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ABSTRACT: This paper presents a novel method for implicit active contours, which is completely free of the 

costly re-initialization procedure in level set evolution (LSE). A diffusion term is introduced into LSE, resulting 

in a specialized-LSE equation, to which a piecewise constant solution can be derived. In order to have a stable 

numerical solution of the RD based LSE. I  propose a two-step splitting method (TSSM) to iteratively solve the 

LSE equation: first iterating the LSE equation, and then solving this equation. The second step regularizes the 

level set function obtained in the first step to ensure stability, and thus the complex and costly re-initialization 

procedure is completely eliminated from LSE. By  successfully applying diffusion to LSE, the LSE model is 

stable by means of the simple finite difference method, which is very easy to implement. The proposed RD 

method can be generalized to solve the LSE for both variational level set method and PDE-based level set 

method. The RD-LSE method shows very good performance on boundary anti-leakage, and it can be readily 

extended to high dimensional level set method.The extensive and promising experimental results on synthetic 

and real images validate the effectiveness of the proposed RD-LSE approach. 
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I. INTRODUCTION 
In the past two decades, active contour models (ACMs, also called snakes or deformable models) [1] 

have been widely used in image processing and computer vision applications, especially for image segmentation 

[5][9][12-13][17-18][30][34][41-42][52-53][59].  

The original ACM proposed by Kass et al. [1] moves the explicit parametric curves to extract objects in 

images. However, the parametric ACM has some intrinsic drawbacks, such as its difficulty in handling 
topological changes and its dependency of parameterization [2]. The level set method later proposed by Osher 

and Sethian [2] implicitly represents the curve by the zero level of a high dimensional function, and it 

significantly improves ACM by being free of these drawbacks [2-5]. The level set methods (LSM) can be 

categorized into partial differential equation (PDE) based ones [8] and variational ones [9]. The level set 

evolution (LSE) of PDE-based LSM is directly derived from the geometric consideration of the motion 

equations [6], which can be used to implement most of the parametric ACMs, such as Kass et al.’s snakes [1], 

region competition snakes [12], and geodesic active contours [5], etc. 

 The LSE of variational LSM is derived via minimizing a certain energy functional defined on the level 

set [9], such as Chan-Vese ACM [18], Vese and Chan’s piecewise smoothing ACM [42], local binary fitting 

ACM [30][41], etc. Moreover, the variational LSM can be easily converted into PDE-based LSM by changing 

slightly the LSE equation while keeping the final steady state solution unchanged [7]. In implementing the 

traditional LSMs [4-5][8][10][18], the upwind schemes are often used to keep numerical stability, and the level 
set function (LSF) is initialized to be a signed distance function (SDF). Since the LSF often becomes very flat or 

steep near the zero level set in the LSE process and this will affect much the numerical stability [8][14], a 

remedy procedure called re-initialization is applied periodically to enforce the degraded LSF being an SDF [14]. 

The first  re-initialization method was proposed by Chopp [35] and it directly computes the SDF. However, this 

method is very time-consuming. In [35], Chopp also proposed a more efficient method by restricting the front 

movement and the re-initialization within a band of points near the zero level set. However, it is difficult to 

locate and discretize the interface by Chopp’s methods [10].  

The method proposed by Sussman et al. [14] iteratively solves a re-initialization equation. Nonetheless, 

when the LSF is far away from an SDF, this method fails to yield a desirable SDF. The re-initialization method 

in [8] addresses this problem by using a new signed function, but it will shift the interface to some degree [10]. 

In order to make the interface  stationary during re-initialization, a specific method for the two-phase 
incompressible flow was proposed in [39], which focuses on preserving the amount of material in each cell. The 

method in [38] uses a true upwind discretization near the interface to make the interface localization accurate, 

and it can keep the interface stationary.  
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All the above mentioned re-initialization methods, however, have the risk of preventing new zero 

contours from emerging [16], which may cause undesirable results for image segmentation, such as failures to 

detecting the interior boundary. 

In recent years, some variational level set formulations [9][34][59] have been proposed to regularize 

the LSF during evolution, and hence the re-initialization procedure can be eliminated. These variational LSMs 

without re-initialization have many advantages over the traditional methods [4-5][8][10][18], including higher 

efficiency and easier implementation, etc [9]. Some global minimization methods [61][62] eliminate the re-
initialization procedure by combining the total variational model with the Chan-Vese model [18] or the Vese-

Chan’s piecewise smoothing model [42]. However, these global minimization methods [61][62] can only be 

applied to some variational LSF with specific forms. 

This paper proposes a new LSM, namely the reaction-diffusion (RD) method, which is completely free 

of the costly re-initialization procedure. The RD equation was originally used to model the chemical mechanism 

of animal coats [58]. It includes two processes: reaction, in which the substances are transformed into each 

other, and diffusion, which causes the substances to spread out over a surface in space. The RD equation was 

also used to describe the dynamic process in fields such as texture analysis [55-57], natural image modeling [54] 

and phase transition modeling [21][25-28][31]. In particular, the RD equation in phase transition modeling is 

based on the Van der Waals-Cahn-Hilliard theory [26], which is widely used in mechanics for stability analysis 

of systems with unstable components (e.g., density distributions of a fluid confined to a container [31]). It has 
been proved that the stable configurations of the components are 

piecewise constant in the whole domain, and the interfaces between the segmented areas have minimal 

length [21][26]. These conclusions have been used in image classification with promising results [33]. However, 

the phase transition method cannot be directly applied to image segmentation because of the inaccurate 

representation of interface and the stiff parameter ε  in its RD equation [16]. 

The joint use of phase transition and LSM has been briefly discussed in [60]. However, [60] aims to 

apply the curvature-related flow in phase transition to analyze the evolution driven by the curvature based force. 

In fact, the curvature motion based on the phase transition theory has been widely studied [11][13][17][48-51]. 

For example, the classical Merriman-Bence-Osher (MBO) algorithm [11] applies a linear diffusion process to a 

binary function to generate the mean curvature motion with a small time step; the methods in [13][48-51] 

convolve a compactly supported Gaussian kernel (or an arbitrary positive radically symmetric kernel) with a 

binary function to generate similar motion (often called the convolution-generated curvature motion). 
Motivated by the RD based phase transition theory [27], it is proposed to introduce a diffusion term 

into the conventional LSE equation, constructing a RD-LSE equation to combine the merits of phase transition 

and LSM. I present the unique and stable equilibrium solution of RD-LSE based on the Van der Waals-Cahn-

Hilliard theory, and give the accurate representation of interface. The re-initialization procedure is completely 

eliminated from the proposed RD-LSM owing to the regularization of the diffusion term. A two-step splitting 

method (TSSM) is proposed to iteratively solve the RD equation in order to eliminate the side effect of the stiff 

parameter ε 

In the first step of TSSM, the LSE equation is iterated, while in the second step the diffusion equation 

is solved, ensuring the smoothness of the LSF so that the costly re-initialization procedure is not necessary at all. 

Though the diffusion method has been widely used in image processing, to the best of my knowledge, my work 

is the first one to apply diffusion to LSE, making it re-initialization free with a solid theoretical analysis under 
the RD framework. One salient advantage of the proposed method is that it can be generalized to a unified 

framework whose LSE equation can be either PDE-based ones or variational ones.Another advantage of RD-

LSE is its higher boundary anti-leakage and anti-noise capability compared with state-of-the-art methods 

[9][34][59].  

In addition, due to the diffusion term, the LSE formulation in the proposed method can be simply 

implemented by finite difference scheme instead of the upwind scheme used in traditional LSMs [5][8][10][18]. 

The proposed RD-LSE method is applied to representative ACMs such as geodesic active contours (GAC) [5] 

and Chan-Vese (CV) active contours [18]. The results are very promising, validating the effectiveness of RD-

LSE. The rest of the paper is organized as follows.   Section 2 presents the Specialized -LSM. Section 3 presents 

the experimental  results of RD-LSM, and analyzes the consistency between theory and implementation 

followed by Section 4 which presents the conclusion . 
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II. SPECIALIZED (RD)  LEVEL SET EVOLUTION 
Since the zero level is used to represent the object contour, we only need to consider the zero level set 

of the LSF. As pointed out in [8], with the same initial zero level set, different embedded LSFs will give the 

same final stable interface. Therefore, we can use a function with different phase fields as the LSF. Motivated by 

the phase transition theory [20][27], we propose to construct a RD equation by adding a diffusion term into the 
conventional LSE equation. Such an introduction of diffusion to LSE will make LSE stable without re-

initialization. The stable solution of the RD equation is piecewise constant with different phase fields in the 

domain Ω, and it is also the solution of the LSE equation.  

 

By adding a diffusion term “εΔφ” into the LSE equation in Eq. (3) or Eq. (4), we have the following RD 

equation for LSM: 

1.  

 
 

where ε is a small positive constant, L(φ) = –F|∇φ| for PDE-based LSM or L(φ) = –Fδ(φ) for variational LSM, Δ 

is the Laplacian operator defined by , 

 

 
 

∂ /∂(.) indicates the partial differential operator, and φ(x) is the initial LSF. Eq. (13) has two dynamic 

processes: the diffusion term “εΔφ” gradually regularizes the LSF to be piecewise constant in each segment 
domain Ωi, and the reaction term “−ε−1L(φ)” forces the final stable solution of Eq. (13) to L(φ)=0, which 

determines Ωi. In the traditional LSMs             [4-5][8][10][18], due to the absence of the diffusion term we 

have to regularize the LSF by an extra procedure, i.e., re-initialization. 

In the following, based on the Van der Waals-Cahn Hilliard theory of phase transitions [26],  the equilibrium 

solution of the RD equation is first  analyzed when ε→0+ for variational LSM, and then generalize the analysis 

into a unified framework for both PDE based LSM and variational LSM .  

 

Algorithm 1: RD based level set evolution (RD-LSE) 

 

1.Initialization : φn= φ0 , n= 0  

2.Compute  φn+1/2= φn− Δt1 .L(φn) ,  

3.Compute φn+1= φn− Δt2 . Δ(φn) ,  

Where, φ
n
= φ

n+1/2
 

 

4.If   φ
n+1

,  satisfies stationary condition stop; otherwise n=n+1 and return to step 2.

III. EXPERIMENTAL RESULTS 
The following figure show the output of the proposed Specialized level set method and other level set 

methods which involve re-initialization. It is evident from the output figures that the proposed method exhibits 

higher performance over the existing methods. Fig.1 shows the output of the segmented image using the 

proposed Level Set method. Fig. 2 depicts the level set which is created by using the proposed method. It can be 

observed clearly that the evolving contour is an exact 3d representation of the input figure.  

Whereas in the existing method the evolving level set does not perform well with the same number of 

iterations and unpredictable shrinking of the contour occurs resulting in un-predictable results. 

The experiments on synthetic and real images demonstrated the promising performance of the 
approach. Motivated by the convolution-generated curvature motion [48-51] in phase transitions, the diffusion 

procedure in our TSSM algorithm can also be replaced by convolving any positive, radically symmetric kernel 

with a small enough width. A Gaussian kernel is used for regularization .  
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This implies that the RD method can be readily extended to multiphase level set method based on the 

theory of phase transitions in mixtures of Cahn-Hilliard fluids [26]. The figures given below show the superior 

performance of the proposed method. 

Result of Proposed Specialized LSE method: 

 
Fig.1:Segmented image using proposed 

Specialized LSE 
 

 
Fig.2: Level Set Function using proposed Specialized LSE

 

Result of Existing method: 
 

 
Fig. 3: Segmented image with   Re-initialization 
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Fig.4: Level Set Function using Re-Initialization

 

IV. CONCLUSION 

This paper proposes a specialized level set evolution (LSE), which is completely free of the re-

initialization procedure required by traditional level set methods. A two-step-splitting-method (TSSM) was then 

proposed to effectively solve the RD based LSE. The proposed RD method can be generally applied to either 

variational level set methods or PDE-based level set methods. It can be implemented by using the simple finite 

difference scheme.  

The RD method has the following advantages over the traditional level set method and state-of-the-art 

algorithms [9][59][34]. First, the RD method is general, which can be applied to the PDE-based level set 
methods and variational ones. Second, the RD method has much better performance on weak boundary anti-

leakage. Third, the implementation of the RD equation is very simple and it does not need the upwind scheme at 

all. Fourth, the RD method is robust to noise. 
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