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Abstract:- In Cloud Storage, users can remotely store their data and enjoy the on-demand high quality 

applications and services. The integrity of cloud data is subject to skepticism due to the existence of 

hardware/software failures and human errors. Several mechanisms have been designed to allow both data 

owners and public verifiers to efficiently audit cloud data integrity without retrieving the entire data from the 

cloud server. However, public auditing on the integrity of shared data with these existing mechanisms will 

supports public auditing on shared data stored in the cloud that exploit ring signature to compute verification 

metadata needed to audit the correctness of shared data.so that a third party auditor (TPA) is able to verify the 

integrity of shared data for users without retrieving the entire data. Meanwhile, the identity of the signer on 

each block inshared data is kept private from the TPAalso able to perform multiple auditing tasks 

simultaneously instead of verifying them one byone.In this paper, we proved the data freshness(proved the cloud 

possesses the latest version of shared data)while still preserving identity privacy.Our experimental result 

ensures that retrieved data always reflects the most recent updates and prevents rollback attacks. 

 

Index terms - AFS (Authenticated File System); data freshness; public auditing; shared data 

 

I. INTRODUCTION 
 With cloud computing and storage, users are able to access and to share resources offered by cloud 

service providers at a lower marginal cost. It is routine for users to leverage cloud storage services to share data 

with others in a group, as data sharing becomes standard feature in most cloud storage offerings, including 

Dropbox, iCloud and Google Drive [2]. The integrity of data in cloud storage, however, is subject to skepticism 

and scrutiny, as data stored in the cloud can easily be lost or corrupted due to the inevitable hardware/software 

failures and human errors [3], [4]. The traditional approach for checking data correctness is to retrieve the entire 

data from the cloud, and then verify data integrity by checking the correctness of signatures (e.g., RSA [7]) or 

hash values (e.g., MD5 [8])of the entire data. Certainly, this conventional approach able to successfully check 

the correctness of cloud data. However, the efficiency of using this traditional approach on cloud data is in 

doubt [9].The main reason is that the size of cloud data is largein general. Downloading the entire cloud data to 

verify data integrity will cost or even waste users amounts of computation and communication resources, 

especially when data have been corrupted in the cloud.  

 Recently, many mechanisms [9]–[16] have been proposed to allow not only a data owner itself but also 

a public verifier to efficiently perform integrity checking without downloading the entire data from the cloud, 

which is referred to as public auditing [5]. In these mechanisms, data is divided into many small blocks, where 

each block is independently signed by the owner; and a random combination of all the blocks instead of the 

whole data is retrieved during integrity checking [9].A public verifier could be a data user (e.g. researcher)who 

would like to utilize the owner’s data via the cloud or a third-party auditor (TPA) who can provide expert 

integrity checking services. Existing public auditing mechanisms can actually be extended to verify shared data 

integrity and data freshness [1], [5].  

 However, a new significant privacy issue introduced in the case ofshared data with the use of existing 

mechanisms is the leakage of identity privacy to public verifiers [1].To protect theconfidential information, it is 

essential and critical topreserve identity privacy from public verifiers duringpublic auditing. To solve the above 

privacy issue onshared data, we propose Oruta1, a novel privacypreservingpublic auditing mechanism. More 

specifically, we utilize ring signatures to construct homomorphicauthenticators [10] in Oruta, so that a public 

verifier isable to verify the integrity of shared data without retrieving the entire data — while the identity of the 

signer oneach block in shared data is kept private from the publicverifier.  

 In addition, extend this mechanismto support batch auditing, which can perform multipleauditing tasks 

simultaneously and improve the efficiencyof verification for multiple auditing tasks. Meanwhile,Oruta is 

compatible with random masking [5]; Oruta stands for “One Ring to Rule Them All”.  
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In this paper, to prove the data freshness (prove the cloud possesses the latest version of shared data)while still 

preserving identity privacy.Ensures that retrieved data always reflects the most recent updates and prevents 

rollback attacks. 

Achieving data freshness is essential to protect against mis-configuration errors or rollbacks caused 

intentionally. We can develop an authenticated file system, that supports the migration of an enterprise-class 

distributes file system into the cloud efficiently, transparently and in a scalable manner. It’s authenticated in the 

sense that enables an enterprise tenant to verify the freshness of retrieved data while performing the file system 

operations. 
 

 

II. PROBLEM STATEMENTS 
2.1 SYSTEM MODEL 
 

 As illustrated in Fig. 1, the system model in thispaper involves three parties: the cloud server, a groupof 

users and a public verifier. There are two types ofusers in a group: the original user and a number ofgroup users. 

The original user initially creates shareddata in the cloud, and shares it with group users. Boththe original user 

and group users are members of thegroup. Every member of the group is allowed to accessand modify shared 

data. Shared data and its verificationmetadata (i.e. signatures) are both stored in the cloudserver. A public 

verifier, such as a third-party auditor(TPA) providing expert data auditing services or a datauser outside the 

group intending to utilize shared data, isable to publicly verify the integrity of shared data storedin the cloud 

server. 

 When a public verifier wishes to check the integrityof shared data, it first sends an auditing challenge 

tothe cloud server. After receiving the auditing challenge,the cloud server responds to the public verifier with 

anauditing proof of the possession of shared data. Then,this public verifier checks the correctness of the 

entiredata by verifying the correctness of the auditing proof.Essentially, the process of public auditing is a 

challengeand-response protocol between a public verifier and thecloud server [9]. 

 

 
Fig.1 System model of three parties. 

2.2 THREAT MODEL 
2.2.1 Integrity ThreatsTwo kinds of threats related to theintegrity of shared data are possible. First, an 

adversary may try to corrupt the integrity of shared data. Second,the cloud service provider may inadvertently 

corrupt(or even remove) data in its storage due to hardwarefailures and human errors. Making matters worse, 

thecloud service provider is economically motivated, whichmeans it may be reluctant to inform users about 

suchcorruption of data in order to save its reputation andavoid losing profits of its services. 
 

2.2.2 Privacy ThreatsThe identity of the signer on eachblock in shared data is private and confidential to 

thegroup. During the process of auditing, a public verifier,who is only allowed to verify the correctness of 

shareddata integrity, may try to reveal the identity of thesigner on each block in shared data based on 

verificationmetadata. Once the public verifier reveals the identity ofthe signer on each block, it can easily 

distinguish a highvaluetarget (a particular user in the group or a specialblock in shared data) from others. 
 

2.3 DESIGN OBJECTIVES 
 

Orutashould be designed to achievefollowing properties:  
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(1) Public Auditing: A public verifieris able to publicly verify the integrity of shared datawithout retrieving the 

entire data from the cloud.  

(2)Correctness: A public verifier is able to correctly verifyshared data integrity.  

(3) Unforgeability: Only a user inthe group can generate valid verification metadata (i.e., signatures) on shared 

data.  

(4)Identity Privacy: A publicverifier cannot distinguish the identity of the signer on each block in shared data 

during the process of auditing.  

(5)Data freshness: data freshness is essential to protect against mis-configuration errors or rollbacks caused 

intentionally. We can develop an authenticated file system that supports the migration of an enterprise-class 

distributed file system into the cloud efficiently, transparently and in a scalable manner. It’s authenticated in the 

sense that enables an enterprise tenant to verify the freshness of retrieved data while performing the file system 

operations. 
 
 

III. NEW RING SIGNATURE SCHEME 
 

3.1 Overview 

 The design of new homomorphicauthenticable ring signature (HARS) scheme, which is extendedfrom 

a classic ring signature scheme [15]. The ringsignatures generated by HARS are not only able to 

preserveidentity privacy but also able to support block lessverifiability. We will show how to build the 

privacypreservingpublic auditing mechanism for shared datain the cloud based on this new ring signature 

scheme inthe next section. 
 

     3.2 Construction of HARS 
 

 

HARS contains three algorithms: KeyGen, RingSignand RingVerify. In KeyGen, each user in the group 

generateshis/her public key and private key. In RingSign,a user in the group is able to generate a signature on 

ablock and its block identifier with his/her private keyand all the group members’ public keys. A block 

identifieris a string that can distinguish the correspondingblock from others. A verifier is able to check whether 

agiven block is signed by a group member in RingVerify. 
 

IV. PUBLIC AUDITING MECHANISM 
 

4.1 Overview 

Using HARS and its properties, we now construct Oruta, a privacypreservingpublic auditing 

mechanism for shared datain the cloud. With Oruta, the public verifier can verifythe integrity of shared data 

without retrieving the entiredata. Meanwhile, the identity of the signer on each blockin shared data is kept 

private from the public verifierduring the auditing. 
 

4.2 Construction of Oruta 

Now, we present the details of our public auditingmechanism. It includes five algorithms: 

KeyGen,SigGen, Modify, ProofGenand ProofVerify. In Key-Gen, users generate their own public/private key 

pairs.In SigGen, a user (either the original user or a groupuser) is able to compute ring signatures on blocks 

inshared data by using its own private key and all thegroup members’ public keys. Each user in the group isable 

to perform an insert, delete or update operationon a block, and compute the new ring signature onthis new block 

in Modify. ProofGenis operated by apublic verifier and the cloud server together to interactivelygenerate a 

proof of possession of shared data.  

In ProofVerify, the public verifier audits the integrity ofshared data by verifying the proof.Note that for the ease 

of understanding, we first assume the group is static, which means the group is predefinedbefore shared data is 

created in the cloud andthe membership of the group is not changed during datasharing. Specifically, before the 

original user outsources shared data to the cloud, he/she decides all the groupmembers. 

Dynamic Groups:We now discuss the scenario ofdynamic groups under our proposed mechanism. If anew user 

can be added in the group or an existinguser can be revoked from the group, then this groupis denoted as a 

dynamic group. To support dynamicgroups while still allowing the public verifier to performpublic auditing, all 

the ring signatures on shared dataneed to be re-computed with the signer’s private key andall the current users’ 

public keys when the membershipof the group is changed. 
 

4.3 Security Analysis of Oruta 
 

Now, we discuss security properties of Oruta, includingits correctness, unforgeability, identity privacy 

anddata privacy. 
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Theorem: A public verifier is able to correctly audit theintegrity of shared data under Oruta. 

Proof: According to the description of ProofVerify, a public verifier believes the integrity of shared data 

iscorrect if Equation 6 holds. So, the correctness of ourscheme can be proved by verifying the correctness 

ofEquation 6. Based on properties of bilinear maps andTheorem 1, the right-hand side (RHS) of Equation 6 

canbe expanded as follows: 

 
 

4.4 Batch Auditing 

Sometimes, a public verifier may need to verify thecorrectness of multiple auditing tasks in a very 

shorttime. Directly verifying these multiple auditing tasksseparately would be inefficient. By leveraging the 

propertiesof bilinear maps, we can further extend Orutatosupport batch auditing, which can verify the 

correctnessof multiple auditing tasks simultaneouslyand improvethe efficiency of public auditing.  
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4.5 Data freshness verification 

We extend the construction of oruta with data freshness in the authenticated file system that verify the  

freshness of any data retrieved from the file system while performing typical file system operations.  Freshness 

ensures that the latest version of the data is always retrieved (and thus prevents rollback attacks reverting the file 

system state to a previous version. Another challenge is efficient management and caching of the authenticating 

information.  

Freshness verification should be extremely efficient for existing file system operations and induce 

minimal latency. To ensure freshness, it is necessary to authenticate not just data blocks, but also their versions. 

Each block has an associated version counter that is incremented every time the block is modified. This version 

number is bound to the file-block’s MAC: To protect against cloud replay of stale file-blocks (rollback attacks), 

the counters themselves must be authenticated. 

 

4.5.1System architecture 
 

The cloud maintains the distributed file system, consisting of all files and directories belonging to 

enterprise users. Iris is designed to use any existing cloud storage system transparently in the back end without 

modification. In addition, the cloud also stores the MACs and Merkle tree necessary for authenticating data, as 

well as the checkpointed parity information needed to recover from potential corruptions at the portal. As an 

additional resilience measure the parity information could be stored on a different cloud or replicated internally 

within the enterprise. 

 
4.5.2 Solution overview and challenges 

It consists of two major components: 

Authenticated file system: As already described, the first challenge we address in building an authenticated 

enterprise-class file system is the high cost of network latency and bandwidth between the enterprise and cloud. 

Another challenge is efficient management and caching of the authenticating information. Integrity and 

freshness verification should be extremely efficient for existing file system operations and induce minimal 

latency. To guarantee data freshness for the entire file system, an authentication scheme consisting of two 

layers. At the lowest layer, it stores a MAC for each file block (file blocks are fixed size file segments typical 

size 4KB). This enables random access to file blocks and a verification of individual file block without 

accessing full files.Forfreshness,MACs are not sufficient.Instead, that associates a counter or version number 

with each file block that is incremented on every block update and included in the block MAC[12].Different 

versions of a block can be distinguished through different version numbers. But for freshness, block version 

numbers need to be authenticated too! The upper layer of the authentication scheme is a Merkle tree tailored to 

the file system directory tree. The leaves of the Merkle tree store block version numbers in a compacted form. 

The authentication of data is separated from the authentication of block version numbers to enable various 

optimizations in the data structure. Internal nodes of the tree contain hashes of children as in a standard Merkle 

tree. The root of the Merkle tree needs to be maintained at all times within the enterprise trust boundary at the 

gateway. 

 The tenant can efficiently verify the freshness of a file data block by checking the block MAC and the 

freshness of the block version number. The tenant verifies the later by accessing the sibling nodes on the path 

from the leaf storing the version number up to the root of the tree, re-computing all hashes on the path to the 

root and checking that the root matches the value stored locally. With the similar mechanism the tenant can 

additionally verify the correctness of file paths in the file system and more generally of any other file system 

meta data (file names, number of files in a directory, file creation system,etc.). 
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This Merkle tree based structure has two distinctive features compared to other authenticated file systems: (1) 

Support for existing file system operations: that maintains a balanced binary tree over the file system directory 

structure to efficiently support existing file system calls; and (2) Support for concurrent operation: the Merkle 

tree supports efficient updates from multiple clients operating on a file system in parallel. It also optimizes for 

sequential file block accesses: sequences of identical version counters are compacted into a single leaf. The 

authenticated mechanism is practical and scalable: in a prototype system, the use of a Merkle tree catch of only 

10 MB increases the system throughput by a factor of 3(compared to no catching employed),the throughput is 

fairly constant for about 100 clients executing operations on the file system in parallel and the operation latency 

overhead introduced by processing at the gateway is at most 15%.These numbers are reported from a user level 

implementation of sequential file reads and writes, and archiving of an entire directory structure 

 
Fig. 2 Authenticated data structure. 

4.5.3Authentication process in AFS: 

We describe in this section with data freshness, for both file system data and meta-data. The 

authentication scheme is based on Merkle trees, and designed to support existing file system operations. In 

addition, random access to files for both read and writes operations are a desirable feature that we also choose to 

implement. The tenant needs to maintain at all times the root of the Merkle trees for checking the freshness of 

data retrieved from the cloud. For reducing operation latency, recently accessed nodes in the tree are also cached 

at the portal. 

 

(a) Block-levelMACs:  

For providing freshness, we need to bind a unique version number to each file block every time it’s 

updated and include the version number in the block MAC. To protect against rollback attacks (in which clients 

are presented with an old state of the file system), version numbers will have to be authenticated as well. 

(b) File version trees: 

 We construct a file version tree per file that authenticates version numbers for all file blocks in a 

compressed form. Briefly, the file version tree compresses the versions of a consecutive range of blocks into a 

single node, storing the index range of the blocks and their common version number. File version trees are 

optimized for sequential access to files. For instance, if a file is always written sequentially then its file version 

tree consists of only one root node. The compacted version tree essentially behaves as a range tree data 

structure.  

(c) Directory trees: 
To authenticate file system meta-data (or the directory structure of the file system), the file system 

directory tree is transformed into a Merkle tree in which every directory is mapped to a directory subtree. We 

have chosen to map our authenticated data structure onto the existing file system tree in order to efficiently 

support file system operations like delete or move of entire directories.  

To support directories with large number of files efficiently, we create a balanced binary tree for each 

directory that contains file and subdirectory nodes in the leaves, and includes intermediate, empty internal nodes 

for balancing. Nodes in a directory tree have unique identifiers assigned to them, chosen as random strings of 

fixed length. A leaf for each file and subdirectory is inserted into the directory tree in a position given by a 

keyed hash applied to its name and its parent’s identifier (to ensure tree balancing). At the leaves of the 

directory tree, we insert the file version trees in compacted form, as described above. Internal nodes in the 
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Merkle tree contain hash values computed over their children, as well as some additional information, e.g., node 

identifiers, their rank (defined as the size of the subtree rooted at the node), file and directory names.  

Our Merkle tree supports the following operations. Clients can insert or delete file system object nodes (files or 

directories) at certain positions in the tree. Those operations trigger updates of the hashes stored on the path 

from the inserted/deleted nodes up to the root of the tree. Deleted subtrees are added to the free list, as explained 

below. Clients can verify a file block version number, by retrieving all siblings on the path from the leaf 

corresponding to that file block up to the root of the tree. Searches of files or directories in the tree can also be 

performed, given absolute path names. We also implement an operation randompath-dir-tree for directory trees. 

This feature is needed to execute the challenge-response protocols of the auditing component in Iris. A 

(pseudo)-random path in the tree is returned by traversing the tree from the root, and selecting at each node a 

child at random, weighted by rank. 

In addition, the authentication information for the random path is returned, so the tenant can verify that 

the path has been chosen pseudo-randomly. With this Merkle tree construction, we authenticate both file system 

meta-data, as well as file block version numbers. Together with the file block MACs, this mechanism ensures 

data integrity and freshness, assuming that the portal always stores the root of the Merkle tree. 

 

(d) Free list:  

As an optimization, we also maintain in the data structure a free list containing pointers of nodes 

deleted from the data structure, i.e., sub trees removed as part of delete or truncate operations. The aim of the 

free list is to defer garbage collection of deleted nodes and support remove and truncate file system operations 

efficiently. We omit further details due to space limitations. 
 

 

V. CONCLUSION AND FUTURE WORK 
 

In this paper, we propose a privacy-preserving public auditing with data freshness 

verificationmechanism for shared data in the cloud. Freshness verification should be extremely efficient for 

existing file system operations and induce minimal latency.  

To ensure freshness, it is necessary to authenticate not just data blocks, but also their versions. Each 

block has an associated version counter that is incremented every time the block is modified. This version 

number is bound to the file-block’s MAC: To protect against cloud replay of stale file-blocks (rollback attacks), 

the counters themselves must be authenticated. 

The interesting problems we will continue to study for our future work. One of them is traceability, 

which means the ability for the group manager (i.e., the original user) to reveal the identity of the signer based 

on verification metadata in some special situations.Since the current design of ours does not support traceability. 
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