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ABSTRACT  :Service-Oriented Architecture (SOA)  is a popular design paradigm to simplify the 

process of creating and maintaining distributed software systems. Exception handling is one of the 

powerful means of achieving high dependability and fault-handling in service-oriented architecture. 

This paper introduces the comparative study of exception handling related to languages & SOA 

specific results. This result is due to  experimental analysis of the SOA-specific exceptions and fault-

tolerance of Web Services. It is  implemented by use of different development toolkits  and also 

discusses how SOA is used to simplify the process of servicing the various types of software users. 

Finally, we conclude with the benefits of our fault taxonomy for designing and testing SOA-based 

systems. 
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I. INTRODUCTION 
An exception is an event that occurs during the execution of a program that disrupts the 

normal flow of instructions. Writing a good computer program includes proper error handling and 

recovery. Exception mechanism provides simple, streamlined, organized approach to deal with the 

exception. 

 

 
 

a. Service-Oriented Architecture  
Computer-based infrastructures are a necessity for many companies to handle their daily work 

today. The IT system infrastructure of most companies is based on distributed systems, which consist 

of multiple interdependent  computers connected by a network. A common design paradigm for 

distributed systems is Service-Oriented Architecture (SOA) [1]. The concept of service-oriented 

architecture (SOA) has been introduced for solving the problem of ensuring effective, reliable and 

secure interaction of complex distributed systems. SOA assumes that such systems are constructed 

from separate functional application modules (services) that have interfaces, defined by common rules 

(WSDL - description), and a dedicated invoke mechanism (SOAP messages).  

 
 

 
 

1.2  SOA Structure 

The basic assumption of SOA is that there are many consumers that require services. In 

literature, Consumers are also referred to as clients or customers. On the other side, there are many 

providers that provide services on the network. These two groups have to be linked together in a 

dynamic and adaptive way. This is usually done by a service broker [2], [3]. Service providers register 

their services at the broker (registry), service consumers request a service from the service broker, 

which returns a known provider for the requested service. Consumer and provider agree on the 

semantics. The consumer then binds himself to the service provider and uses the service. 
 

 

 

 

1.3 Objectives  

The main objective of this topic is to[4]: 

 To propose a reliable exception handing technique for SOA application. 

 Adding more exceptions, handlings and rules into our system to complete the strategy. 

  Include the creation of a test environment and the development of appropriate fault handling 

mechanism in SOA. 

 

II. WEB SERVICES DEVELOPMENT TOOLKITS 

2.1 Microsoft Visual Studio IDE (.Net)   
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 Microsoft Visual Studio is an integrated development environment (IDE) from Microsoft. It is used to 

develop console and graphical user interface applications along with Windows Forms or WPF applications, web 

sites, web applications, and web services in both native code together with managed code for all platforms 

supported by Microsoft Windows, Windows Mobile, .NET Framework, .NET Compact Framework and 

Microsoft Silverlight.  
 

 

2.1.1 WCF Programming  
Windows Communication Foundation (WCF) is a framework for building service-oriented applications 

(SOA). As its name suggests, WCF provides the .NET Framework with a basis for writing code to communicate 

across components, applications, and systems. The below steps presents the fundamentals for creating Windows 

Communication Foundation (WCF) applications [5].  

Basic Programming Lifecycle  

Windows Communication Foundation (WCF) enables applications to communicate whether they are 

on the same computer, across the Internet, or on different application platforms. The basic tasks to perform are, 

in order[4]:  

 Define the service contract. A service contract specifies the signature of a service, the data it exchanges, and 

other contractually required data.  

 Implement the contract. To implement a service contract, create a class that implements the contract and 

specify custom behaviors that the runtime should have.  

 Configure the service by specifying endpoints and other behavior information.  

 Host the service.  

 Build a client application.  

Designing and Implementing Services  
This topic provides a high level conceptual orientation to designing and implementing WCF services. 

Before designing and implementing your WCF application, it is recommended that you:  

 Understand what a service contract is, how it works, and how to create one.  

 Understand that contracts state minimum requirements that runtime configuration or the hosting 

environment may not support.  
Service Contracts  

A service contract specifies the following:  

 The operations a contract exposes.  

 The signature of the operations in terms of messages exchanged.  

 The data types of these messages.  

 The location of the operations.  

 The specific protocols and serialization formats that are used to support successful communication with the 

service.  

Configuring Services Using Configuration Files  
A Windows Communication Foundation (WCF) service is configurable using the .NET Framework 

configuration technology. Most commonly, XML elements are added to the Web.config file for an Internet 

Information Services (IIS) site that hosts a WCF service.  

Hosting Services  
The Internet Information Services (IIS) hosting option is integrated with ASP.NET and uses the 

features these technologies offer, such as process recycling, idle shutdown, process health monitoring, and 

message-based activation.  

The IIS-hosted services can only use the HTTP transport.  

Building Clients  
A client application is a managed application that uses a WCF client to communicate with another 

application. To create a client application for a WCF service requires the following steps:  

 Obtain the service contract, bindings, and address information for a service endpoint.  

 Create a WCF client using that information.  

 Call operations.  

 Close the WCF client object.  
 

WSDL  
Before a service can be discovered and consumed by the client, it must be published with a clearly 

defined contract outlining its capabilities, as well as input and output interfaces. This is done with the Web 
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Services Description Language (WSDL). WSDL is an XML formatted machine readable language, designed by 

Microsoft and IBM.[9] It is used for describing how the service can be called, what parameters the service 

expects, and what kind of data is returned. It serves a similar purpose as a method signature in a conventional 

programming language[6].  
 

SOAP  
In order to send and receive the messages defined in WSDL, a standard was needed to allow Internet 

transfer of these messages over HTTP. SOAP is one standard that can be used. Originally an acronym for 

Simple Object Access Protocol, It is no longer referred to as an acronym, and is now simply the soap protocol 

[7]. Soap messages are ordinary XML documents that are sent over HTTP.  
 

 

 

2.2  To create and consume a simple Web Service using JAX WS  
 

One of the most exciting new features of the Java Platform, Standard Edition 6 (Java SE 6) is support 

for the Java API for XML Web Services (JAX-WS). JAX-WS architecture is an easier-to-understand 

architecture for web services development [8].  
 

 Project Description  

 In this example, we create a SOAP based web service for a simple BankService class with operations 

‗GetBalance„ and ‗Deposit„.  

 We then create a web service client which then consumes the web service and displays the result of the 

invoked web service  
 

Creating & Publishing Web service  
 

a) Create a Java Project ‗BankWebService„.  

b) Create a package ‗bankPack„.  

c) Create a Java class ‗BankService„ and write the code for GetBalance & Deposit method.  

d) @WebService annotation at the beginning of the class definition tells the Java interpreter that we intend to 

publish ALL the methods of this class as a web service. If we want to publish only particular methods then we 

can use @WebMethod annotation before the method signature.  

e) In order to publish our class and its methods as web service we need to crate appropriate stub files or artifacts 

for web service deployment and invocation. Fortunately Java provides a tool called ‗wsgen„ which generates 

JAX-WS portable artifacts used in JAX-WS web services.  

f) Open command prompt and go to the project folder ‗BankWebService„.  

g) Now issue the following command,  

wsgen -cp ./bin -keep -s ./src -d ./bin bankPack.BankServie  

h) the –cp option specifies the classpath for our BankService class which is in ‗bin„ folder, the –d option 

specifies where to place generated output files which is also the ‗bin„ folder in our case.  

i) Now we need to publish our class as a web service endpoint. For that we use the static publish() method of the 

javax.xml.ws.Endpoint class to publish our ‗BankService„ class as a web service in the specified context root.  

j) Create a class ‗RunService.java„ with main method and type the following code.  

package bankPack;  

import javax.xml.ws.Endpoint;  

public class RunService {  

public static void main(String[] args) {  

System.out.println("Web Service Started");  

Endpoint.publish("http://localhost:8080/BankService", new BankService());  

} }  

 

i. Run this class as Java Application.  

ii. You may not get output in the Console. To check whether our class is published as web service, open a 

browser and type the URL mentioned in the endpoint with a parameter ?wsdl appended. 

http://localhost:8080/BankService?wsdl  

iii. When you run the application, the Java SE 6 platform has a small web application server that will publish the 

web service at the address http://localhost:8080/BankService?wsdl while the JVM is running.  
 

 

Creating and Consuming a Web Service Client (i.e. cross language or language independent)  
 

a) Having published the web service, we now create a client which communicates with the service and displays 

the result.  
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b) Create a project ‗BankingConsoleClient„ using Microsoft Visual Studio IDE and add Service References of 

Java Application using the following url; http://localhost:8080/BankService?wsdl & then write the following 

code for ‗AccountForm.cs„ & ‗Program.cs„ and run the client.  

 

III. HANDLING EXCEPTION FOR SOA APPLICATION 

3.1 Handling Exception For SOA Application Using .Net IDE 
Creating a service application.  
For creating a service application used following steps[9], they are: 

a. To establish contract between client & the service, use WCF Service Contract & include Service 

Contract, Operation Contract & Data Contract (i.e. Interface). All these contract can include by adding 

the reference System.ServiceModel  

b. Add WCF Methods/ Operation Contract  

c. Create Class Library and add references Service Model & Contract Library.  

d. Add one more class which will be the implemented class which is inherited from interface.  

e. Add one more class Account.  

f. Create Service Provider & add references, Service Model, Contract Library & Implementation.  

g. To publish end point, we need App.config which can be created using MS service configuration editor 

i.e. WCF service configuration editor.  

h. Create client application.  

App.config  
<?xml version="1.0" encoding="utf-8"?> 

<configuration> 

<system.serviceModel> 

<client> 

<endpoint address="http://localhost:9095/BankService"  binding="wsHttpBinding"  

bindingConfiguration="" contract="BankContractLib.IBank" name="BankEP" kind="" 

endpointConfiguration=""> 

</endpoint> 

</client></system.serviceModel></configuration> 

Checking the exception in service  

 The exception in SOA architecture is BasicHttpBinding.  

 To identify, AccID is valid or not, & see the exception on client side. This exception message is very big.  

Handling the exception  

 The BasicHttpBinding exception is resolve using wsHttpBinding. BasicHttpBinding is a stateless protocol, 

it doesn‟t store any previous state. Therefore, change the binding to wsHttpBinding, which is meant for 

statefull binding.  

 To avoid big message, log it on server side.  
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IV. BLOCK DIAGRAM  OF SOA APPLICATION 
 

 
Fig 4.1 . Block diagram  of  SOA application 

RESULT ANALYSIS 

5.1 BankDotNetSolution  
 

Account Object Created  

Unhandled Exception: System.ApplicationException: Account Not Found  

at BankLib.BankService.CheckAccID(Int32 accid) in  

D:\SOAProjects\BankDotNetSolution\BankLib\BankService.cs: 

at BankLib.BankService.InitializeAccount(Int32 accid) in  

D:\SOAProjects\BankDotNetSolution\BankLib\BankService.cs 

at BankLib.BankService.Deposit(Int32 accid, Double amt) in  

D:\SOAProjects\BankDotNetSolution\BankLib\BankService.cs 

at BankConsole.Program.Main(String[] args) in  

D:\SOAProjects\BankDotNetSolution\BankConsoleClick\Program.cs 

 

5.2. BankSOASolution 
 

FaultException is based on SOAP Specification, it is for all application related to SOA Architecture. This 

internally mapped to SOAP Fault.  

Result :  
Unhandled Exception: System.ServiceModel.FaultException`1[BankContractLib.BankEr ror]: Account Not 

Found  

Server stack trace: at System.ServiceModel.Channels.ServiceChannel.HandleReply(ProxyOperationRuntime 

operation, ProxyRpc& rpc) at System.ServiceModel.Channels.ServiceChannel.Call(String action, Boolean on 

eway, ProxyOperationRuntime operation, Object[] ins, Object[] outs, TimeSpan timeout)  

at System.ServiceModel.Channels.ServiceChannelProxy.InvokeService(IMethodCall Message methodCall, 

ProxyOperationRuntime operation)  

at System.ServiceModel.Channels.ServiceChannelProxy.Invoke(IMessage message)  

Exception rethrown at [0]: at System.Runtime.Remoting.Proxies.RealProxy.HandleReturnMessage(IMessage 

req  Msg, IMessage retMsg)  

at System.Runtime.Remoting.Proxies.RealProxy.PrivateInvoke(MessageData& msgDa ta, Int32 type) at 

BankContractLib.IBank.Deposit(Int32 accid, Double amt)  

at BankingConsoleClient.Program.Main(String[] args) in  

D:\SOAProjects\BnkingSolution\BankingConsoleClient\Program.cs 
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Table 1: Compare SOA Application (.Net)  and Simple Dot Net Application 

SOA Application (.Net) Simple Dot Net Application 

Used SOA Specific Exception Used Language Specific Exception 

Need to create channel No need to create channel 

Add Service references & Contract by adding 

namespace 

using System.ServiceModel; 

using BankContractLib; 

Add BankLib reference by adding 

namespace 

using BankLib; 

Catch Exception of FaultException Catch Exception of Language Specific 

Exception 

 

5. CONCLUSION 
 
 

               This topic provides SOA architects techniques to discover error handling requirements from the 

business artifacts package and  to specifies the comparative study of exception handling related to language & 

SOA specific results. It is implemented by use of different development toolkits. It also specified the execution 

of SOA application which is used to various types of software users. 
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