storage, Fast data error localization, data dynamics, cloud

computing, data redundancy.

I. Introduction
 Cloud computing is a subscription based service, which can be used to provide security for user data.

Cloud is powerful processors and cheaper technique which provides Platform as a service (PaaS), Software as a

service (SaaS) used to transforming data centers into pools for services. The cloud computing well known

examples are Amazon Elastic Compute Cloud and Amazon Simple Storage Services[1]. As a result we can

achieve data integrity and availability. Cloud infrastructure is much more powerful and reliable then personal

computers for both external and internal threats still exist. Cloud service providers (CSP) discards rarely

accessed data which cannot be detected in timely manner, so that we can increase profit margin by reducing the

cost. Cloud relies on either an enterprise or individual cloud users.
 In order to achieve the cloud data integrity and availability and quality of cloud storage services,

efficient method data correctness verification for cloud users has been designed, means that it allows user to

verify the data present in correct format or not. The cloud prohibits the traditional cryptography technique for

the purpose of data integrity. The data stored in the cloud not only accessed but frequently updated to the users

[8], including block insertion, modification, append and delete operations. Cloud computing is a data centers

running in distributed, simultaneous and cooperated manner [4]. It is more advantage for individual users to

store their data across multiple servers to reduce data availability and data integrity threats. Thus, distributed

storage correctness is most important in achieving secure and robust cloud storage systems. In our paper, we

propose an effective and flexible distributed storage integrity auditing mechanism for dynamic data support to

ensure the correctness and availability of data in cloud. We use erasure correcting code in file distribution

preparation to provide data redundancy and also guarantee the data dependability against failures. By utilizing

homomorphic tokens and distributed erasure-coded data our scheme identifies fast data error localization i.e.,
whenever data has been corrupted it identifies misbehaving server(s). In order to save computation resources,

time and online burden of users, we extend our scheme to third-party auditor(TPA), where users can safely

delegate the integrity checking tasks and reduces the burden to use cloud storage services. Our contribution

consists of three aspects:

II. Problem Statement
2.1 System Model

The network architecture for cloud storage services as shown in the Figure1. There are four different

entities can be identified. Namely:

Submitted date 17 June 2013 Accepted Date: 22 June 2013

Secure Way Of Storing Data In Cloud Using Third Party Auditor

www.iosrjournals.org 70 | Page

 Data Owner: an entity, who has the data stored in cloud and relies on cloud for data storage and computation

resources. It supports both an enterprise and individual users.

 Cloud Server or Cloud Service Provider (CSP): an entity, which can be managed by cloud service provider

(CSP) to provide computation resources and has significant storage space.

 Third-Party Auditor (TPA): who has expertise and have more capabilities that users may not have, he is

trusted at owner side.

 User: an entity, who can access the data if it matches with tokens otherwise user must be attacker.

Fig 2.1 Cloud Storage Service Architecture

 In cloud data storage, data owner stores his data in cloud through cloud service provider (CSP) that can

be running in cooperated, distributed and simultaneous manner. Data redundancy can be achieved with the

erasure-correcting coded technique for further tolerate server crashes or faults as users data grows in size. For

application purposes, data owner interacts with cloud server via CSP to access the data. In some cases, owner

performs block level operations including block insertion, modification, append and delete. As users no longer

possess their data locally, it is most important to verify user data has been correctly stored and maintained in the
CSP. Data owner should be equipped with security by making continuous correctness assurance. However for

more security, we introduce TPA any possible leakages from outsourced data towards TPA through auditing

protocol should be restricted. To increase the security levels in our paper, user request tokens from both TPA

and data owner then only CSP provide access of data files to the user.

2.2 Adversary Model

 Adversary model aim is to corrupt the users data file stored in cloud server. It captures the all kinds of

threats towards cloud data integrity. Threats may come from two different sources: internal and external attacks.

Internal attack: a CSP can be untrusted, self-interested and malicious. CSP hides the data loss due to byzantine

failures, management errors and so on.

External attack: threats may come from outsiders who are beyond CSP domain. In this case, they may

compromise with number of cloud servers in different time intervals and intentionally modify the original data.

Once server compromised, an adversary can destroy the entire original data files present in the cloud servers. In

worst case situation, adversary can compromise all cloud storage services so he can intentionally modify data

files as long as they are internally present.

2.3 Design Goals

 To ensure the security and dependability for cloud data storage against adversary model, our aim is to

design efficient dynamic data verification and operations as follows:

 Storage correctness: to ensure user data stored correctly and keeps all time contact with cloud.

 Fast data error localization: whenever data has been corrupted it identifies misbehaving server(s).

 Dynamic data support: maintains same level of data even if users append, delete or modify their data files in

the cloud.

Secure Way Of Storing Data In Cloud Using Third Party Auditor

www.iosrjournals.org 71 | Page

 Dependability: provides data availability against malicious data modification, server crashes and byzantine

failures.

 Lightweight: users perform storage correctness checks with minimum cost.

III. Ensuring Cloud Data Storage
 In cloud storage system, users store their data in cloud and no longer possess the data locally. Thus the

data availability and correctness of data files being stored on distributed servers must be guaranteed. One of the

key factors is to detect unauthorized data modification and corruption is mainly due to server compromise or

byzantine failures. In distributed systems, inconsistencies are successfully detected, to find which server is

misbehaving, since it provides the fast recovery of errors or identifies the threats of external attacks. To address

this problem, our main scheme for ensuring data storage in cloud is presented. Then homomorphic tokens can be

introduced, using this we can perfectly integrated with erasure-coded data[10][7] for verification. The

Challenge-response technique,used for identifies misbehaving servers and also for storage correctness of data.

Third-Party Auditor scheme can be used for error recovery, which provides data integrity.

3.1 Challenge Token Pre-computation

 In order to achieve storage correctness of data and fast data error localization, our scheme uses pre-

computed verification tokens. In this case, before file distribution user pre-computes certain number of tokens

on individual vectors G(i) (i €{ 1,…..,n}), each tokens covering a random subset of data blocks. Suppose when

owner wants to make sure that his data present in cloud in correct format, he challenges the cloud servers with

randomly generated data blocks. Upon receiving challenge, each cloud server computes short“ signature” over

specified blocks and returns to the data owner . The value of these signatures should match with corresponding

tokens pre-computed by user. Meanwhile, all servers operates at same time, the request response values for

integrity check must be valid for codeword determine by secret key matrix P.

1. Start

2. Choose function ᶲ, f and parameters n, l;

3. Choose the number t of tokens;
4. Choose the number r if indices per verification;

5. Generate master key MPRP and challenge key Ckey;

6. for vector G(i) , i<- 1, n do

7. for round j<-1, t do

8. Derive βj = fckey(j) and kprp
(j) from MPRP.

9. Compute uj
(i) = ∑r

q=1 α
q

j * G(i) [ᶲkprp
(j) (q)]

10. end for

11. end for

12. Store all uj‟s locally

13. End

 Whenever data owner wants to challenge the cloud service provider t times to verify correctness of data
storage.Then, he must pre-compute t verification tokens for each individual vector G(i) (i €{1,…,n}), using a

PRP ᶲ(.), PRF f(.), a challenge key Ckey and permutation master key MPRP . Particularly, to generate the jth token

for server i, the owner acts as follows:

 Derive a random challenge value βj of GF(2p) by βj = fckey
(j) and permutation key kprp

(j) based on master key

MPRP.

 Compute set of r random indices: Iq = ᶲkprp
(j) (q).

 Calculate the tokens:

ui
(j) = ∑r q=1 β

q
i * G(i) [Iq] = gIq

(i)

Where ui
(j) = is an element of GF(2p), which receives the responses from server i where owner challenges it on

specified blocks of data.

 Once all tokens are computed, final step is to blind each parity block gj
(i) before file distribution in

(G(m+1),….G(n)) by

g j
(i) <- g j

(i) + fki (sji), j € (1,…., l),

Where ki is secret key for parity vector G(i) (i € {m+1,…,n}).This is for protecting of secret key matrix P. After

blinding parity information, the owner disperses all n encoded vectors G(j) (i €{1,…,n}) across cloud servers s1,

s2, s3,…..,sn.

3.2 Correctness Verification and Error Localization

 Error localization is the key factor used for eliminating errors in cloud storage systems. It is also

important to identify potential threats from external attacks [6][12].Our scheme integrates the storage

correctness verification and data error localization(i.e., identifies misbehaving servers). In challenge response

Secure Way Of Storing Data In Cloud Using Third Party Auditor

www.iosrjournals.org 72 | Page

protocol the response values from servers not only determine the correctness but also provide information to

locate data errors. Once the inconsistency has been detected, we rely on pre-computed verification tokens to

further determine where the data error occurs.

1. Start CHALLENGE(j)
2. Recompute βj = fCkey(j) and kprp

(j) from MPRP;

3. Send { βj, kprp
(j)} to all cloud servers;

4. Receive from servers:

 {Rj
(i) = ∑r q=1 β

q
j * G(i)[ᶲkprp

(j) (q)]|1<=i<=n}

5. For(i<- m+1, n) do

6. R(i)<- R(i) - ∑r q=1 fki (sIq, i) . β
q

j, Iq = ᶲ kprp
(j) (q)

7. End for

8. If((Ri
(1),…..,Ri

(m)). P = =(Ri
(m+1),….,Ri

(n))) then

9. Accept and ready for next challenge.

10. Else

11. For (i<-1, n) do

12. If (R(i)
j! = V(i)

j) then

13. Return server i is misbehaving.

14. End if

15. End for

16. End if

17. End

The procedure of j-th challenge-response for cross check over n servers is as follows:

 The data owner reveals βj or j-th permutation key kprp
(j) to each cloud servers.

 The server storing vector G(i) (i €{1,…,n}) aggregates r rows specified by kprp
(j) into linear combination

R(i)
j =∑r q=1 * G(i) [ᶲkprp

(j) (q)].

And send back R(i)
j (i €{1,…,n}).

 After receiving R(i)
j‟s from all servers, owner takes away blind values in R(i)

j (i €{m+1,…,n}) by,

R(i)
j <- R(i)

j - ∑
r q=1 fki (sIq, i) . β

q
j

 Then data owner verifies whether the received value is a valid codeword determined by secret key matrix p:
(Rj

(1),….Rj
(m)) . P = (Rj

(m+1),…,Rj
(n)).

 Once inconsistency has been successfully detected among the data storage, we relies on token pre-compute

verification to further determine data errors that occures. The computed tokens ui
(j) is exactly equal to

response values of the server R(i)
j, thus owner can easily find misbehaving servers by R(i)

j = uj
(i), i €

{1,…,n}.

3.3 File Retrieval and Error Recovery

 The file matrix is symmetric, the user can reconstruct original data files by downloading data vectors

from first „m‟ servers, and they return correct response values. The verification of token scheme is mainly based

on random spot checking. Whenever data has been corrupted, the comparison of pre-computed tokens and

received response values can guarantee the identification of misbehaving servers. Therefore, the user can always
ask servers to send back blocks of „r‟ rows and regenerate the correct blocks by erasure correction. Error

recovery can be done by Third-Party Auditor, using TPA we can achieve data integrity and availability[6].

1. Start

% Assume the data file corruptions has been detected among the specified r rows;

% Assume s<= k has identified has misbehaving servers

2. Download r rows of data blocks from servers;

3. Assume s servers as erasure and recover data blocks.

4. Resend recover blocks to corresponding servers.

5. end

3.4 Remote User

 To access the data file, user has to request tokens from data owner and TPA for security purpose. After
receiving request he has to send tokens(MAC and Secrete key) to cloud server if it match with owner file it

permits to access the file for remote user if it does not match with particular tokens the user may be an attacker

and blocked in the cloud server using TPA.

Private void btnReqToOwnerActionPerformed (java.awt.event.ActionEvent evt)

{

String str=txtOwner.getText();

if(str.equals(""))

Secure Way Of Storing Data In Cloud Using Third Party Auditor

www.iosrjournals.org 73 | Page

JOptionPane.showMessageDialog(null,"Enter the Owner Name & Port");

else

{

String [] tmp=str.split("/");

String onr=tmp[0];

String port=tmp[1];

userController.sendREQ(onr,port,userName,this.port);
}

}

3.5 Towards Third-Party Auditor

 The user does not have sufficient time, resources to perform storage correctness verification, our

scheme can be extended to third party auditor where users can safely delegate integrity checking tasks[4]. To

give more security for user data introduce an effective TPA, auditing process should bring new vulnerabilities

towards user data. TPA does not learn user‟s data content through the delegate data auditing. The new design is

based on observation of linear property of the parity vector blinding process. Blinding process is to protect the

secret key P against the cloud servers. If we blind data vector before file distribution encoding, then we can

achieve storage verification tasks can be successfully delegated to TPA.

IV. Performance Evaluation
 The performances for the proposed scheme storage auditing technique mainly focus on cost of file

distribution preparation and token generation scheme. Our security analysis focuses on adversary model and

efficiency can be increased based on token pre-computation and file distribution. Our experiment system

consists of Intel Core 2 Processor at 1.86 GHz, 7200 RPM Western Digital 250GB and 2048 MB of RAM.

Algorithms can be implemented using open-source erasure code because open-source is most suitable for real-

time applications.

4.1 File Distribution Preparation

 File distribution preparation scheme includes the generation of parity blinding process to protect secret

key against the adversary model. Consider two different sets of parameters (m, k) data vector and parity vectors

Reed-Solomon encoding, which works over GF(216).

Fig. 4.1 : Performance comparison between two parameters (m, k) Setting for 1GB file distribution

preparation

4.2 Challenge Token Pre-Computation

 In our scheme, number of t verification tokens is fixed which can be determined before file distribution.

For example, when t is selected as 7300 and 14600 data files can be verified every day for next 40 years and 60

years, respectively. Instead of directly computing each tokens, our scheme uses Horner algorithm to calculate

tokens from back and achieves faster performance. For security analysis, Where, PBC-Parity blinding cost and

PGC- parity generation cost. We consider parameter r=460 for token computation. Our implementation scheme

Secure Way Of Storing Data In Cloud Using Third Party Auditor

www.iosrjournals.org 74 | Page

shows that average cost for token pre-computation is 0.4ms. This scheme is faster than the hash function[13]. To

verify encoded data distribution over 14 servers, total cost for token pre-computation is no more than 1 and 1.5

minutes, for next 40 and 60 years.

Verify daily next 40years (m, k)= (10, 4) (m, k) = (10, 6) (m, k) = (10, 8) (m, k) = (14, 8)

Storage overhead (KB) 399.22 456.25 513.28 627.34

Computation overhead 82.79 94.62 106.45 130.10

Verify daily next 60 years (m, k)= (10, 4) (m, k) = (10, 6) (m, k) = (10, 8) (m, k) = (14, 8)

Storage overhead (KB) 598.83 684.37 769.92 941.01

Computation overhead 124.19 141.93 159.67 195.15

TABLE 4.2: The storage and computation cost for token pre-computation.

V. Conclusion
 In our paper, we find the problem for data security in cloud data storage in distributed system. To

achieve the correctness of cloud data availability and integrity and dependable cloud services for users, we

propose a flexible distributed storage integrity auditing mechanism with explicit dynamic data operations,
including block insert, update, append and delete. We use erasure-correcting code to achieve data redundancy

and data dependability. By using homomorphic tokens with distributed erasure- coded data, our scheme

achieves storage correctness of data and fast data error localization, i.e., whenever data has been corrupted, we

can easily identify misbehaving server(s). Data owner does not have sufficient time, computation resources to

audit the data file and to reduce the burden of user TPA (Third Party Auditor) can be introduced. Using TPA

users can safely audit the integrity checking tasks and reduces the risk to use cloud storage services. Our

experimental results are highly efficient and resilient against byzantine failure, server colluding attacks and

malicious data modification attacks.

Acknowledgement

 This work has supported in part by US National Science Foundation under grant CNS-0626601, CNS-

0831963, CNS-0831628 and CNS-0716306.

References
[1]. Amazon.com, “Amazon web services (aws),” at http://aws.amazon.com/, 2009.

[2]. Q. Wang, C. Wang, W. Lou, and K.. Ren, “Ensuring data storage security in cloud computing,” in Proc. Of IWQoS‟09, July

 2009, pp.1–9.

[3]. Q. Wang, C. Wang, W. Lou, and K. Ren “Privacy-preserving public auditing for storage security in cloud computing,” in

 Proc.of IEEE INFOCOM‟10, San Diego, CA, USA, March 2010.

[4]. Sun Microsystems, Inc., “Building customer trust in cloud computing with security,” at https://www.sun.

 com/offers/details/sun transparency.xml, November 2009.

[5]. C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-preserving public auditing for storage security in cloud computing,” in

 Proc.of IEEE INFOCOM‟10, San Diego, CA, USA, March 2010.

[6]. A. Juels, K. D. Bowers, and A. Opera, “ A high integrity and availability layer for cloud data storage. In lroc. Of

 CCS‟09, 2009.

[7]. J. Hen, M. Rei, and G. Gan, “ Verifying distributed correctness of coded data”, in proc. Of 26
th
 ACM of distributed

 computing, 2007, pp.139-146.

[8]. G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik, “Scalable and efficient provable data possession,” in Proc. of

 SecureComm‟08, 2008, pp. 1–10.

[9]. Q. Wang, C. Wang, K. Ren and W. Lou, “ Privacy-preserving public auditing for secure cloud storage”. 2011

[10]. K. Ren, Q. Wang, Y. Zhang and W. Lou “Dependable and secure data storage with dynamic integrity assurance”, IEEE

 INFOCOM 2011

[11]. C. Wang, K. Ren, W. Lou, and J. Li, “Towards publicly auditable secure cloud data storage services,” IEEE Network

 Magazine, vol. 24, no. 4, pp. 19–24, 2010.

[12]. E. L. Miller and T. Schwarz, “ Check, store, and forget: using algebraic signatures to check remotely stored data”, in proc of

 ICDCS‟06, 2006.

https://www.sun/

