
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 10, Issue 5 (Mar. - Apr. 2013), PP 46-51
www.iosrjournals.org

www.iosrjournals.org 46 | Page

A New Approach of Protein Sequence Compression using Repeat

Reduction and ASCII Replacement

S.M. Rafizul Haque, Tania Mallick, Iffat Sania Kabir
CSE Discipline, Khulna University, Bangladesh

CSE Discipline, Khulna University, Bangladesh
CSE Discipline, Khulna University, Bangladesh

Abstract: Protein sequences have been considered for a long time as highly complex sequences from the

informational content point of view. We study about the randomness of protein and difficulty of protein

compression. In this report, we propose a lossless compression method to reduce the random or repeated

sequence of protein. Our proposed method is the enhancement of Dictionary Based Algorithm proposed by D.

Adjeroh and F. Nan. They have shown better result in compressing protein. Our repeat reduction method shows

improved results in compressing three types of protein sequences from MJ (Methanococcus jannaschii), HI
(Haemophilus influenzae) and HS (Homo sapiens). The experimental results demonstrate that the performance

of the proposed method is superior compared to Dictionary based algorithm.

Keywords: Proteins, protein compression, repeat reduction, protein sequence, repeat, ASCII replacement.

I. Introduction
Now a day‟s bioinformatics is an important area of research and development. So, storing and

manipulating of the data related to bioinformatics using computers as a compressed form is an important task.

Compression is an art of reducing the size of a file by removing redundancy in its structure. Data compression

offers an attractive approach to reducing communication costs by using available bandwidth effectively.

Compression techniques are broadly divided into two categories: lossless and lossy. If the recovery of data is

exact, the compression algorithms are called lossless. The lossless compression algorithms are used for all kinds
of text, scientific and statistical databases, bioinformatics, medical and biological images, and so on. If the

recovery of data is approximate, the compression algorithms are called lossy. Lossy algorithms are useful in

image and video processing. There are two different perspectives of protein compression. They are practical

perspective and scientific perspective. In practical perspective, compression permits the use of resources such as

storage and bandwidth. In scientific perspective, compression presents a way of capturing and computing

structure in a protein sequence [1]. Total number of protein sequences will be increased day by day. So, protein

should be accumulated as a compressed shape. Typical compression techniques are not appropriate for protein

compression [3]. It is very difficult to compress protein due to its multiplicity and individuality of protein

sequence. The evident randomness of the signs in a protein sequence is another difficulty to compress protein.
In 1999, C. G. Nevill-Manning and I. H Witten said “Protein is incompressible” [1]. According to them protein

is difficult to compress since there is little Markov dependency in protein. In 1999, Nevill and Witten have

developed a special compression algorithm called CP (Compress Protein). The basic concept of CP is to weight
alternative contexts like CTW (Context Tree Weighting) function. Unfortunately, this technique produces

negative result. In 2004, A. Hategan and I. Tabus proved “Protein is Compressible” [2]. They developed an

algorithm called ProtComp which is based on optimal building of the substitution probability matrix. This

algorithm gives the compression ratio of 1.3:1. In 2006, D. Adjeroh and F. Nan developed an algorithm that uses

a term SCP (Sorted Common Prefix) [3]. This term is used to separate approximate repeats or overlapping

repeats. This technique gives a high compression ratio. This technique can compress protein 3.50 bits per

symbol in average.

Here we have proposed a new algorithm for protein sequence compression based on repeat reduction

and ASCII Replacement. The proposed method can compress protein 2.89 bits per symbol in average, which is

the best result found for protein compression.

II. Protein
Proteins are the most abundant biological macromolecules, occurring in all cells and all parts of cells.

Protein is one of the based components of life. It is also called the machinery of life because the existence of

living being is impossible without protein. Protein sequence is the combination of 20-amino acids. The alphabet

structures of 20 amino acids are shown in Table-1.

A New Approach of Protein Sequence Compression using Repeat Reduction and ASCII Replacement

www.iosrjournals.org 47 | Page

Table 1: Codes for 20-amino acids

Code Full Name Code Full Name

A Alanine M Methionine

C Cysteine N Aspartamine

D Aspartate P Praline

E Glutamate Q Glutamine

F Phenylalanine R Arginine

G Glycine S Serine

H Histidine T Threonine

I Isoleucine V Valine

K Lysine W Tryptophan

L Leucine Y Tyrosine

III. Protein Sequencing
Protein sequence is the combination of 20-amino acids. Protein sequence is highly responsible for

determination of protein structure. Protein sequence can be easily obtained from DNA/RNA sequence. Each
protein contains a unique amino acid sequence which has a set of generic codes called „codon‟. ‟Codon‟ is a set

of three nucleotide as for example AUG is a code that contains adenine-uracil-guanine nucleotides respectively.

On the other hand, DNA sequence contains four nucleotides such as adenine (A), cytosine (C), guanine (G),

thymine (T) and the number of possible codon in DNA is 64. At first, DNA sequence is transcribed into

messenger RNA or mRNA .Then, it is loaded onto the ribosome and is read three nucleotides at a time by

matching each codon. After that translation procedure is being processed and 20-amino acid is generated per

second as a sequence. In fact, Protein sequence is referred to as amino acid sequence. The protein sequence or

amino-acid sequence determines the three dimensional structure of a protein. Proteins have static, unchanging

three dimensional structures.

IV. Related Works
CP algorithm is proposed by, C. G. Nevill-Manning and I. H. Witten in 1999 [1]. They mentioned that

protein is difficult to compress, since there is little Markov dependency in protein. They developed an algorithm

with the help of PPM (Prediction by Partial Matching) algorithm. The technique used by CP to accommodate

mutation probabilities may conceivably be applicable to other domains. The main thought of CP algorithm is to

weight alternative contexts. This scheme includes exact repetition in protein sequences and applies all contexts

up to a positive length and weighted by their similarity to the current context. This method proposed the

probability prediction for amino acid exact repetition. Another technique named blending is used for

replacement in CP algorithm. PPM algorithm is used to switch this replacement. This approach is related to

Loewenstern and Yainilos algorithms for DNA compress (1997). Here various context lengths are inserted with
various Hamming distances. The author utilized four genomes in their investigation-HI (Haemophilus

influenzae), SC (Saccharomyces cerevisiae), MJ (Methanococcus jannaschii) and HS (Homo sapiens).

Regardless of the fact that they establish a technique of getting improved compression than is specified by

generic compression techniques. But like other method this method also failed to compress all proteins. The

technique provides very poor compression ratio. Due to this failure, the inventor came to a conclusion that

protein was incompressible.

In 2004, A. Hategan and I. Tabus proposed a lossless compression algorithm called ProtComp [2]. This

algorithm is adaptive and uses approximate repeats as well as mutation probability for amino acids. The

algorithm is based on optimal building of the substitution probability matrix. ProtComp algorithm is two pass

algorithms. The purpose of the first pass is to construct the substitution probability matrix, M and the purpose of

the second pass is encoding the symbols. First, each current block having the largest number of matches and

compare with fixed parameters and updated the substitution matrix. Then, transmitting the side information and
transmitting the symbols. Finally, total code words are obtained. In one pass version, a fixed substitution matrix

is used in ProtComp algorithm. Here, first step is skipped and ProtComp2, ProtComp1Huff and

ProtComp1Arithm are applied to get the result. The algorithm is tested using four proteomes - HI, SC, MJ and

HS and each sequence contains very long repetition. When using two pass algorithm, this is builds a substitution

matrix and transmits the matrix as side information. When using one pass algorithm, the results are very close

with two pass algorithm. ProtComp algorithm gives the compression ratio 1.3:1. But this algorithm cannot

calculate gaps. Finally, it is also a poor compression technique but the results improved the previous one.

A dictionary based protein compression algorithm is proposed by D. Adjeroh and F. Nan [3]. The algorithm

uses Sorted Common Prefix (SCP) which is used to separate approximate repeats or overlapping repeats. The

SCP is symmetric and SCP is usually sparse. Protein sequence has different forms of repetitions- overlapped

A New Approach of Protein Sequence Compression using Repeat Reduction and ASCII Replacement

www.iosrjournals.org 48 | Page

repetitions, direct repetitions, palindrome repetitions, adjourning repetitions. At first, the protein sequences are

processed and repetitions are detected. Then the repetitions are parsed using SCP and two outputs can be

obtained such as (1) Dictionary items, D which contains repeated patterns, repetition length, position number of

occurrences and (2) Remaining sequence, R which contains non-repeated subsequences. After that, remove the

repeated substring from the input sequence, and move it to an external dictionary. In the dictionary, record the

positions in the sequence where each repetition occurred, along with the repetition types. It stops when the

compression gain, G(S) is negative or less than a threshold. Each leaf in the tree is part of the final output. In
this algorithm inventors considered the problem of compressibility of protein sequences. This technique gives a

high compression ratio and compress protein up to 3.453 bits per symbol. The improved performance was

observed on all the protein sequences in the protein corpus.

V. Our Approach
From the analysis of protein structure, we can conclude that protein is a sequence of 20-amino acids.

This sequence can be represented by alphabet. Multiplicity and individuality exists in the protein sequence; it is

difficult to compress protein. Moreover, different types of repetitions occur in protein sequence. Depending on

this assumption, we have proposed our method based on repeat reduction.
Our proposed model contains three basic parts. These parts are mentioned as follows:

1. Repetition analysis

2. Encoding or Compression

3. Decoding or Decompression

5.1 REPEAT ANALYZATION PROCESS
The first phase of proposed method analyzes all repeats containing exact 6 residues as a unit and total

number of each repeat and all staring position of each repeat. These criteria will be saved in temporary list

during execution time.

The algorithm of our repeat analyzation phase is as following:

1. Set rptstrng = 0 and exist = 0.

2. If repeat is found Then do exist = exist + 1.

3. If exist = 0 then do findposition (curstr, nextstr, curpos).

4. Record string position and number.

5. Sort all record in decreasing order according to total number of a repeat found in sequence.

6. Count all repeats which has repeated more than 1.

Here, in this algorithm we analyze all repeats combined with different number of residues. Then we sort total

list according to number of repeats in decreasing order. Then we count only unique repeats and our method
gives the highest priority to a repeat which has highest number of repetitions. In the list of repeat, we assign a

value 97 as a default to the first repeat. Then we increase this value to 1 and save as a character in ASCII table.

5.2 COMPRESSION PROCESS
1. Replace all repeats with ASCII character.

2. Separate remaining repeats with overlap form with a first bracket replace each repeats with its first
residue.

3. After that we encode the sequence with memory stream and define a location to save the encoded file.

4. Finally, we will get compressed file in zip format.

Here we compute total compression in KB = ∑ RN (RL-1) – const

Where, RN = Number of Repeats

 RL = Repeat Length

 Const = Total number of repeated string independent when we compare internal exchange of different

repeat length = ∑1.

Now, Compression ratio = (total compression in KB / original sequence in KB) * 8

Where, we consider 8 residues in per unit symbol.

5.3 DECOMPRESSION PROCESS
1. In this process, input will be zipped file.

2. At first, it decode using memory stream buffer.

3. Then, we get all repeats from the replacement with ASCII according with position.

4. After replacement process will search where first bracket is located.

5. Finally it will cancel first bracket and decode remaining parts and get original sequence.

A New Approach of Protein Sequence Compression using Repeat Reduction and ASCII Replacement

www.iosrjournals.org 49 | Page

VI. Illustration Of The Proposed Method With An Example
Consider the entire brain protein sequence from H. Influenza as input sequence. The sample sequence is given

below:

Fig 1: Input protein sequence

After the repeat analyzation process the output is as follows:

Fig 2: All repeats in sequence including total number of each repeat and start positions

Counting only unique repeats those have no overlapped form, the following output is obtained:

Fig 3: All unique repeats which have no overlapped form

Then our proposed system produce ASCII table and replace all repeats with ASCII character. The output is

given as follows:

(a) (b)

Fig 4: Output after ASCII replacement (a) ASCII table and (b) sequence encoded with ASCII

Then we save the final encoded file using memory stream. The final output is as follows:

 Compressed size: 2671

 Original size: 6332

 File is Compressed D drive in zipped form.

 Compression ratio is: 3.37 bits per symbol

For decompression process, the input file is input.txt.zip. At first our processes unzip the file using memory
stream and array byte and decode the file with replacement of ASCII character. At the end of this process the

following output is obtained:

A New Approach of Protein Sequence Compression using Repeat Reduction and ASCII Replacement

www.iosrjournals.org 50 | Page

Fig 5: Output after decompression process

VII. Experimental Result
We have tested our method with the amino acids protein sequences. Here, we have shown the

compression ratios for each file in Table 8 and compression ratios for bit per symbol in table 9. Table 10 shows

the compression results in bits per symbol for dictionary based method and our proposed method.

Table 2: Compressed file size in Bytes using our method

Protein sequence Original size in KB Compressed size in KB

MJ 8805 2715

HI 6332 2671

HS 560 199

Total 15697 5585

Average 5232.33 1861.67

Table 3: Compression ratio in bit per symbol (bps) using our method

Protein sequence Original size in KB Compression ratio in bps

(bit per symbol)

MJ 8805 2.47

HI 6332 3.37

HS 560 2.84

Average 5232.33 2.89

From the above experimental results, we find that our method can compress 2.89bits per symbol in average

which is the best result for protein compression that had been ever found.

Table 4: Comparison results for Dictionary based compression and our method

Sequence Size (KB) Dictionary-based

compression

Our Method

MJ 8805 2.54 2.47

HI 6332 3.43 3.37

HS 560 3.11 2.84

Average 5232.33 3.03 2.89

From Table 10 we can see that our proposed method can compress in average 303 bits per 100 symbols and

Dictionary based compression proposed by D. Adjeroh and F. Nan in average 289 bits per 100 symbols. So, the

improvement by our method is 14 bits per 100 symbols.
The following graph compares the performance among Dictionary-based and our proposed method.

 Fig 6: Performance comparison among Dictionary-based and our proposed method for bits per symbol.

A New Approach of Protein Sequence Compression using Repeat Reduction and ASCII Replacement

www.iosrjournals.org 51 | Page

The superior performance of the proposed method is evident in the above graph. We notice that the improved

performance is consistent across different protein sequences. In terms of compression time our total

compression process takes about 4 minutes for MJ sequence on a Pentium-D 2.66 GHz processor running on

Microsoft Windows 7.

VIII. Conclusion
Protein sequence compression is one of the most difficult tasks in the area of bioinformatics. The

existing algorithms have faced difficulty in compressing protein due to its repetition. Each of them is the

improvement of previous one. Here, we proposed a protein compression method based on repeat reduction and

ASCII replacement. Our proposed method gives better result than that of the previous algorithms. For real time

application manually insertion of protein is not good approach. We hope that we will be able to remove previous

mistakes and provide better facility in real time application than previous techniques.

IX. Future Work
In future, we want to improve compression process as well as compression ratio so that any kind of

protein sequence can be compressed efficiently. Moreover, we want to include gaps in a protein sequence.

Reference
[1] Craig G. Nevill-Manning and Ian H. Witten, ”Protein is incompressible”, in proceeding of The Data Compression Conference

(DCC‟99), pp 257-266, Snowbird, Utah, USA, March 1999.

[2] Andrea Hategan and Ioan Tabus,“Protein is compressible”, in proceeding of the 6
th
 Nordic Signal Processing Symposium (NORSIG

2004), pp 192-195, Espoo, Finland, June 2004.

[3] Donald Adjeroh and Fei Nan, ”On compressibility of Protein sequence”, in proceeding of The Data Compression Conference

(DCC‟06), pp 422-434, Snowbird, Utah, USA, March 2006.

[4] T. Matsumoto, K. Sadakane and H. Imai, ”Biological Sequence Compression Algorithms” In proceeding of The Data Compression

Conference (DCC‟07), pp 43-52,Snowbird,Utah, USA, March 2007.

[5] A. Hategan and I. Tabus, “Detecting local similarity based on lossless compression of Protein sequences”, in International

workshop on Genomic Signal Processing 95, 2005.

