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Abstract : Word sense disambiguation (WSD) is an open problem of natural language processing, which 

governs the process of identifying the appropriate sense of a word in a sentence, when the word has multiple 

meanings. Many approaches have been proposed to solve the problem, of which supervised learning 

approaches are the most successful. However supervised machine learning are limited by the difficulties in 

defining sense tags, acquiring labeled data for training and cannot utilize raw un-annotated data. Semi-

supervised learning has recently become active research area because it require small amount of labeled 

training data and sometimes able to improve performance using unlabeled data. In this paper, we discuss the 

methods of semi-supervised learning and their performance. 
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I. Introduction 

 In a language, a word can have many different meanings, or senses. For example, bank in English can 

either mean a financial institution, or a sloping raised land. The task of word sense disambiguation (WSD) is to 

assign the correct sense to such ambiguous words based on the surrounding context. Word sense disambiguation 
(WSD) is a central question in the computational linguistics community. It is fundamental to natural language 

understanding and once it is improved, many other language processing tasks will benefit from it, such as 

information retrieval (IR) and machine translation (MT) (Ide and Veronis, 1998). Many methods have been 

proposed to deal with this problem, including supervised learning algorithms (Leacock et al., 1998), semi-

supervised learning algorithms (Yarowsky, 1995), and unsupervised learning algorithms (Schutze, 1998). 

 Among these methods supervised sense disambiguation has been very successful, but it requires a lot 

of manually sense tagged data (labeled data) and cannot utilize raw unannotated data (unlabeled data) that can 

be cheaply acquired. Mostly, to achieve good performance, the amount of training data required by supervised 

learning is quite large. This is undesirable as hand-labeled training data is expensive and only available for a 

small set of words. Fully unsupervised methods do not need the definition of senses and manually sense-tagged 

data, but their sense clustering results cannot be directly used in many NLP tasks since there is no sense tag for 
each instance in clusters. Considering both the availability of a large amount of unlabeled data and direct use of 

word semi-supervised learning has recently become an active research area. It requires only a small amount of 

labeled training data and is sometimes able to improve performance using unlabeled data. 

 

II. Semi–Supervised Learning 
 Semi-supervised learning is a class of machine learning techniques that use both labeled and 

unlabeled data for training - typically a small amount of labeled data with a large amount of unlabeled data.  The 

name “semi-supervised learning” comes from the fact that the data used is between supervised learning (with 

completely labeled training data) and unsupervised learning (without any labeled training data). Many machine-
learning researchers have found that unlabeled data, when used in conjunction with a small amount of labeled 

data, can produce considerable improvement in learning accuracy. The acquisition of labeled data for a learning 

problem often requires a skilled human agent and the process is expensive and time consuming whereas 

acquisition of unlabeled data is relatively inexpensive and less time consuming. 

 As in the supervised learning framework, we are given a set of 𝑙 independently identically distributed 

examples  𝑥1 , …… . . , 𝑥𝑙 ∈ 𝑋  with corresponding labels 𝑦1 ,… . , 𝑦𝑙 ∈ 𝑌 . Additionally; we are given 𝑢 unlabeled 

examples 𝑥𝑙+1 , … . , 𝑥𝑙+𝑢 ∈ 𝑋. Semi-supervised learning attempts to make use of this combined information to 

surpass the classification performance that could be obtained either by discarding the unlabeled data and doing 

supervised learning or by discarding the labels and doing unsupervised learning. 

Semi-supervised learning promises higher accuracies with less annotating effort. It is therefore of great theoretic 
and practical interest. 
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III. Semi–Supervised Learning Techniques 
 The semi-supervised or minimally supervised methods are gaining popularity because of their ability to 

get by with only a small amount of annotated reference data while often outperforming totally unsupervised 

methods on large data sets. 

 Semi-supervised methods for WSD are characterized in terms of exploiting unlabeled data in learning 

procedure with the requirement of predefined sense inventory for target words. They roughly fall into three 

categories according to what is used for supervision in learning process: 

 Using external resources, e.g., thesaurus or lexicons, to disambiguate word senses or automatically 

generate sense-tagged corpus, (Lesk, 1986; Lin, 1997; McCarthy et al., 2004; Yarowsky, 1992) 

 Exploiting the differences between mapping of words to senses in different languages by the use of 

bilingual corpora (e.g. parallel corpora or untagged monolingual corpora in two languages) (Brown et al., 1991; 
Dagan and Itai, 1994; Diab and Resnik, 2002; Li and Li, 2004; Ng et al., 2003) 

 Bootstrapping sense tagged seed examples to overcome the bottleneck of acquisition of large sense-

tagged data (Hearst, 1991; Karov and Edelman, 1998; Mihalcea, 2004; Park et al., 2000; Yarowsky, 1995). 

Bootstrapping algorithm is commonly used semi-supervised learning method for WSD. It works by iteratively 

classifying unlabeled examples and adding confidently classified examples into labeled dataset using a model 

learned from augmented labeled dataset in previous iteration. It can be found that the affinity information among 

unlabeled examples is not fully explored in this bootstrapping process. Bootstrapping is based on a local 

consistency assumption: examples close to labeled examples within same class will have same labels, which is 

also the assumption underlying many supervised learning algorithms, such as kNN. 

 Recently promising families of graph based semi-supervised learning algorithms are introduced, which 

can effectively combine unlabeled data with labeled in learning process by exploiting cluster structure in data . 
Label propagation algorithm is a graph based semi-supervised learning algorithm (LP algorithm) (Zhu and 

Ghahramani, 2002) for WSD, which works by representing labeled and unlabeled examples as vertices in a 

connected graph, then iteratively propagating label  information from any vertex to nearby vertices through 

weighted edges, finally inferring the labels of unlabeled examples after this propagation process converges. 

Compared with bootstrapping, LP algorithm is based on a global consistency assumption. Intuitively, if there is 

at least one labeled example in each cluster that consists of similar examples, then unlabeled examples will have 

the same labels as labeled examples in the same cluster by propagating the label information of any example to 

nearby examples according to their proximity. 

 In Section 3.1 we describe Bootstrapping algorithms .Section 3.2 describe Graph based approach: label 

propagation algorithm 

 

3.1 Bootstrapping Algorithms 
 To partly overcome the knowledge acquisition bottleneck, some methods have been devised for 

building sense classifiers when only a few annotated examples are available together with a high quantity of un-

annotated data. These methods are often referred to as bootstrapping methods (Abney 2002, 2004). Among 

them, we can highlight co-training (Blum and Mitchell 1998), their derivatives (Collins and Singer 1999; Abney 

2002, 2004), and self-training (Nigam and Ghani 2000). Briefly, co-training algorithms work by learning two 

complementary classifiers for the classification task trained on a small starting set of labeled examples, which 

are then used to annotate new unlabeled examples. From these new examples only the most confident 

predictions are added to the set of labeled examples. Each classifier is retrained with the additional training 

examples given by the other classifier, and the process repeats. The two complementary classifiers are 

constructed by considering two different views of the data (i.e., two different feature codifications), which must 

be conditionally independent given the class label. In several NLP tasks, co-training has provided moderate 
improvements with respect to not using additional unlabeled examples. 

 One important aspect of co-training consists on the use of different views to train different classifiers 

during the iterative process. While Blum and Mitchell (1998) stated the conditional independence of the views 

as a requirement, Abney (2002) shows that this requirement can be relaxed. Moreover, Clark et al. (2003) show 

that simply re-training on all newly labeled data can, in some cases, yield comparable results to agreement based 

co-training, with only a fraction of the computational cost. 

 Self-training starts with a set of labeled data, and builds a unique classifier (there are no different views 

of the data), which is then used on the unlabeled data. Only those examples with a confidence score over certain 

threshold are included in the new labeled set. The classifier is re-trained and the procedure repeated. Note the 

classifier uses its own predictions to teach itself. The procedure is also called self-teaching. Self-training has 

been applied to several natural language processing tasks. Yarowsky (1995) uses self-training for word sense 

disambiguation, e.g. deciding whether the word „plant‟ means a living organism or a factory in a give context. 
Self-training is a wrapper algorithm, and is hard to analyze in general. 
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 Mihalcea (2004) introduced a new bootstrapping scheme that combines co-training with majority 

voting, with the effect of smoothing the bootstrapping learning curves and improving the average performance. 

However, this approach assumes a comparable distribution of classes between both labeled and unlabeled data. 
At each iteration, the class distribution in the labeled data is maintained by keeping a constant ratio across 

classes between already labeled examples and newly added examples. This requires one to know a priori the 

distribution of sense classes in the unlabeled corpus, which seems unrealistic. 

 Pham et al. (2005) also experimented with a number of co-training variants on the Senseval-2 lexical 

sample and all-words tasks, including the ones in Mihalcea (2004). Although the original co-training algorithm 

did not provide any advantage over using only labeled examples, all the sophisticated co-training variants 

obtained significant improvements (taking Naïve Bayes as the base learning method). The best reported method 

was Spectral Graph Transduction Co-training. 

 

3.1.1 Yarowsky Bootstrapping Algorithm 

 The Yarowsky algorithm (Yarowsky 1995) was, probably, one of the first and more successful 
applications of the bootstrapping approach to NLP tasks. 

 The Yarowsky algorithm is a simple iterative and incremental algorithm which eliminates the need for 

a large training set by relying on a relatively small number of instances of each sense for each lexeme of 

interest. These labeled instances are used as seeds to train an initial classifier using any of the supervised 

learning methods (decision lists, in this particular case). This initial classifier is then used to extract a larger 

training set from the remaining untagged corpus. Only those examples that are classified with a confidence 

above a certain threshold are kept as additional training examples for the next iteration. The algorithm repeats 

this retraining and re-labeling procedure until convergence (i.e., when no changes are observed from the 

previous iteration). 

 The key to this approach lies in its ability to create a larger training set from a small set of seeds 

Regarding the initial seed set, Yarowsky (1995a) discusses several alternatives to find them, ranging from fully 

automatic to manually supervised procedures. This initial labeling may have very low coverage (and, thus, low 
recall) but it is intended to have extremely high precision. As iterations proceed, the set of training examples 

tends to increase, while the pool of unlabeled examples shrinks. In terms of performance, recall improves with 

iterations, while precision tends to decrease slightly. Ideally, at convergence, most of the examples will be 

labeled with high confidence. 

 

Discourse Properties: The Yarowsky Bootstrapping Algorithm Some well-known discourse properties are at 

the core of the learning process and allow the algorithm to generalize to label new examples with confidence. 

 We refer to: one-sense-per-collocation, language redundancy, and one-sense-per-discourse. First, the 

one-sense-per-collocation heuristic gives a good justification for using a decision list as the base learner, since a 

DL uses a single rule, based on a single contextual feature, to classify each new example. Second, we know that 

language is very redundant. This means that the sense of a concrete example is over determined by a set of 
multiple relevant contextual features (or collocations). Some of these collocations are shared among other 

examples of the same sense. These intersections allow the algorithm to learn to classify new examples, and, by 

transitivity, to increase recall with each iteration. This is the key point in the algorithm for achieving 

generalization. For instance, borrowing Yarowsky‟s (1995) original examples, a seed rule may establish that all 

the examples of the word plant in the collocation plant life should be  labeled with the vegetal sense of plant (as 

opposed to its industrial sense). If we run a DL on the set of seed examples determined by this collocation, we 

may obtain many other relevant collocations for the same sense in the list of rules, for instance, “presence of the 

word animal in a ±10-word window”. This rule would allow the classification of some new examples at the 

second iteration that were left unlabeled by the seed rule, for instance, the example contains a varied plant and 

animal life. Third, Yarowsky also applied the one-sense-per-discourse heuristic as a post-process at each 

iteration to uniformly label all the examples in the same discourse with the majority sense. This has a double 

effect. On the one hand, it allows the algorithm to extend the number of labeled examples, which, in turn, will 
provide new “bridge” collocations that cannot be captured directly from intersections among currently labeled 

examples. On the other hand, it allows the algorithm to correct some misclassified examples in a particular 

discourse. 

 

Performance: Yarowsky‟s (1995) evaluation showed that, with a minimum set of annotated seed examples, this 

algorithm obtained comparable results to a fully supervised system (again, using DLs). The evaluation 

framework consisted of a small set of words limited to binary homographic sense distinctions. 

 Apart from simplicity, we would like to highlight another good property of the Yarowsky algorithm, 

which is the ability of recovering from initial misclassifications. The fact is that at each iteration all the 

examples are relabeled makes it possible that an initial wrong prediction for a concrete example may lower its 



Review: Semi-Supervised Learning Methods for Word Sense Disambiguation 

www.iosrjournals.org                                                        66 | Page 

strength in subsequent iterations (due to the more informative training sets) until the confidence for that 

collocation falls below the threshold. In other words, we might say that language redundancy makes the 

Yarowsky algorithm self- correcting. 
 As a drawback, this bootstrapping approach has been theoretically poorly understood since its 

appearance in 1995. Recently, Abney (2004) performed some advances in this direction by analyzing a number 

of variants of the Yarowsky algorithm, showing that they optimize natural objective functions. Another criticism 

refers to real applicability, since Martínez and Agirre (2000) observed a far less predictive power of the one-

sense per- discourse and one-sense-per-collocation heuristics when tested in a real domain with highly 

polysemous words. 

 

3.1.2 Bilingual Bootstrapping Methods 
A new method for word sense disambiguation, one that uses a machine learning technique called bilingual 

bootstrapping. In learning to disambiguate words to be translated, bilingual bootstrapping makes use of a small 

amount of classified data and a large amount of unclassified data in both the source and the target languages. 
 The data in the two languages should be from the same domain but are not required to be exactly in 

parallel. It repeatedly constructs classifiers in the two languages in parallel by repeating the following two steps: 

(1) Construct a classifier for each of the languages on the basis of classified data in both languages, and (2) use 

the constructed classifier for each language to classify unclassified data, which are then added to the classified 

data of the language. We can use classified data in both languages in step (1), because words in one language 

have translations in the other, and we can transform data from one language into the other. It boosts the 

performance of the classifiers by classifying unclassified data in the two languages and by exchanging 

information regarding classified data between the two languages. 

 The performance of bilingual bootstrapping been experimentally evaluated in word translation 

disambiguation, and all of their results indicate that bilingual bootstrapping consistently and significantly 

outperforms monolingual bootstrapping. The higher performance of bilingual bootstrapping can be attributed to 

its effective use of the asymmetric relationship between the ambiguous words in the two languages. 

 

3.2 Label Propagation Algorithm 
 This algorithm works by representing labeled and unlabeled examples as vertices in a connected graph, 

then propagating the label information from any vertex to nearby vertices through weighted edges iteratively, 

finally inferring the labels of unlabeled examples after the propagation process converges. 

 

3.2.1 Problem Setup 

 Let X = {𝑥𝑖}𝑖=1
𝑛  be a set of contexts of occurrences of an ambiguous word w, where xi represents the 

context of the 𝑖 − 𝑡ℎ occurrence, and 𝑛 is the total number of this word‟s occurrences. Let S = {𝑠𝑗 }𝑗=1
𝑐  denote 

the sense tag set of 𝑤. The first l examples 𝑥𝑔(1 ≤  𝑔 ≤  𝑙) are labeled as 𝑦𝑔  (𝑦𝑔  ∈  𝑆) and other 𝑢 (𝑙 + 𝑢 =

 𝑛) examples 𝑥ℎ(𝑙 + 1 ≤  ℎ ≤  𝑛) are unlabeled. The goal is to predict the sense of w in context 𝑥ℎ  by the use 

of label information of 𝑥𝑔  and similarity information among examples in X. 

The cluster structure in X can be represented as a connected graph, where each vertex corresponds to an example 

and the edge between any two examples 𝑥𝑖  and 𝑥𝑗  is weighted so that the closer the vertices in some distance 

measure, the larger the weight associated with this edge. The weights are defined as follows: 𝑊𝑖𝑗 =

𝑒𝑥𝑝  −
∥𝑥𝑖−𝑥𝑗∥

2

𝛼2
  if 𝑖 ≠ 𝑗  and 𝑊𝑖𝑖  = 0 (1 ≤  𝑖, 𝑗 ≤  𝑛), where 𝛼 is used to control the weight 𝑊𝑖𝑗 . 

 

3.2.2 Algorithm 

 In LP algorithm (Zhu and Ghahramani, 2002), label information of any vertex in a graph is propagated 

to nearby vertices through weighted edges until a global stable stage is achieved. Larger edge weights allow 

labels to travel through easier. Thus closer examples, more likely they have similar labels (the global 

consistency assumption). In label propagation process, the soft label of each initial labeled example is clamped 
in each iteration to replenish label sources from these labeled data. Thus the labeled data act like sources to push 

out labels through unlabeled data. With this push from labeled examples, the class boundaries will be pushed 

through edges with large weights and settle in gaps along edges with small weights. If the data structure fits the 

classification goal, then LP algorithm can use these unlabeled data to help learning classification plane. 

 Let 𝑌0 ∈ 𝑁𝑛×𝑐  represent initial soft labels attached to vertices, where 𝑌𝑖𝑗
0 = 1 if 𝑦𝑖 is 𝑠𝑗  and 0 

otherwise. Let 𝑌𝐿
0  be the top 𝑙 rows of 𝑌0  and 𝑌𝑢

0  be the remaining 𝑢 rows. 𝑌𝐿
0  is consistent with the labeling in 

labeled data, and the initialization of 𝑌𝑢
0can be arbitrary. Optimally we expect that the value of 𝑊𝑖𝑗  across 

different classes is as small as possible and the value of 𝑊𝑖𝑗  within same class is as large as possible. This will 

make label propagation to stay within same class. 



Review: Semi-Supervised Learning Methods for Word Sense Disambiguation 

www.iosrjournals.org                                                        67 | Page 

Define 𝑛 ×  𝑛 probability transition matrix  𝑇𝑖𝑗 = 𝑃 𝑗 →  𝑖 =
𝑊𝑖𝑗

 𝑊𝑘𝑗
𝑛
𝑘=1

 , where 𝑇𝑖𝑗  is the probability to jump 

from example 𝑥𝑗  to example 𝑥𝑖 . Compute the row-normalized matrix 𝑇 by   𝑇𝑖𝑗 =
𝑃𝑖𝑗

 𝑃𝑖𝑘
𝑛
𝑘=1

 .This normalization is 

to maintain the class probability interpretation of Y. 

Then LP algorithm is defined as follows: 

1. Initially set t=0, where t is iteration index; 

2. Propagate the label by 𝑌𝑡+1 =  𝑇𝑌𝑡 ; 

3. Clamp labeled data by replacing the top l row   of 𝑌𝑡+1 with 𝑌𝐿
0  . Repeat from step 2 until 𝑌𝑡  

converges; 

4. Assign 𝑥ℎ(𝑙 + 1 ≤  ℎ ≤  𝑛) with a label 𝑠𝑗  ,where 𝑗 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑗𝑌ℎ𝑗    

This algorithm has been shown to converge to a unique solution, which is 

𝑌 𝑈 = 𝑙𝑖𝑚𝑡→∞ 𝑌𝑈
𝑡 =  𝐼 −   𝑇𝑢𝑢  

−1
  𝑇𝑢𝑙𝑌𝐿

0 (Zhu and Ghahramani, 2002).We can see that this solution can be 

obtained without iteration and the initialization of 𝑌𝑈
0  𝑖s not important, since 𝑌𝑈

0 does not affect the estimation 

of  𝑌 𝑈 . 𝐼 is 𝑢 ×  𝑢 identity matrix.   𝑇𝑢𝑢  and  𝑇𝑢𝑙  are acquired by splitting matrix 𝑇 after the 𝑙 − 𝑡ℎ row and the 

𝑙 − 𝑡ℎ column into 4 sub-matrices. 

 

Performance The performance of LP been experimentally evaluated by taking reduced “interest” corpus 

(constructed by retaining four major senses) and complete “line” corpus as evaluation data. 

 

Table 1: Accuracies from (Li and Li, 2004) and average accuracies of LP on “interest” and “line” corpora. 

Major is a baseline method in which they always choose the most frequent sense. MB-D denotes monolingual 

bootstrapping with decision list as base classifier, MB-B represents monolingual bootstrapping with ensemble of 

Naïve Bayes as base classifier, and BB is bilingual bootstrapping with ensemble of Naive Bayes as base 

classifier. 

 

Ambiguous 

words 

Accuracies from  (Li and Li, 2004) 

Major MB-D MB-B BB 

interest 
line 

54.6% 
53.5% 

54.7% 
55.6% 

69.3% 
54.1% 

75.5% 
62.7% 

 

Ambiguous 

words 

Accuracies from ( Niu, Dong,Tan) 

#labeled 

examples 

LPcosine LPJSMajor 

interest 

line 

4×15=60 

6×15=90 

80.2±2.0% 

60.3±4.5% 

79.8±2.0% 

59.4±3.9% 

 

 Table 1 summarizes the average accuracies of LP on the two corpora. It also lists the accuracies of 

monolingual bootstrapping algorithm (MB), bilingual bootstrapping algorithm (BB) on “interest” and “line” 

corpora. We can see that LP performs much better than MB-D and MB-B on both “interest” and “line” corpora, 

while the performance of LP is comparable to BB on these two corpora. 

 

IV. Discussion 
 Primary focus of this paper is to discuss the semi-supervised algorithm for word sense disambiguation. 

Because use of small amount of labelled data and unlabeled data for semi supervised algorithms is gaining 

popularity in WSD filed. 

 Bootstrapping method (Yarowsky 1995) of semi-supervised learning was the first approach towards the 

word sense disambiguation.A great advantage of bootstrap is its simplicity. It is a straightforward way to derive 

estimates of standard errors and confidence intervals for complex estimators of complex parameters of the 

distribution, such as percentile points, proportions, odds ratio, and correlation coefficients. Moreover, it is an 

appropriate way to control and check the stability of the results. But bootstrapping is based on a local 

consistency assumption: examples close to labeled examples within same class. 

 Thus label propagation based semi-supervised learning algorithm for WSD came to the light, which 

fully realizes a global consistency assumption: similar examples should have similar labels. 

In learning process, the labels of unlabeled examples are determined not only by nearby labeled examples, but 
also by nearby unlabeled examples. 

 Compared with semi-supervised WSD methods in the first and second categories, LP is the corpus 

based method and does not need external resources, including WordNet, bilingual lexicon, aligned parallel 

corpora.. It achieves better performance than SVM when only very few labeled examples are available, and its 
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performance is also better than monolingual bootstrapping and comparable to bilingual bootstrapping. By our 

investigation we can say LP is gaining more popularity in field of semi- supervised learning than Bootstrapping. 

 

V. Conclusion 

 We described the Semi supervised learning methods and their performance in the context of word sense 

disambiguation. WSD is the important issue of natural language processing, which can be solved by using semi-

supervised methods. These methods in comparison to other WSD approach are less time-consuming and 

inexpensive because they require only small amount of labelled training data and also use unlabeled data which 

is easily available. 
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