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Abstract: Most known frequent item set mining approaches enumerate candidate item sets, determine their 

support, and prune candidates that fail to reach the user-specified minimum support. Apart from this scheme we 

can use intersection approach for identifying frequent item set. But the intersection approach of transaction is 

the less researched area and need attention and improvement to be applied. To the best of our knowledge, there 

are only two basic algorithms: a cumulative scheme, which is based on a repository with which new 

transactions are intersected, and the Carpenter algorithm, which enumerates and intersects candidate 

transaction sets. These approaches yield the set of so-called closed frequent item sets, since any such item set 

can be represented as the intersection of some subset of the given transactions.As the transactional database 

increases, the size of prefix tree also grows which make it difficult to handle. An improvement has been 

suggested to reduce the total number of branches in the prefix tree leading to reduction in its size.  
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I. Introduction 
It is often the case that large collections of data, however well structured, conceal implicit patterns of 

information that cannot be readily detected by conventional analysis techniques Such information may often be 

usefully analyzed using a set of techniques referred to as knowledge discovery or data mining. These techniques 

essentially seek to build a better understanding of data, and in building characterizations of data that can be used 

as a basis for further analysis, extract value from volume. Data mining is essentially the computer-assisted 

process of information analysis. Most of the approaches in data mining enumerate candidate item sets, 
determine their support, and prune candidates that fail to reach the user-specified minimum support. Apart from 

this scheme we can use intersection approach for identifying frequent item set. But the intersection approach of 

transaction is the least research area and need attention and improvement to be applied. The main reason why 

the intersection approach is less researched is that it is often not competitive with the item set enumeration 

approaches, at least on standard benchmark data sets. Naturally, if there are few items, there are (relatively) few 

candidate item sets to enumerate and thus the search space of the enumeration approaches is of manageable size. 

In contrast to this, the more transactions there are, the more work an intersection approach has to do, especially, 

since it is not linear in the number of transactions like the support computation of the item set enumeration 

approaches. 

 

1.1 Basic Definition 
1.1.1 Association rule mining: - Association rule mining[1] is a type of mining used to identify certain kind of 

association (interconnection relation in term of probability) among the items of database. It aims is to extract 

interesting correlations, frequent patterns, associations or casual structures among sets of items in the transaction 

or other data repositories.  

1.1.2 Support: - It specifies the fraction of transactions that contains an item sets. 

1.1.3 Confidence: - It denotes the measure of trueness of the generated association rule true in probabilistic 

term. 

1.1.4 Frequent item set:-A frequent item set is the item set whose support is greater than some user specified 

minimum support. 

1.1.5 Closed item set:-A frequent item set is closed if there does not exist a super set that has the same support 

[2]. 

 

II. Frequent Item Set Mining 
An important observation while mining frequent item sets is that the output is often huge and it may 

even exceed the size of the transaction database to mine. As a consequence, there are several approaches that try 

to reduce the output, if possible without any loss of information. The most basic of these approaches is to restrict 

the output to so-called closed or maximal frequent item sets [3]. Restricting the output of a frequent item set 
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mining algorithm to only the closed or even only the maximal frequent item sets can sometimes reduce it by 

orders of magnitude. However, little information is lost: From the set of all maximal frequent item sets the set of 
all frequent item sets can be reconstructed, since any frequent item set has at least one maximal superset. 

Therefore the union of all subsets of maximal item sets is the set of all frequent item sets. Closed frequent item 

sets even preserve knowledge of the support values. The reason is that each frequent item set has a uniquely 

determined closed superset with the same support. Hence the support of a frequent item set that is not closed can 

be computed as the maximum of the support values of all closed frequent item sets that contain it (the maximum 

has to be used, because no superset can have a greater support-the so-called apriori property[4]). As a 

consequence, closed frequent item sets are the most popular form of compressing the result of frequent item set 

mining. 

 

2.1 Basic Notions and Notation  
Formally, the task of frequent item set mining can be described as follows: 

B:-Base Item Set. 
1. T: - (t1, t2….. tn) Transaction Database over an item base B. 

2. KT (I):- Cover KT (I) of an item set I which is subset of B with respect to this database is set of indices of 

transactions that contain it.   kT tInkIK  |},.....,1{)(  

3. ST (I):- Support of an item set I which is subset of B is the size of cover. 

4. We can write it as )(| IKS TT   That is, the number of transactions in the database T it is contained in. 

5. Given a user-specified minimum support Smin for an item set I, an item set I is called frequent in T if and only 

if ST (I) >=Smin. 

 

2.2 Item Set Enumeration Algorithms 

A standard approach to find all frequent item sets w.r.t. a given database T and support threshold smin, 

which is adopted by basically all frequent item set mining algorithms (except those of the Apriori family), is a 

depth-first search in the subset lattice of the item base B. This approach can be interpreted as a simple divide-

and-conquer scheme. For some chosen item i, the problem to find all frequent item sets is split into two 

subproblems: (1) find all frequent item sets containing the item i and (2) find all frequent item sets not 

containing the item i. Each subproblem is then further divided based on another item j: find all frequent item 

sets containing (1.1) both items i and j, (1.2) item i, but not j, (2.1) item j, but not i, (2.2) neither item i nor j, and 

so on. All subproblems that occur in this divide-and-conquer recursion can be de_ned by a conditional 

transaction database and a prefix. The prefix is a set of items that has to be added to all frequent item sets that 

are discovered in the conditional database. Formally, all sub problems are tuples S = (C; P), where C is a 
conditional transaction database and P is a prefix. The initial problem, with which the recursion is started, is S = 

(T;ⱷ), where T is the transaction database to mine and the prefix[5] is empty. 

 

2.3 Types of Frequent Item Sets  
One of the first observations one makes when mining frequent item sets is that the output is often huge-

it may even exceed the size of the transaction database to mine. As a consequence, there are several approaches 

that try to reduce the output, if possible without any loss of information. for example:  

2.3.1  Closed Item Set : A frequent item set is called closed if there does not exist a superset that has the same 

support, or formally 
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                                                    equation 1 

2.3.2  Maximal Item Set: A frequent item set is called maximal if there does not exist any superset that is 

frequent, or formally: 

.min

min

}){(:

)(max

SiISIB

SISimalisBI

Ti

T



                                          equation 2 

 From the set of all maximal frequent item sets the set of all frequent item sets can be reconstructed, since any 

frequent item set has at least one maximal superset. Therefore the union of all subsets of maximal item sets is 

the set of all frequent item sets. Closed frequent item sets even preserve knowledge of the support values. Note 

that closed item sets are closely related to perfect extensions: an item set is closed if it does not have a perfect 

extension. However, using perfect extension pruning does not mean that the output is restricted to closed item 

sets, because in the search not all possible extension items are considered (conditional databases do not contain 

all items). 
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III. Intersecting Transactions 

We discuss two ways of implementing the intersection approach: enumerating transaction sets as it is done 

in the Carpenter algorithm [6] and a cumulative scheme [7]. 

  

3.1 Enumerating Transaction Sets 

The Carpenter algorithm [6] implements the intersection approach by enumerating sets of transactions 
(or, equivalently, sets of transaction indices) and intersecting them. Technically, the task to enumerate all 

transaction index sets is split into two sub-tasks: (1) enumerate all transaction index sets that contain the index 1 

and (2) enumerate all transaction index sets that do not contain the index 1. These sub-tasks are then further 

divided w.r.t. the transaction index 2: enumerate all transaction index sets containing (1.1) both indices 1 and 2, 

(1.2) index 1, but not index 2, (2.1) index 2, but not index 1, (2.2) neither index 1 nor index 2, and so on. 

 
3.2 Prefix Tree Implementation  

Prefix tree, is an ordered tree data structure that is used to store an associative array where the keys are 

usually strings. Unlike a binary search tree, no node in the tree stores the key associated with that node, instead, 

its position in the tree defines the key with which it is associated. All the descendants of a node have a 

common prefix of the string associated with that node, and the root is associated with the empty string. Values 

are normally not associated with every node, only with leaves and some inner nodes that correspond to keys of 

interest.  In the example shown, keys are listed in the nodes and values below them. Each complete English 

word has an arbitrary integer value associated with it. A prefix tree can be seen as a deterministic finite 

automaton, although the symbol on each edge is often implicit in the order of the branches. 

 

 
Fig-1 Prefix Tree 

It is not necessary for keys to be explicitly stored in nodes. (In the figure, words are shown only to illustrate how 

the prefix tree works.) Prefix tree need not be keyed by character string. The same algorithms can easily be 

adapted to serve similar functions of ordered lists of any construct, e.g., permutations on a list of digits or 

shapes. In particular, a bitwise prefix tree is keyed on the individual bits making up a short, fixed size of bits 

such as an integer number or pointer to memory. 

 

IV. Intersecting Algorithm 
In the intersection approach after adding the transaction to the prefix tree we need to perform the 

intersection of currently added transaction with all the existing transaction in the prefix tree. The proposed 

algorithm for performing the intersection is defined as:- 
void isect (NODE_ node, NODE **ins) 

{         //intersect with transaction 

int i;        // buffer for current item 

NODE *d;       // to allocate new nodes 

while (node)  

{        // traverse the sibling list 

i = node->item;                  // get the current item 

if (trans[i])  

{                            // if item is in intersection 
while ((d = *ins) && (d->item > i)) 

ins = &d->sibling;            //find the insertion position 

if (d         // if an intersection node with 

&& (d!item == i))   // the item already exists 

{    

http://en.wikipedia.org/wiki/Ordered_tree_data_structure
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Associative_array
http://en.wikipedia.org/wiki/String_(computer_science)
http://en.wikipedia.org/wiki/Binary_search_tree
http://en.wikipedia.org/wiki/Prefix
http://en.wikipedia.org/wiki/String_(computer_science)
http://en.wikipedia.org/wiki/Deterministic_finite_automaton
http://en.wikipedia.org/wiki/Deterministic_finite_automaton
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if (d->step >= step) d->supp--; 

if (d->supp < node->supp) 
d->supp = node->supp; 

d->supp++; // update intersection support 

d->step = step; 

}   // and set current update step 

else  

{   // if there is no corresp. node 

d = malloc(sizeof(NODE)); 

d->step = step;  // create a new node and 

d->item = i;   // set item and support 

d->supp = node->supp+1; 

d->sibling = *ins; 

      *ins = d; 
d->children = NULL; 

}   // insert node into the tree 

if (i <= imin) return;             // if beyond last item, abort 

isect(node->children, &d->children);  

} 

else  

{                       // if item is not in intersection 

if (i =< imin) return;             // if beyond last item, abort 

isect(node->children, ins); 

g 

}      // intersect with subtree 
node = node->sibling;     // go to the next sibling  

}        // end of while (node) 

}         // isect() 

      In more detail, the procedure works as follows: whenever the item in the current sibling equals an item 

in the transaction (that is, whenever trans[i] is true) and thus the item is in the intersection, it is checked whether 

the sibling list starting at *ins contains a node with this item, because this node has to represent the extended 

intersection. If such a node exists, its support is updated. For this update the step field and variable are vital, 

because they allow us to determine whether the current transaction was already counted for the support in the 

node or not. If the value of the step field in the node equals the current step, the node has already been updated 

and therefore the transaction must be discounted again before taking the maximum. The maximum is taken, 

because we have to determine the support from the largest set of transactions containing the item set represented 

by the node. If a node with the intersection item does not exist, a new node is allocated and inserted into the tree 
at the location indicated by ins. In both cases (with the current item in the transaction or not, that is, with trans[i] 

true or false) the sub-tree is processed recursively, unless the item of the current node is not larger than the 

minimum item in the current transaction. 

     The only difference between the recursive calls is that in the case where the current item is in the 

intersection, the insertion position is advanced to the children of the current node. 

 

4.1 Reporting of Closed Item Set 

Finally, after all transactions have been processed, the closed frequent item sets have to be reported. 

This is done with the help of report function. Not every node of the prefix tree generates output. In the first 

place, item sets that do not reach the user-specified minimum support must be discarded. In addition, however, 

we must also check whether a child has the same support. If this is the case, the item set represented by a node is 
not closed and must not be reported. In order to take care of this, the function first traverses the children and 

determines their maximum support. Only if the nodes own support exceeds this maximum (and thus we know 

that the item set represented by it is closed), it is reported. 

 

4.2 Item and Transaction Orders 

It is usually most efficient to assign the item codes with respect to ascending frequency in the database 

(the rarest item has code 0, the next code 1 etc.) and to process the transactions in the order of increasing size 

(number of contained items). The order of transactions of the same size seems to have very little influence. We 

use a lexicographical order of the transactions based on a descending order of items in each transaction. An 

intuitive explanation why this scheme is fastest is that it manages to have few and small closed item sets and 

thus small prefix trees at the beginning, so that many transactions can be processed fast. With the reverse 
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processing order for the transactions the prefix tree becomes fairly large already after few transactions,   which 

slows down the processing for all later transactions [ 8]. 
 

V. Conclusions 
According to the studies made the size of prefix tree grows larger and thus making its handling difficult 

and this lead to more memory to be used. Smaller prefix tree take less time in searching for any particular node 

and also makes its handling easier. The main fact behind the reduction in size is that items with higher initial 

support value have more probability of occurring in intersection. Arranging the items in different order of 

support value could allow the higher support items to exit at the first level in prefix tree. These higher support 

items exist more often in intersections and while we search for intersecting items in the tree they can be found at 

first level of prefix tree thus it could prevents extra branches to be added in the tree and thus the number of 
branches in the prefix tree reduces.Further the experimental results could be carried out in future to predict 

correct ordering of items in prefix tree and further compact the size of prefix tree and reduce its complexity. 
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