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 Abstract : Record linkage is the problem of identifying similar records across different data sources. The 

similarity between two records is defined based on domain-specific similarity functions over several attributes. 

De-duplicating one data set or linking several data sets are increasingly important tasks in the data preparation 

steps of many data mining projects. The aim is to match all records relating to the same entity. Different 

measures have been used to characterize the quality and complexity of data linkage algorithms, and several new 

metrics have been proposed. An overview of the issues involved in measuring data linkage and de-duplication 

quality and complexity. A matching tree is used to overcome communication overhead and give matching 

decision as obtained using the conventional linkage technique. Developed new indexing techniques for scalable 

record linkage and de-duplication techniques into the febrl framework, as well as the investigation of learning 

techniques for efficient and accurate indexing. 
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I. INTRODUCTION 
The most recent have observe a marvelous increase in the use of computerized databases for supporting 

a variety of company decisions. The data needed to support these decisions are often spread in diverse dispersed 

databases. In such cases, it may be necessary to linkage records in multiple databases so that one can merge and 

use the data pertaining to the same real world entity. If the databases use the same set of design standards, this 

linking can easily be done using the primary Key, however, since these heterogeneous databases are usually 

designed and managed by different organizations, there may be no common candidate key for linking the 

records. Although it may be possible to use common non key attributes (such as name, address, and date of 

birth) for this purpose, the result obtained using these attributes may not always be accurate.  
The databases exhibiting entity heterogeneity are distributed, and it is not possible to create and 

maintain a central data repository or warehouse where pre-computed linkage results can be stored. A centralized 

solution may be impractical for several reasons. First, if the databases span several organizations, the ownership 

and cost allocation issues associated with the warehouse could be quite difficult to address. Second, even if the 

warehouse could be developed, it would be difficult to keep it up-to-date. As updates occur at the operational 

databases, the linkage results would become stale if they are not updated immediately. This staleness maybe 

unacceptable in many situations. For instance, in a criminal investigation, one maybe interested in the profile of 

crimes committed in the last 24 hours within a certain radius of the crime scene. In order to keep the warehouse 

current, the sites must agree to transmit incremental changes to the data warehouse on a real-time basis. Even if 

such an agreement is reached, it would be difficult to monitor and enforce it. For example, a site would often 

have no incentive to report the insertion of a new record immediately. Therefore, these changes are likely to be 
reported to the warehouse at a later time, thereby increasing the staleness of the linkage tables and limiting their 

usefulness. In addition, the overall data management tasks could be prohibitively time-consuming, especially in 

situations where there are many databases, each with many records, undergoing real-time changes. 

 

II. RELATED WORK 
DATA CLEANING AND RECORD LINKAGE PROCESS 

A general schematic outline of the record linkage process is given As most real-world data collections 

contain noisy, incomplete and incorrectly formatted information, data cleaning and standardization are 

important pre-processing steps for successful record linkage, and also before data can be loaded into data 
warehouses or used for further analysis or data mining. A lack of good quality data can be one of the biggest 

obstacles to successful record linkage and de-duplication. The main task of data cleaning and standardization is 

the conversion of the raw input data into well defined, consistent forms, as well as the resolution of 

inconsistencies in the way information is represented and encoded. 

If two databases, A and B, are to be linked, potentially each record from A has to be compared with all 

records from B. The total number of potential record pair comparisons thus equals the product of the size of the 

two databases, |A| × |B|, with | · | denoting the number of records in a database. Similarly, when de-duplicating a 
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database, A, the total number of potential record pair comparisons is |A| × (|A| − 1)/2, as each record potentially 

has to be compared with all others. The performance bottleneck in a record linkage or de-duplication system is 

usually the expensive detailed comparison of record fields (or attributes) between pairs of records, making it 
unfeasible to compare all pairs when the databases are large. Assuming there are no duplicate records in the 

databases (i.e. one record in database A can only match to one record in database B, and vice versa), then the 

maximum number of true matches corresponds to the number of records in the smaller database. Therefore, 

while the computational efforts increase quadratic ally, the number of potential true matches only increases 

linearly when linking larger databases. This also holds for de-duplication, where the number of duplicate records 

is always less than the total number of records in a database. 

To reduce the large amount of potential record pair comparisons, record linkage methods employ some 

form of indexing or filtering techniques, collectively known as blocking. a single record field (attribute) or a 

combination of fields, often called the blocking key, is used to split the databases into blocks. All records that 

have the same value in the blocking key will be inserted into one block, and candidate record pairs are then 

generated only from records within the same block. These candidate pairs are compared using a variety of 
comparison functions applied to one or more (or a combination of) record fields. These functions can be as 

simple as an exact string or a numerical comparison, can take variations and typographical errors into account, 

or can be as complex as a distance comparison based on look-up tables of geographic locations (longitudes and 

latitudes). Each field comparison returns a numerical similarity value, called a matching weight, often in 

normalized form. Two field values that are equal, therefore, will have a matching weight of 1, while the 

matching weight of two completely different field values will be 0. Field values that are somewhat similar will 

have a matching weight somewhere between 0 and 1. A weight vector is formed for each compared record pair 

containing all the matching weights calculated by the different comparison functions. These weight vectors are 

then used to classify record pairs into matches, non-matches, and possible matches, depending upon the decision 

model. Record pairs that were removed by the blocking process are classified as non-matches without being 

compared explicitly. A variety of evaluation measures can then be used to assess the quality of the linked record 

pairs. 
  

III. PROBLEM DEFINITION 
 FEBRL FRAMEWORK 

Python is an ideal platform for rapid prototype development as it provides data structures such as sets, 

lists and dictionaries (associative arrays) that allow efficient handling of very large data sets, and includes many 

modules offering a large variety of functionalities. For example, it has excellent built-in string handling 

capabilities, and the large number of extension modules facilitate, for example, database access and graphical 

user interface (GUI) development. For the Febrl user interface, the PyGTK4 library and the Glade5 toolkit were 

use, which, combined, allow rapid platform independent GUI development 
Febrl is suitable for the rapid development, implementation, and testing of new and improved record 

linkage algorithms and techniques, as well as for both new and experienced users to learn about and experiment 

with various record linkage techniques. 

 

3.1) Input Data Initialization 

In a first step, a user has to select if she or he wishes to conduct a project for (a) cleaning and 

standardization of a data set, (b) de-duplication of a data set, or (c) linkage of two data sets. The „Data‟ page of 

the Febrl GUI will change accordingly and either show one or two data set selection areas. Several texts based 

data set types are currently supported, including the most commonly used comma separated values (CSV) file 

format. SQL database access will be added in the near future. Various settings can be selected, such as if a data 

set file contains a header line with field names (if not these field names can be entered manually); if one of the 
fields contains unique record identifiers; a list of missing values can be given (like „missing‟ or „n/a‟) that 

automatically will be removed when the data is loaded; and there are data type specific parameters to be set as 

well (such as the delimiter for CSV data sets).  

 

3.2) Data Exploration 

The „Explore‟ page allows the user to analyses the selected input data set(s) in order to get a better 

understanding of the content and quality of the data to be used for a standardization, de-duplication or linkage 

project. In order to speed up exploration of large data sets, it is possible to select a sampling rate as percentage 

of the number of records in a data set. 

 

3.3) Data Cleaning and Standardisation 

The cleaning and standardization of a data set using the Febrl GUI is currently done separately from a 
linkage or de-duplication project, rather than as a first step. A data set can be cleaned and standardized and is 
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written into a new data set, which in turn can then be de-duplicated or used for a linkage. When a user selects 

the „Standardization‟ project type, and has initialized a data set on the „Data‟ page, she or he can define one or 

more component standardizes on the „Standardize‟page.Currently, component standardizes are available in Febrl 
for names, addresses, dates, and telephone numbers. The name standardize uses a rule-based approach for 

simple names (such as those made of one given- and one surname only) in combination with a probabilistic 

hidden Markov model (HMM) approach for more complex names (Churches et al. 2002), while address 

standardization is fully based on a HMM approach (Christen and Belacic 2005). These HMMs currently have to 

be trained outside of the Febrl GUI, using separate Febrl modules. Dates are standardized using a list of format 

strings that provide the expected formats of the dates likely to be found in the un cleaned input data set. 

Telephone numbers are also standardized using a rules based approach. Each standardize requires one or several 

input fields from the input data set (shown on the left side of a standardize in the GUI), and cleans and segments 

a component into a number of output fields (three for dates, five for phone numbers, six for names, and 27 for 

addresses), shown on the right side in the GUI. 

 

IV. The Proposed  Method 
4.1 INDEXING DEFINITION 

„QGramIndex‟, which uses sub-strings of length q (for example bigrams, where q = 2) to allow fuzzy 

blocking (Baxter et al. 2003); „Canopy Index‟, which employs overlapping canopy clustering using TF-IDF or 

Jaccard similarity (Cohen and Richman 2002); „String Map Index‟, which maps the index key values into a 

multi-dimensional space and performs canopy clustering on these multi-dimensional objects (Jin et al. 2003); 

and „Suffix Array Index‟, which generates all suffixes of the index key values and inserts them into a sorted 

array to enable efficient access to the index key values and generation of the corresponding blocks (Aizawa and 

Oyama 2005). 
For deduplication using „BlockingIndex‟, „Sorting Index‟ or „QGram Index‟, the indexing step can be 

performed in an overlapping fashion with the field comparison step, by building an inverted index data structure 

while records are read from the input data set and their blocking key values are extracted and inserted into the 

index. The current record is compared with all previously read and indexed records having the same blocking 

key value. This approach can be selected by the user by ticking the „De-duplication‟ indexing box. For a 

linkage, and using one of the three indexing methods mentioned above, the Big Match (Yancey 2002) approach 

can be selected, where first the smaller input data set is loaded and the inverted index data structures are built in 

main memory, including all record attribute values required in the comparison step. Each record of the larger 

input data set is then read, its blocking key values are extracted, and all records in the same block from the 

smaller data set are retrieved from the index data structure and compared with the current record. This approach 

performs only one single pass over the large data set and does not require indexing, sorting or storing of any of 

its records. The user can tick the corresponding „Big Match‟ indexing box when conducting a linkage project. 

 

4.2 FIELD COMPARISON FUNCTIONS 

The comparison functions to be used to compare the field values of record pairs can be selected and 

setup on the „Comparison‟. Each field comparison requires the user to select one of the many available 

comparison functions as well as the two record fields that will be compared. While one normally would select 

fields with the same content from the two data sets (for example, to compare suburb names with suburb names), 

it is feasible to select different fields (for example to accommodate for swapped given- and surname values). 

 

4.3 WEIGHT VECTOR CLASSIFICATION 

The last major step required is the selection of the method used for weight vector classification and 

setting of its parameters. Currently, Febrl offers six different classification techniques. The simple „Fellegi 
Sunter‟ classifier allows manual setting of two thresholds . With this classifier, the similarity weights of the 

weight vector of each compared record pair are summed into one matching weight, and record pairs that have a 

summed weight above the upper classification threshold are classified as matches, pairs with a matching weight 

below the lower threshold are classified as non-matches, and those record pairs that have a matching weight 

between the two classification thresholds are classified as possible matches.  

With the „Optimal Threshold‟ classifier it is assumed that the true match status for all compared record 

pairs is known (i.e. supervised classification), and thus an optimal threshold can be calculated based on the 

corresponding summed weight vectors.  

The „SuppVecMachine‟ classifier uses a supervised support vector machine (SVM) and thus requires 

the user to provide the true match status (as described above for the „Optimal Threshold‟ classifier) of weight 

vectors in order to be able to train this classifier. It is based on the lib svm library, and the most important 

parameters of the SVM classifier can be set in the Febrl GUI. Finally, the „Two Step‟ classifier is an 
unsupervised approach which in a first step selects weight vectors from the compared record pairs that with high 
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likelihood correspond to true matches and true non-matches, and in a second step uses these vectors as training 

examples for a binary classifier (Christen 2007). Several methods are implemented on how to select the training 

examples in the first step, and for the second step a SVM classifier or k-means clustering can be used. 
Experimental results have shown that this unsupervised approach to weight vector classification can a achieve 

linkage quality almost as good as fully supervised classification (Christen 2007). 

 

V. Experimental Evaluation 
The different methods were executed several times with different   partition/window sizes. To obtain 

comparable results, the partition sizes for blocking were selected in such a way that there was always a 

corresponding window size with nearly the same total number of comparisons. This was achieved by sorting the 

tuples and cutting them in fixed size partitions. Additionally, an exhaustive comparison of all tuples was 

processed without any partitioning. This is especially interesting to see the impact of partitioning methods on the 
recall. 

 
Fig 1: The density plot of the matching weights for a real-world administrative health data set. This plot is based 

on record pair comparison weights in a  blocked comparison space. The smallest weight is -43, the highest 115. 

Note that the vertical axis with frequency counts is on a log scale 

 

 
Fig 2a: Accuracy and matching weight 

 

 
Fig 2b: precision and recall 
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Fig 2c: matching weight and False Positive 

 

Fig. 2. Quality measurements of a real world administrative health data set. The full comparison space (30; 698; 

719; 310 record pairs) was simulated by assuming that the record pairs removed by blocking were normally 
distributed with matching weights between -43 and -10. Note that the precision-recall graph does not change at 

all, a ndthe F-measure graphs does change only slight. Accuracy and specificity are almost the same as both are 

dominated by the large number of true negatives. The ROC curve is the least illustrative graphs, which is again 

due to the large number of true negatives. 

 

VI. Conclusion 
Febrl is an training tool suitable for new record linkage users and practitioners, and to conduct small to 

medium sized experimental linkages and de-duplications with up to several hundred thousand records. Within 

the health sector, it can be used alongside commercial linkage systems for comparative linkage studies; and for 
both new and experienced record linkage practitioners to learn about the many advanced linkage techniques that 

have been developed in recent years and that are implemented in Febrl. 
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