
IOSR Journal of Computer Science (IOSR-JCE)

e-ISSN: 2278-0661, p-ISSN: 2278-8727

PP 78-83

www.iosrjournals.org

International Conference on Advances in Engineering & Technology – 2014 (ICAET-2014) 78 | Page

Comparative Study of Languages & SOA Specific Exception

Handling

Vinod S. Patil, Prof. Sulabha V. Patil
Department of M. Tech(CSE), Abha Gaikwad-Patil College of Engg., Nagpur, India.

Department of M. Tech(CSE), Abha Gaikwad-Patil College of Engg., Nagpur, India.

ABSTRACT :Service-Oriented Architecture (SOA) is a popular design paradigm to simplify the

process of creating and maintaining distributed software systems. Exception handling is one of the

powerful means of achieving high dependability and fault-handling in service-oriented architecture.

This paper introduces the comparative study of exception handling related to languages & SOA

specific results. This result is due to experimental analysis of the SOA-specific exceptions and fault-

tolerance of Web Services. It is implemented by use of different development toolkits and also

discusses how SOA is used to simplify the process of servicing the various types of software users.

Finally, we conclude with the benefits of our fault taxonomy for designing and testing SOA-based

systems.

Keywords - Error Handling, Services, SOA, SOAP, WSDL.

I. INTRODUCTION
An exception is an event that occurs during the execution of a program that disrupts the

normal flow of instructions. Writing a good computer program includes proper error handling and

recovery. Exception mechanism provides simple, streamlined, organized approach to deal with the

exception.

a. Service-Oriented Architecture
Computer-based infrastructures are a necessity for many companies to handle their daily work

today. The IT system infrastructure of most companies is based on distributed systems, which consist

of multiple interdependent computers connected by a network. A common design paradigm for

distributed systems is Service-Oriented Architecture (SOA) [1]. The concept of service-oriented

architecture (SOA) has been introduced for solving the problem of ensuring effective, reliable and

secure interaction of complex distributed systems. SOA assumes that such systems are constructed

from separate functional application modules (services) that have interfaces, defined by common rules

(WSDL - description), and a dedicated invoke mechanism (SOAP messages).

1.2 SOA Structure

The basic assumption of SOA is that there are many consumers that require services. In

literature, Consumers are also referred to as clients or customers. On the other side, there are many

providers that provide services on the network. These two groups have to be linked together in a

dynamic and adaptive way. This is usually done by a service broker [2], [3]. Service providers register

their services at the broker (registry), service consumers request a service from the service broker,

which returns a known provider for the requested service. Consumer and provider agree on the

semantics. The consumer then binds himself to the service provider and uses the service.

1.3 Objectives

The main objective of this topic is to[4]:

 To propose a reliable exception handing technique for SOA application.

 Adding more exceptions, handlings and rules into our system to complete the strategy.

 Include the creation of a test environment and the development of appropriate fault handling

mechanism in SOA.

II. WEB SERVICES DEVELOPMENT TOOLKITS

2.1 Microsoft Visual Studio IDE (.Net)

IOSR Journal of Computer Science (IOSR-JCE)

e-ISSN: 2278-0661, p-ISSN: 2278-8727

PP 78-83

www.iosrjournals.org

International Conference on Advances in Engineering & Technology – 2014 (ICAET-2014) 79 | Page

 Microsoft Visual Studio is an integrated development environment (IDE) from Microsoft. It is used to

develop console and graphical user interface applications along with Windows Forms or WPF applications, web

sites, web applications, and web services in both native code together with managed code for all platforms

supported by Microsoft Windows, Windows Mobile, .NET Framework, .NET Compact Framework and

Microsoft Silverlight.

2.1.1 WCF Programming
Windows Communication Foundation (WCF) is a framework for building service-oriented applications

(SOA). As its name suggests, WCF provides the .NET Framework with a basis for writing code to communicate

across components, applications, and systems. The below steps presents the fundamentals for creating Windows

Communication Foundation (WCF) applications [5].

Basic Programming Lifecycle

Windows Communication Foundation (WCF) enables applications to communicate whether they are

on the same computer, across the Internet, or on different application platforms. The basic tasks to perform are,

in order[4]:

 Define the service contract. A service contract specifies the signature of a service, the data it exchanges, and

other contractually required data.

 Implement the contract. To implement a service contract, create a class that implements the contract and

specify custom behaviors that the runtime should have.

 Configure the service by specifying endpoints and other behavior information.

 Host the service.

 Build a client application.

Designing and Implementing Services
This topic provides a high level conceptual orientation to designing and implementing WCF services.

Before designing and implementing your WCF application, it is recommended that you:

 Understand what a service contract is, how it works, and how to create one.

 Understand that contracts state minimum requirements that runtime configuration or the hosting

environment may not support.
Service Contracts

A service contract specifies the following:

 The operations a contract exposes.

 The signature of the operations in terms of messages exchanged.

 The data types of these messages.

 The location of the operations.

 The specific protocols and serialization formats that are used to support successful communication with the

service.

Configuring Services Using Configuration Files
A Windows Communication Foundation (WCF) service is configurable using the .NET Framework

configuration technology. Most commonly, XML elements are added to the Web.config file for an Internet

Information Services (IIS) site that hosts a WCF service.

Hosting Services
The Internet Information Services (IIS) hosting option is integrated with ASP.NET and uses the

features these technologies offer, such as process recycling, idle shutdown, process health monitoring, and

message-based activation.

The IIS-hosted services can only use the HTTP transport.

Building Clients
A client application is a managed application that uses a WCF client to communicate with another

application. To create a client application for a WCF service requires the following steps:

 Obtain the service contract, bindings, and address information for a service endpoint.

 Create a WCF client using that information.

 Call operations.

 Close the WCF client object.

WSDL
Before a service can be discovered and consumed by the client, it must be published with a clearly

defined contract outlining its capabilities, as well as input and output interfaces. This is done with the Web

IOSR Journal of Computer Science (IOSR-JCE)

e-ISSN: 2278-0661, p-ISSN: 2278-8727

PP 78-83

www.iosrjournals.org

International Conference on Advances in Engineering & Technology – 2014 (ICAET-2014) 80 | Page

Services Description Language (WSDL). WSDL is an XML formatted machine readable language, designed by

Microsoft and IBM.[9] It is used for describing how the service can be called, what parameters the service

expects, and what kind of data is returned. It serves a similar purpose as a method signature in a conventional

programming language[6].

SOAP
In order to send and receive the messages defined in WSDL, a standard was needed to allow Internet

transfer of these messages over HTTP. SOAP is one standard that can be used. Originally an acronym for

Simple Object Access Protocol, It is no longer referred to as an acronym, and is now simply the soap protocol

[7]. Soap messages are ordinary XML documents that are sent over HTTP.

2.2 To create and consume a simple Web Service using JAX WS

One of the most exciting new features of the Java Platform, Standard Edition 6 (Java SE 6) is support

for the Java API for XML Web Services (JAX-WS). JAX-WS architecture is an easier-to-understand

architecture for web services development [8].

 Project Description

 In this example, we create a SOAP based web service for a simple BankService class with operations

‗GetBalance„ and ‗Deposit„.

 We then create a web service client which then consumes the web service and displays the result of the

invoked web service

Creating & Publishing Web service

a) Create a Java Project ‗BankWebService„.

b) Create a package ‗bankPack„.

c) Create a Java class ‗BankService„ and write the code for GetBalance & Deposit method.

d) @WebService annotation at the beginning of the class definition tells the Java interpreter that we intend to

publish ALL the methods of this class as a web service. If we want to publish only particular methods then we

can use @WebMethod annotation before the method signature.

e) In order to publish our class and its methods as web service we need to crate appropriate stub files or artifacts

for web service deployment and invocation. Fortunately Java provides a tool called ‗wsgen„ which generates

JAX-WS portable artifacts used in JAX-WS web services.

f) Open command prompt and go to the project folder ‗BankWebService„.

g) Now issue the following command,

wsgen -cp ./bin -keep -s ./src -d ./bin bankPack.BankServie

h) the –cp option specifies the classpath for our BankService class which is in ‗bin„ folder, the –d option

specifies where to place generated output files which is also the ‗bin„ folder in our case.

i) Now we need to publish our class as a web service endpoint. For that we use the static publish() method of the

javax.xml.ws.Endpoint class to publish our ‗BankService„ class as a web service in the specified context root.

j) Create a class ‗RunService.java„ with main method and type the following code.

package bankPack;

import javax.xml.ws.Endpoint;

public class RunService {

public static void main(String[] args) {

System.out.println("Web Service Started");

Endpoint.publish("http://localhost:8080/BankService", new BankService());

} }

i. Run this class as Java Application.

ii. You may not get output in the Console. To check whether our class is published as web service, open a

browser and type the URL mentioned in the endpoint with a parameter ?wsdl appended.

http://localhost:8080/BankService?wsdl

iii. When you run the application, the Java SE 6 platform has a small web application server that will publish the

web service at the address http://localhost:8080/BankService?wsdl while the JVM is running.

Creating and Consuming a Web Service Client (i.e. cross language or language independent)

a) Having published the web service, we now create a client which communicates with the service and displays

the result.

IOSR Journal of Computer Science (IOSR-JCE)

e-ISSN: 2278-0661, p-ISSN: 2278-8727

PP 78-83

www.iosrjournals.org

International Conference on Advances in Engineering & Technology – 2014 (ICAET-2014) 81 | Page

b) Create a project ‗BankingConsoleClient„ using Microsoft Visual Studio IDE and add Service References of

Java Application using the following url; http://localhost:8080/BankService?wsdl & then write the following

code for ‗AccountForm.cs„ & ‗Program.cs„ and run the client.

III. HANDLING EXCEPTION FOR SOA APPLICATION

3.1 Handling Exception For SOA Application Using .Net IDE
Creating a service application.
For creating a service application used following steps[9], they are:

a. To establish contract between client & the service, use WCF Service Contract & include Service

Contract, Operation Contract & Data Contract (i.e. Interface). All these contract can include by adding

the reference System.ServiceModel

b. Add WCF Methods/ Operation Contract

c. Create Class Library and add references Service Model & Contract Library.

d. Add one more class which will be the implemented class which is inherited from interface.

e. Add one more class Account.

f. Create Service Provider & add references, Service Model, Contract Library & Implementation.

g. To publish end point, we need App.config which can be created using MS service configuration editor

i.e. WCF service configuration editor.

h. Create client application.

App.config
<?xml version="1.0" encoding="utf-8"?>

<configuration>

<system.serviceModel>

<client>

<endpoint address="http://localhost:9095/BankService" binding="wsHttpBinding"

bindingConfiguration="" contract="BankContractLib.IBank" name="BankEP" kind=""

endpointConfiguration="">

</endpoint>

</client></system.serviceModel></configuration>

Checking the exception in service

 The exception in SOA architecture is BasicHttpBinding.

 To identify, AccID is valid or not, & see the exception on client side. This exception message is very big.

Handling the exception

 The BasicHttpBinding exception is resolve using wsHttpBinding. BasicHttpBinding is a stateless protocol,

it doesn‟t store any previous state. Therefore, change the binding to wsHttpBinding, which is meant for

statefull binding.

 To avoid big message, log it on server side.

IOSR Journal of Computer Science (IOSR-JCE)

e-ISSN: 2278-0661, p-ISSN: 2278-8727

PP 78-83

www.iosrjournals.org

International Conference on Advances in Engineering & Technology – 2014 (ICAET-2014) 82 | Page

IV. BLOCK DIAGRAM OF SOA APPLICATION

Fig 4.1 . Block diagram of SOA application

RESULT ANALYSIS

5.1 BankDotNetSolution

Account Object Created

Unhandled Exception: System.ApplicationException: Account Not Found

at BankLib.BankService.CheckAccID(Int32 accid) in

D:\SOAProjects\BankDotNetSolution\BankLib\BankService.cs:

at BankLib.BankService.InitializeAccount(Int32 accid) in

D:\SOAProjects\BankDotNetSolution\BankLib\BankService.cs

at BankLib.BankService.Deposit(Int32 accid, Double amt) in

D:\SOAProjects\BankDotNetSolution\BankLib\BankService.cs

at BankConsole.Program.Main(String[] args) in

D:\SOAProjects\BankDotNetSolution\BankConsoleClick\Program.cs

5.2. BankSOASolution

FaultException is based on SOAP Specification, it is for all application related to SOA Architecture. This

internally mapped to SOAP Fault.

Result :
Unhandled Exception: System.ServiceModel.FaultException`1[BankContractLib.BankEr ror]: Account Not

Found

Server stack trace: at System.ServiceModel.Channels.ServiceChannel.HandleReply(ProxyOperationRuntime

operation, ProxyRpc& rpc) at System.ServiceModel.Channels.ServiceChannel.Call(String action, Boolean on

eway, ProxyOperationRuntime operation, Object[] ins, Object[] outs, TimeSpan timeout)

at System.ServiceModel.Channels.ServiceChannelProxy.InvokeService(IMethodCall Message methodCall,

ProxyOperationRuntime operation)

at System.ServiceModel.Channels.ServiceChannelProxy.Invoke(IMessage message)

Exception rethrown at [0]: at System.Runtime.Remoting.Proxies.RealProxy.HandleReturnMessage(IMessage

req Msg, IMessage retMsg)

at System.Runtime.Remoting.Proxies.RealProxy.PrivateInvoke(MessageData& msgDa ta, Int32 type) at

BankContractLib.IBank.Deposit(Int32 accid, Double amt)

at BankingConsoleClient.Program.Main(String[] args) in

D:\SOAProjects\BnkingSolution\BankingConsoleClient\Program.cs

IOSR Journal of Computer Science (IOSR-JCE)

e-ISSN: 2278-0661, p-ISSN: 2278-8727

PP 78-83

www.iosrjournals.org

International Conference on Advances in Engineering & Technology – 2014 (ICAET-2014) 83 | Page

Table 1: Compare SOA Application (.Net) and Simple Dot Net Application

SOA Application (.Net) Simple Dot Net Application

Used SOA Specific Exception Used Language Specific Exception

Need to create channel No need to create channel

Add Service references & Contract by adding

namespace

using System.ServiceModel;

using BankContractLib;

Add BankLib reference by adding

namespace

using BankLib;

Catch Exception of FaultException Catch Exception of Language Specific

Exception

5. CONCLUSION

 This topic provides SOA architects techniques to discover error handling requirements from the

business artifacts package and to specifies the comparative study of exception handling related to language &

SOA specific results. It is implemented by use of different development toolkits. It also specified the execution

of SOA application which is used to various types of software users.

REFERENCES
[1] Stefan Bruning, S. W., and Malek, M. “A Fault taxonomy for service-oriented architecture”. IEEE (2007).

[2] W3C, “Web services architecture,” Febuary 2004. [Online]. Available: http://www.w3.org/TR/ws-arch/

[3] Avizienis A., Laprie J.-C., Randell B., Landwehr C. “Basic Concepts and Taxonomy of Dependable and

Secure Computing”, IEEE Trans. on Dependable and Secure Computing. Vol.1, № 1. – P. 11-33, 2002.

[4] V. S. Patil, P. Patil & P. Bhanarkar, “Survey On Exception Handling In SOA”. International Journal of

Engineering Research & Technology –IJERT, Vol. 1 Issue 9, November- 2012ISSN: 2278-0181.

[5] http://msdn.microsoft.com

[6] L. Srinivasan and J. Treadwell, “An overview of service-oriented architecture, web services and grid

computing”. HP Software Global Business Unit, 2, 2005

[7] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weerawarana, “Unraveling the web services

web: an introduction to soap, wsdl, and uddi”. Internet Computing, IEEE, 6(2):86–93, 2002.

[8] http://theopentutorials.com/examples/java-ee/jax-ws/create-and-consume-web-service-using-jax-ws/

[9] V. S. Patil and P. Patil “Handling Exception using Service Oriented Architecture” 2nd National Conference

on Emerging Trends In Computing 2013(NCETIC 13), June 2013 ISBN:978-93-82338-64-2.

