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Abstract: An overview and a derivation of interval type-2 fussy logic system (IT2 FLS), which can handle 

rule’s uncertainties on continuous domain, having good number of applications in real world. This work fo-

cused on the performance of an IT2 FLS that involves the operations of a fuzzification, inference, and output 

processing. The output processing consists of Type-Reduction (TR) and defuzzification. This work made IT2 FLS 

much more accessible to FLS modellers, because it provides mathematical formulation for calculating the de-

rivatives. Presenting extend to representation of T2 FSs on continuous domain and using it to derive formulas 

for operations, we developed and extended the derivation of the union of two IT2 FSs to the derivation of the 

intersection and union of N-IT2 FSs that is based on various concepts. The derivation of all the formulas that 

are related with an IT2 and these formulas depend on continuous domain with multiple rules. Each rule has 

multiple antecedents that are activated by a crisp number with T2 singleton fuzzification (SF). Then, we have 

shown how those results can be extended to T2 non-singleton fuzzification (NSF). We are derived the relation-

ship between the consequent and the domain of uncertainty (DOU) of the T2 fired output FS. As well as, provide 
the derivation of the general form at continuous domain to calculate the different kinds of type-reduced. We 

have also applied an IT2 FLS to medical application of Heart Diseases (HDs) and an IT2 provide rather modest 

performance improvements over the T1 predictor. Finally, we made a comparison of HDs result between IT2 

FLS using the IT2FLS in MATLAB and the IT2 FLS in Visual C# models with T1 FISs (Mamdani, and Takagi-

Sugeno).  

Keywords: Type-1 fuzzy logic system, Type-2 fuzzy sets, Type-2 fuzzy logic system, Type-2 membership func-

tions, Interval type-2 fuzzy systems, Footprint of uncertainties, Type-reduction, Data base of Heart diseases. 

 

I. INTRODUCTION 
This work, introduced a new class of fuzzy logic systems—interval type-2 fuzzy logic system (IT2 

FLS), where the antecedent or/and consequent membership functions (MFs) are interval type-2 fuzzy sets (IT2 

FSs), [10-14], which is an extension of the concept of a type-1 fuzzy set (T1 FS). In an IT2 FLS, the knowledge 

used to construct rules is uncertain, and this uncertainty drives to rules having uncertain antecedents and/or con-

sequents, [21-23]. Now as MFs of a general T2 FSs are fuzzy, therefore T2 FSs are able to model as uncertain-

ties, and their MFs are three-dimensional, [24]. T2 FSs third dimension provides additional degrees that make it 

possible to directly models uncertainties, [8]. T2 FSs are difficult to use and understand because: i) T2 FSs 

three-dimensional makes them very difficult to depict; ii) there is no simple terms set that let us effective com-

munication about T2 FSs, and to then be mathematically accurate, and iii) using T2 FSs is computationally more 

complex than using T1 FSs, [10-13], [17]. Most people only use an IT2 FSs in a T2 FLS, because of the compu-

tational complex of using a general T2 FS, the result being an IT2 FLS. The resulting IT2 FLS have the chance 

to provide better performance than a T1 FLS, and all of the results that are needed to perform an IT2 FLS can be 
obtained by T1 FS mathematics. The computations related with IT2 FSs are very flexible, which makes an IT2 

FLS to a large degree practical, [16]. Section 2, defined a small set of concepts in a mathematically accurate 

way of general T2 FSs and IT2 FSs. We are extended the theorem1, which was given by Mendel et al. 2006 for 

discrete universes of discourse, to continuous universes of discourse. Section 3, derived the formulas of the in-

tersection and union of N-IT2 FSs that is based on different concepts: i) the concept of embedded IT2 FSs such 

as Theorem 3.1; ii) the concept of Extension Principle such as Theorem 3.2. Additionally, we derived the for-

mulas of the meet and join of N-IT2 FSs such as Theorem 3.3, [4-7]. Section 4 has described an IT2 FLS, T2 

singleton fuzzification (SF) and T2 non-singleton fuzzification (NSF). Present the derivation of all of the formu-

las that are related with an IT2 FLS at continuous domain, and handled multiple rules. Each rule has multiple 

antecedents that are activated by a crisp number (the case of SF), after which we shown how those results can be 

extended to (the case of NSF), [11-15]. Consequently, we are derived the relationship between the consequent 
and the domain of uncertainty (DOU) of the T2 fired output FS that summarized by Theorem 4.1 and 4.2 for SF 
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and NSF, respectively, [1]. Section 5, showed that computation of the continuous version of type-reduction that 

is used in going from fired-rule IT2 FSs to the defuzzified number at the final output of FLS, [20], [4], [6]. We 

have provided the derivation of the general form for continuous domain to calculate the different kinds of type-

reduced, which was given by Karnik et al. 2004 but for discrete domain. Additionally, we are presented the term 
of defuzzification which using the average of endpoints to obtain the crisp output of IT2 FLS, [10], [12], [13], 

[18]. In Section 6, a medical application of IT2 FLS‘s to heart diseases (HDs) is applied, which demonstrated 

the basic ideas and the mathematical operations of IT2 fuzzy sets and systems. We also provide a Matlab per-

formance of IT2 FLS. A comparison of HDs between IT2 FLS using the IT2FLS in MATLAB and the IT2FLS 

in Visual C# models with T1 FISs (Mamdani, and Takagi-Sugeno) are presented in this Section. Section 7, we 

draw conclusions. Finally, an Appendix is presents the concept of Extension Principle. 

 

II. INTERVAL TYPE-2 FUZZY SETS 

Most people only use interval type-2 fuzzy sets (IT2 FSs) in a type-2 fuzzy logic system (T2 FLS) be-

cause of the computational complexity of using a general T2 FS, the result being an interval type-2 fuzzy logic 

system (IT2 FLS). We define an IT2 FS and some important related concepts, to provide a simple collection of 

mathematically terms that will let us effectively communicate about such sets. Imagine fuzzing the type-1 mem-
bership function (MF) depicted through Fig. 1(a) by moving the points on the trapezoid either to the right or to 

the left with the different amounts, as in Fig. 1(b). Therefore, at a specific value of 𝑥, say 𝑥′  for all 𝑥 ∈ 𝑋, there 

no longer is a single value for the MF; instead, the MF takes on values wherever the vertical line intersects the 

fuzzy. The basic concepts of type-2 fuzzy sets are introduced at an Appendix A, [11-13], [17]. 

 
(a) 

 
(b) 

Fig. 1. (a) Representing the Type-1 MF and  (b) Fizzing T1 MF 

Theorem 2.1: Let 𝐴 𝐸
𝑘  denote the 𝑘𝑡𝑕  embedded IT2 FSs for T2 FS, when 𝑋 and 𝑈 are continuous, is as follows: 

𝐴 𝐸
𝑘 ≡   𝑢𝑖

𝑘 ,  𝜇𝐴  𝑥𝑖 , 𝑢𝑖
𝑘  , 𝑖

= 1, … , ∞  ,                                                                                                                                           (1) 

where  𝑢𝑖
𝑘 ∈  𝑢𝑖𝑗 , 𝑗 = 1,… ,𝑀𝑖 , then  𝐴  is the union of all of its embedded IT2 FSs, i.e, 

𝐴 

=   𝐴 𝐸
𝑘

𝑛𝑁→∞

𝑘=1

                                                                                                                                                                                       (2) 

in which 𝑛𝑁→∞ ≡  𝑀𝑖
∞
𝑖=1 , and 𝑀𝑖  denotes the partition levels of secondary variable 𝑢𝑖

𝑘  at each of the 𝑥𝑖 . 
 

III. SET THEORETIC OPERATIONS ON TYPE 2 FUZZY SETS 
The main aim of this section is to derive formulas for the intersection and union of N IT2 FSs of an 

IT2 FS, because these operations are used in an IT2 FLS. In this Section, the derivation of the intersection and 
union of N IT2 FSs is based on tow concepts: 1) the concept of embedded IT2 FSs such as theorem 2.1; 2) the 

concept of Extension Principle such as theorem 3. Third part contains the derivation of the meet and join of N 

IT2 FSs, [4-7] [10], [12], [17]. 

Theorem 3.1: Derivation the intersection of 𝑁-T2 FSs depending on the concept of the embedded IT2 FSs 

The intersection and union of 𝑁 IT2 FSs, 𝐴 𝑖  (𝑖 = 1,… , 𝑁) are given by (3) and (4), respectively: 

 𝐴 𝑖

𝑁

𝑖=1

= 1   𝜇𝐴 𝑖 𝑥 , 𝜇
𝐴 𝑖

(𝑥)

𝑁

𝑖=1

𝑁

𝑖=1

  , ∀ 𝑥

∈ 𝑋.                                                                                                                              (3) 
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 𝐴 𝑖

𝑁

𝑖=1

= 1   𝜇𝐴 𝑖 𝑥 

𝑁

𝑖=1

, 𝜇
𝐴 𝑖

(𝑥)

𝑁

𝑖=1

  , ∀ 𝑥

∈ 𝑋.                                                                                                                             (4) 

Theorem 3.2: Derivation the intersection of  𝑁-T2 FSs depending on the concept of the Extension Principle 

Let 𝐴 𝑖 T2 FSs in a continuous universe 𝑋𝑐 . Suppose 𝜇𝐴 𝑖 𝑥 = ∫ 𝑔𝑖𝑥  𝑢𝑖 𝑢𝑖 
.

𝑢
,  𝑖 = 1,… ,𝑁  and ∀ 𝑥 ∈ 𝑋𝑐  be the 

membership degrees of 𝐴 𝑖 , where  𝑢𝑖 ∈ 𝐽𝑥
𝑢 . Then membership degrees for intersection and union of type-2 FS 

have been defined as follows: 

 𝐴 𝑖

𝑁

𝑖=1

⇔ 𝜇𝐴 1∩…∩𝐴 𝑁  𝑥 

=  …   𝑔1𝑥 𝑢1 ⋆ … ⋆ 𝑔𝑁𝑥  𝑢𝑁  𝛵 𝑢1 ⋆ …⋆ 𝑢𝑁  

.

𝑢𝑁∈𝐽𝑥
𝑢

.

𝑢1∈𝐽𝑥
𝑢

                                                            (5) 

 𝐴 𝑖

𝑁

𝑖=1

⇔ 𝜇𝐴 1∪…∪𝐴 𝑁  𝑥 

=  …   𝑔1𝑥 𝑢1 ⋆ … ⋆ 𝑔𝑁𝑥 𝑢𝑁  𝛵 𝑢1 ∨ …∨ 𝑢𝑁  

.

𝑢𝑁∈𝐽𝑥
𝑢

.

𝑢1∈𝐽𝑥
𝑢

                                                           (6) 

 

Theorem 3.3: Derivation the meet operations of 𝑁-T2 FSs depending on the concept of the secondary MF 

Suppose that we have 𝑛 convex, normal, type-1 real fuzzy sets 𝐴 𝑖 described by membership functions 𝑎𝑖  respec-

tively. Let  𝑥𝑖 be real numbers such that  𝑥1 ≤ 𝑥2 ≤ ⋯ ≤ 𝑥𝑛  and 𝑎1 𝑥1 ≤ ⋯ ≤ 𝑎𝑛  𝑥𝑛  , then, 

𝜇𝐴1⊓…⊓𝐴𝑛   𝛼 =  𝐴 𝑖

𝑁

𝑖=1

=

 
 
 
 
 

 
 
 
 

                 

 𝑎𝑖 𝛼 

𝑛

𝑖=1

,         𝛼 < 𝑥1                                             

 𝑎𝑖 𝛼 

𝑘

𝑖=1

,        𝑥𝑘 ≤ 𝛼 < 𝑥𝑘+1 , 1 ≤ 𝑘 < 𝑛 − 1

 𝑎𝑖 𝛼 

𝑛

𝑖=1

,         𝛼 ≥ 𝑥𝑛                                           

                                                                           (7) 

IV. INTERVAL TYPE 2 FUZZY LOGIC SYSTEM 

We assume that all the antecedent and consequent fuzzy sets in the rules are T2. A FLS is T2 as long 

as any one of its antecedent or consequent FSs is T2. The rules structure remains the same in the case of T2, but 

some or all of the FSs involved are T2, [16], [24]. The T2 FLS has 𝑛 inputs 𝑥1 ∈ 𝑋1 , … , 𝑥𝑛 ∈ 𝑋𝑛 , and 

output  𝑦 ∈ 𝑌, and, is describe by 𝐿 rules, where the 𝑙𝑡𝑕  rule has the form 

𝑅𝑙 ∶ if 𝑥1 is  𝐴 1
𝑙  and… and 𝑥𝑛 is  𝐴 𝑛

𝑙   then  𝑦 is  𝐵 𝑙 ,      𝑙
= 1,… , 𝐿.                                                                                               8  

If all of the antecedent and consequent T2 FSs are IT2 FSs, then we call the resulting T2 FLS an IT2 FLS. A 

rule-base contains four components: rules, fuzzifier, inference system, and output processing that consist of   

defuzzifier and type-reducer. The outputs of the T2 FLS are the type-reduced set and the crisp defuzzified value, 

[11], [13], [17] 

 

4.1 Type 2 Singleton Fuzzification Model 

From the rule (8), let 𝐴 1
𝑙 , 𝐴 2

𝑙 , … , 𝐴 𝑛
𝑙  be IT2 FSs in continuous universe of discourses 𝑋1𝑐 , 𝑋2𝑐 , … , 𝑋𝑛𝑐 , respective-

ly, and 𝐵 𝑙  be an IT2 FS in continuous universe of discourse 𝑌𝑐 . Decompose each 𝐴 𝑖
𝑙
 into its  𝑛𝐴𝑖 →

∞  𝑖 = 1, … , 𝑛  embedded IT2 FSs 𝐴 𝑖𝐸
𝑘𝑖 𝑙  , as the following: 
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𝐴 𝑖
𝑙

=  𝐴𝑖𝐸
𝑘𝑖 𝑙

𝑛𝐴𝑖

𝑘𝑖=1

= 1 DOU 𝐴 𝑖
𝑙
  ,   𝑖

= 1,… , 𝑛.,                                                                                                                              (9) 

where 

DOU 𝐴 𝑖
𝑙
 =  𝐴𝑖𝐸

𝑘𝑖 𝑙

𝑛𝐴𝑖

𝑘𝑖=1

=   𝑢𝑖𝑗
𝑘𝑖 𝑥𝑖𝑗 

𝑁𝑥𝑖
→∞

𝑗=1

𝑛𝐴𝑖

𝑘𝑖=1

,   𝑢𝑖𝑗
𝑘𝑖 ∈ 𝐽𝑥𝑖𝑗

⊆  0,1 .                                                                                         (10) 

We also decompose 𝐵 𝑙  into 𝑛𝐵 → ∞ embedded IT2 FSs 𝐵 𝐸
𝑘 𝑙, whose domains are the embedded T1 

FSs 𝐵𝐸
𝑘 𝑙 ; we see that  𝐵 𝑙  can be expressed as: 

𝐵 𝑙 =  𝐵 𝐸
𝑘 𝑙

𝑛𝐵→∞

𝑘=1

= 1 DOU 𝐵 𝑙                                                                                                                                                           (11) 

where 

DOU 𝐵 𝑙 =  𝐵𝐸
𝑘 𝑙

𝑛𝐵→∞

𝑘=1

=   𝑣𝑗
𝑘 𝑦𝑗 

𝑁𝑦→∞

𝑗=1

𝑛𝐵→∞

𝑘=1

,   𝑣𝑗
𝑘 ∈ 𝐽𝑦𝑗

⊆  0,1                                                                                                (12) 

Cartesian product of antecedents 𝐴 1
𝑙

×…× 𝐴 𝑛
𝑙
 has   𝑛𝐴𝑖

𝑛
𝑖=1  → ∞ collections of the embedded T1 

FSs 𝐴𝑖𝐸
𝑘𝑖 𝑙. The relationship between 𝐴 𝑖

𝑙
 antecedents and consequent 𝐵 𝑙 can be represented by: 

𝜇
 𝐴 𝑖

𝑙
→𝐵 𝑙

 x, 𝑦 = 𝜇
 𝐴 1

𝑙
×…×𝐴 𝑛

𝑙
 →𝐵 𝑙

 x, 𝑦 = 𝜇
 𝐴 1

𝑙
×…×𝐴 𝑛

𝑙 x ∔ 𝜇 𝐵 𝑙 𝑦  

                         = 𝜇
 𝐴 1

𝑙 𝑥1 ∔ …∔ 𝜇 𝐴 𝑛
𝑙 𝑥𝑛  ∔ 𝜇 𝐵 𝑙 𝑦 =

 𝑆𝑖=1
𝑛 𝜇

 𝐴 𝑖
𝑙 𝑥𝑖  ∔ 𝜇 𝐵 𝑙 𝑦 ,                                                              (13)    

where it has been supposed that Mamdani implications are used, multiple antecedents are connected by or (i.e. 

by S-norms),  𝑆 is short for an S-norm and ∔ represents the max S-norms, [24]. 

In general, there are  𝐿 rules that describe an IT2 FLS and repeatedly more than one rule fires when in-

put is   applied to that system. Consequently, we have  𝑛𝐴1
×…× 𝑛𝐴𝑛 × 𝑛𝐵 collections of embedded T1 antece-

dent and consequent FSs, which generate all fired output sets for all collections of antecedent and consequent 

FSs, as the following [10], [12], and [18]: 

𝐷𝑙 𝑦 =  …   𝜇𝐷𝑙 𝑘1,…,𝑘𝑛 ,𝑘  𝑦 ,       ∀ 𝑦

𝑛𝐵→∞

𝑘=1

𝑛𝐴𝑛→∞

𝑘𝑛=1

𝑛𝐴1→∞

𝑘1=1

∈ 𝑌𝑐                                                                                                    (14) 

The relationship between the consequent 𝐷𝑙 𝑦  in (14) and the DOU of the T2 fired output FS is made 
a summary by theorem 5a, [21-23]. 

Theorem 4.1: The output 𝐷𝑙 𝑦  in (14) that calculated by using T1 FS is the same as the DOU of the T2 
fired output FS, which is calculated by using T2 FS.  

 

4.2Type-2 Non-singleton Fuzzification Model 

Let the 𝑛-dimensional input is given by the IT2 FS, and we suppose 𝑋 𝑖 denote the IT2 FSs describing 

each of the 𝑛 inputs. More specifically  𝑋 1 , 𝑋 2 , … , 𝑋 𝑛  are IT2 FSs in continuous universes of 

discourse 𝑋1𝑐 , 𝑋2𝑐 , … , 𝑋𝑛𝑐 . There are 𝐿 rules that described an IT2 FLS, and repeatedly more than one rule fires 

when input is applied to that system. Decompose 𝐴 𝑖  into their 𝑛 𝑋𝑖
→ ∞  𝑖 = 1,… , 𝑛  embedded IT2 FSs 𝑋 𝑖𝐸

𝑕𝑖 , 

i.e., [1], [11], [13], [17] 
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 𝑋 𝑖 =  𝑋 𝑖𝐸
𝑕𝑖

𝑛  𝑋 𝑖
→∞

𝑕𝑖=1

,         𝑖

= 1,… , 𝑛.                                                                                                                                                    (15) 

The domain of each  𝑋 𝑖𝐸
𝑕𝑖   is the embedded T1 FS  𝑋𝑖𝐸

𝑕𝑖 . The Cartesian product be  𝑋 1 × 𝑋 2 ×…× 𝑋 𝑛 , 

has   𝑛𝑋𝑖
𝑛
𝑖=1  → ∞  collections of the embedded T1 FSs  𝑋𝑖𝐸

𝑕𝑖 , then the MF of a fuzzy Cartesian product is giv-

en by: 

𝜇𝑋1
 𝑥1 ∔ …∔ 𝜇𝑋𝑛  𝑥1 

= 𝑺𝑖=1
𝑛  𝜇𝑋𝑖 𝑥𝑖                                                                                                                                          (16) 

Since, each rule determines a fuzzy set 𝐷 in 𝑌 such that when we use Zadeh‘s sup-star composition, note that: 

𝜇𝐷𝑙 𝑦 = sup
x,𝑥𝑖∈𝑋𝑐

  𝜇𝑋1
 𝑥1 ∔ …∔ 𝜇𝑋𝑛  𝑥𝑛   ∔ 𝜇𝐴 𝑖

𝑙
→𝐵𝑙

 x, 𝑦  ,           𝑦 ∈ 𝑌   

              = sup
x,𝑥𝑖∈𝑋𝑐

 𝑺𝑖=1
𝑛  𝜇𝑋𝑖 𝑥𝑖 ∔ 𝑺𝑖=1

𝑛  𝜇
𝐴 𝑖
𝑙 𝑥𝑖 ∔ 𝜇𝐵𝑙 𝑦  

=  sup
x,𝑥𝑖∈𝑋𝑐

  𝑺𝑖=1
𝑛  𝜇𝑋𝑖 𝑥𝑖 ∔  𝜇

𝐴 𝑖
𝑙 𝑥𝑖  ∔ 𝜇𝐵𝑙 𝑦                   (17)  

Then, we have derived the formula of NSF as the following: 

𝜇𝐷𝑙 𝑦 =  𝑺𝑖=1
𝑛  sup

𝑥𝑖∈𝑋𝑖𝑐

 𝜇𝑋𝑖 𝑥𝑖 ∔  𝜇𝐴 𝑙 𝑖 𝑥𝑖   ∔ 𝜇𝐵𝑙 𝑦 ,       ∀  𝑦

∈ 𝑌𝑐                                                                                      (18) 

Since, there are  𝑛𝐵 → ∞ embedded T1 FSs for the consequent,  𝑛𝐴 =  𝑛𝐴𝑖
𝑛
𝑖=1  → ∞ embedded T1 FSs for the 

antecedents, 𝑛𝑋 =  𝑛𝑋𝑖
𝑛
𝑖=1  → ∞ embedded T1 FSs for the inputs; then, we obtain  𝑛𝑋1

×…× 𝑛𝑋𝑛 ×

𝑛𝐴1×..×𝑛𝐴𝑛×𝑛𝐵 collections of input, antecedent, and consequent embedded T1 FSs as shown in Figure. 4, 

which generate  𝜇𝐷𝑙 𝑦  as the following, [9], [14], [15]: 

𝜇𝐷𝑙 𝑦 

=  …   …   𝜇𝐷𝑙(𝑕1 ,…,𝑕𝑛 ,𝑘1…,𝑘𝑛 ,𝑘) 𝑦 

𝑛𝐵→∞

𝑘=1

𝑛𝐴𝑛→∞

𝑘𝑛=1

𝑛𝐴1→∞

𝑘1=1

𝑛𝑋𝑛→∞

𝑕𝑛=1

𝑛𝑋1→∞

𝑕1=1

                                                                                 (19) 

In order to represent the structure of  𝜇𝐷𝑙 𝑦  using network, we depict (19) through Fig. 4, for a single-

antecedent rule. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4:  Fired output FSs  ∀ 𝑛𝐷 = 𝑛𝑋 × 𝑛𝐴 × 𝑛𝐵  collections of the embedded T1 antecedent and consequent FSs for N 

antecedent rules                                                                          
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Theorem 4.2: The output 𝐷𝑙 𝑦  in (19), calculated by using T1 FS is the same as the DOU of the T2 fired output 
FS, which is calculated by using T2 FS. 

 

V. THE OUTPUT PROCESSING 
Type-Reduction (TR) is a first step of output processing, in order to compute the centroid of an IT2 FS. 

We are derived to compute the centroid of an IT2 FS because when all sources of uncertainty disappear, the IT2 

FLS must reduce to a T1 FLS. We define the centroid  𝐶𝐷   of an IT2 FS 𝐷  such as the set of the centroids of all 

of its embedded IT2 FSs. depend on (18) and (19) note that, we must compute the centroid of all of the  𝑛𝐷 → ∞ 

embedded T1 FSs contained within DOU 𝐷 𝑙 . Therefore, we obtain a set of  𝑛𝐷  numbers that have both a mini-

mum and maximum element,  𝑐𝑙 𝐷  ≡ 𝑐𝑙  and 𝑐𝑟 𝐷  ≡ 𝑐𝑟 , respectively. The centroid of each of the embedded 

T1 FSs is a limited number. Related with each of these numbers will be a membership degree of one as the fol-

lowing, [4-5], [21-23], and [20]: 

𝐶𝐷 = 1  𝑐𝑙 𝐷  , 𝑐𝑟 𝐷     

The generalized centroid  𝑐𝑙 𝐷  , 𝑐𝑟 𝐷    is a closed interval, 𝑐𝑙  and  𝑐𝑟  can be computed from the lower and up-

per MF of 𝐴  as follows: 

𝑐𝑙 𝐷  =min {centroid of all embedded T1 FSs in DOU 𝐷  }=𝑚𝑖𝑛𝑙∈𝑅  𝐶 𝐴𝐸𝑙   

𝑐𝑙 𝐷  = 𝑚𝑖𝑛
𝑙∈𝑅

 
∫ 𝑥 𝜇𝐴𝐸𝑙

 𝑥  𝑑𝑥
∞

1

∫  𝜇𝐴𝐸𝑙
(𝑥) 𝑑𝑥

∞

1

  

= 𝑚𝑖𝑛
𝑙∈𝑅

 
∫ 𝑥 𝜇

𝐴 
 𝑥  𝑑𝑥

𝑙

1
+ ∫ 𝑥 𝜇𝐴  𝑥  𝑑𝑥

∞

𝑙+1

∫  𝜇
𝐴 
 𝑥  𝑑𝑥

𝑙

1
+ ∫ 𝜇𝐴  𝑥  𝑑𝑥

∞

𝑙+1

                                                                    (20) 

𝑐𝑟 𝐷  = max {centroid of all embedded T1 FSs in DOU 𝐷  }= 𝑚𝑎𝑥𝑟∈𝑅  𝐶 𝐴𝐸𝑟   

𝑐𝑟 𝐷  = 𝑚𝑎𝑥
𝑟∈𝑅

 
∫ 𝑥 𝜇𝐴𝐸𝑟

 𝑥  𝑑𝑥
∞

1

∫  𝜇𝐴𝐸𝑟 (𝑥)
∞

1
 𝑑𝑥

 

= 𝑚𝑎𝑥
𝑟∈𝑅

 
∫ 𝑥 𝜇𝐴  𝑥  𝑑𝑥
𝑟

1
+ ∫ 𝑥 𝜇

𝐴 
 𝑥  𝑑𝑥

∞

𝑟+1

∫  𝜇𝐴  𝑥  𝑑𝑥
𝑟

1
+ ∫ 𝜇

𝐴 
 𝑥  𝑑𝑥

∞

𝑟+1

 ,                                                               (21) 

in which 𝜇𝐴𝐸𝑙
 and 𝜇𝐴𝐸𝑟denote embedded type-1 fuzzy sets as the following: 

𝜇𝐴𝐸𝑙
 𝑥 

=  
𝜇
𝐴 
 𝑥 ,     𝑖𝑓 𝑥 ≤ 𝑙,

𝜇𝐴  𝑥 ,     𝑖𝑓 𝑥 > 𝑙,
                                                                                                                                                          (22) 

𝜇𝐴𝐸𝑙
 𝑥 

=  
𝜇𝐴  𝑥 ,     𝑖𝑓 𝑥 ≤ 𝑟,

𝜇
𝐴 
 𝑥 ,     𝑖𝑓 𝑥 > 𝑟.

                                                                                                                                                          (23) 

where 𝑙, 𝑟 ∈ 𝑋𝑐 ⊆ 𝑅  are switch points that mark the change from 𝜇
𝐴 
 𝑥  to 𝜇𝐴  𝑥  and from 𝜇𝐴  𝑥  to 𝜇

𝐴 
 𝑥 , 

respectively. 𝜇𝐴  𝑥  and  𝜇
𝐴 
 𝑥  are respectively the lower and upper membership functions of 𝐴 . See Fig. 5.  
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5.1. Derivation of Type-Reduction for Interval T2 FLS 

The general form for continuous domain in order to calculate the different kinds of type-reduced can all be giv-

en by, [12-13], [17], [20]: 

𝑌𝑇𝑅 𝕐
1 ,… , 𝕐∞, 𝔸1 , … , 𝔸∞ 

=  …   …  1
∫ 𝑦𝑖  𝑎𝑖  
𝐿=∞

𝑖=1

∫  𝑎𝑖
𝐿=∞

𝑖=1

 

.

𝑎∞∈ 𝑎∞,𝑎
∞
 

.

𝑎1∈ 𝑎1 ,𝑎
1
 

.

𝑦∞∈ 𝑦𝑙
∞ ,𝑦𝑟

∞ 

.

𝑦1∈ 𝑦𝑙
1 ,𝑦𝑟

1 

 ,                                        (24) 

where each one of  𝑦𝑙
𝑖 , 𝑦𝑟

𝑖, 𝑎𝑖  𝑎
𝑖
  𝑖 = 1, … , ∞  and 𝐿 have various meaning, as follows, [15]: 

1. In case of centroid and center of sums be 𝑦𝑙
𝑖 = 𝑦𝑟

𝑖, the 𝑖𝑡𝑕  point in the sampled universe of discourse of the 

FLS‘s output, 𝑎𝑖 , 𝑎
𝑖
 be the single (or sums of all rules for COS) of lower and upper membership degrees for 

the 𝑖𝑡𝑕  sampled point; contains antecedent and consequent MF parameters, and 𝐿 is a number of sampled 
points. 

2. In case of centre of sets be  𝑦𝑙
𝑖 , 𝑦𝑟

𝑖 left and right endpoints of the centroid of the consequent of  𝑖𝑡𝑕  rule. 

While with height TR is 𝑦𝑙
𝑖 = 𝑦𝑟

𝑖 , a single point in the consequent domain of  𝑖𝑡𝑕  rules, treated as a conse-

quent parameter. In the COS and height TR, 𝑎𝑖 , 𝑎
𝑖
 be lower and upper firing degrees for the 𝑖𝑡𝑕  rule; con-

tains antecedent MF parameters, and 𝐿 is a number of rules. 

Because all the memberships in an interval type-1 set are crisp then we represent an interval set by its do-

main interval. It can be represented by its canter and spread as  𝑐 − 𝑠, 𝑐 + 𝑠 , where 𝑐 = (𝑟 + 𝑙)/2 and 𝑠 = (𝑟 −

𝑙)/2, where  𝑙 left and  𝑟 right endpoints. Each  𝕐𝑖  in (24) is an IT1 S having centre  𝑐𝕐
𝑖  and spread  𝑠𝕐

𝑖  ≥ 0. 

Each  𝔸𝑖 is also IT1 S with centre  𝑐𝔸
𝑖  and spread  𝑠𝔸

𝑖 ≥ 0 (suppose 𝑐𝔸
𝑖 ≥ 𝑠𝔸

𝑖 , ∀ 𝑖 = 1, … , ∞). Therefore, we need 

to calculate its two endpoints  𝑦𝑙 , 𝑦𝑟 . 
Now, we assume that,  

𝑆 𝑎𝑖 , … , 𝑎𝐿=∞ 

=
∫ 𝑦𝑖  𝑎𝑖  
𝐿=∞

𝑖=1

∫  𝑎𝑖
𝐿=∞

𝑖=1

                                                                                                                                                          (25) 

where 𝑎𝑖 ∈  𝑐𝔸
𝑖 − 𝑠𝔸

𝑖 , 𝑐𝔸
𝑖 + 𝑠𝔸

𝑖   and 𝑦𝑖 ∈  𝑐𝕐
𝑖 − 𝑠𝕐

𝑖 , 𝑐𝕐
𝑖 + 𝑠𝕐

𝑖  . Next, we explain an iterative procedure to compute 

left endpoint,  𝑦𝑙 = min 𝑆 , and right endpoint, 𝑦𝑟 = max 𝑆 , for IT2 FLS.  

In order to compute  min 𝑆  , we put 𝑦𝑖 = 𝑐𝕐
𝑖 − 𝑠𝕐

𝑖  (𝑖 = 1,… , ∞) and suppose 𝑦1 ≤ 𝑦2 ≤ ⋯ ≤ 𝑦∞, then, 

a) Put  𝑎𝑖 = 𝑐𝔸
𝑖 , 𝑖 = 1, … , ∞ and calculated  𝑆′ = 𝑆 𝑐𝔸

1 , … , 𝑐𝔸
∞  by using (25); 

b) Find 1 ≤ 𝑕 ≤ ∞ s.t. 𝑦𝑕 ≤ 𝑆′ ≤ 𝑦𝑕+𝑒 , where 𝑒 is a so small real number; 

c) We put  𝑎𝑖 = 𝑐𝔸
𝑖 + 𝑠𝔸

𝑖 , ∀  𝑖 ∈ [1, 𝑕] and  𝑎𝑖 =  𝑐𝔸
𝑖 − 𝑠𝔸

𝑖 , ∀ 𝑖 ∈ [𝑕 + 𝑒, ∞), thus compute 𝑆′′ using (25) as 
follows: 

𝑆′′ = 𝑆   𝑐𝔸
1 + 𝑠𝔸

1 , … ,  𝑐𝔸
𝑕 + 𝑠𝔸

𝑕 ,  𝑐𝔸
𝑕+𝑒 − 𝑠𝔸

𝑕+𝑒 ,… ,  𝑐𝔸
∞

− 𝑠𝔸
∞                                                                                   (26) 

d) If  𝑆′′ = 𝑆′ , then stop and put  𝑆′′ is the minimum value of  𝑆; else continue. 

e) Put 𝑆′ = 𝑆′′  go back to step b. 

For compute  max 𝑆  , we put 𝑦𝑖 = 𝑐𝕐
𝑖 + 𝑠𝕐

𝑖  (𝑖 = 1, … , ∞), and suppose  𝑦1 ≤ 𝑦2 ≤ ⋯ ≤ 𝑦∞. Therefore   

a) Put  𝑎𝑖 = 𝑐𝔸
𝑖 , 𝑖 = 1, … , ∞  and calculate  𝑆′ = 𝑆 𝑐𝔸

1 , … , 𝑐𝔸
∞  by using (25); 

b) Find  𝑕  1 ≤ 𝑕 ≤ ∞  s.t.  𝑦𝑕 ≤ 𝑆′ ≤ 𝑦𝑕+𝑒 , where 𝑒 is a very small real number; 

c) We put  𝑎𝑖 = 𝑐𝔸
𝑖 − 𝑠𝔸

𝑖 , ∀  𝑖 ∈ [1, 𝑕] and  𝑎𝑖 =  𝑐𝔸
𝑖 + 𝑠𝔸

𝑖 , ∀ 𝑖 ∈ [𝑕 + 𝑒, ∞), thus compute 𝑆′′ using (25) as 
follows:  

𝑆′′ =

𝑆   𝑐𝔸
1 − 𝑠𝔸

1 , … ,  𝑐𝔸
𝑕 − 𝑠𝔸

𝑕 ,  𝑐𝔸
𝑕+𝑒 + 𝑠𝔸

𝑕+𝑒 ,… ,  𝑐𝔸
∞ +

𝑠𝔸∞                                                                                 (27)  

d) If  𝑆′′ = 𝑆′ , then stop and put  𝑆′′ is the maximum value of  𝑆; else continue; 

e) Put 𝑆′ = 𝑆′′  go back to step b. 
This procedure of computational can be used to calculate the TR set for all of the kind reducers, with a great 

reduction in computational complexity. 
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5.2. Defuzzification 

Since  𝑌𝑇𝑅  is an interval set for all kinds of type-reduction method, we defuzzify it using the average of 

 𝑦𝑙  and  𝑦𝑟 , [11], [13], [18], therefore, the defuzzified output of IT2 FLS is 

𝑦 x 

=
𝑐𝑙 + 𝑐𝑟

2
                                                                                                                                                                                    (28) 

 

VI. APPLICATION OF AN IT2 FLS 
The purpose of this section is to provide real medical application for the IT2 FLS. The mathematical 

operations in an IT2 FLS are explained using an application. This application cares about the heart diseases, 

where we are able to determine the status of the heart for the people who suffer from heart disease or not, that 
depend a range of analyzes and tests performed for each person. Application of the heart disease contains thir-

teen attributes (which have been extracted from a larger set of 75): Age; Sex; Chest pain type; Resting blood 

pressure; Serum cholesterol in mg/dl; Fasting blood sugar; Resting electrocardiographic results; Maximum heart 

rate achieved; Exercise induced angina; Old peak (ST depression induced by exercise relative to rest); The slope 

of the peak exercise ST segment; Number of major vessels that colored by fluoroscopy; and Thal: Normal, fixed 

defect, and reversible defect. This data was obtained from ―StatLib. http://datamarket.com/data/set/22vj/‖. The 

prediction variable (output) is an absence or presence of heart disease. There are 270 observations, and no miss-

ing values. 

 

6.1. Discussion and Simulation Results 

Consider an IT2 FLS that has thirteen inputs (𝑥1 , 𝑥2 , … , 𝑥13) and one output 𝑦. Each input domain con-
sists of maximum four IT2 FSs, which are trapezoids LMFs and UMFs, and theirs FOUs shown in Figure. 6.  

The rule-base of the IT2 FLS has multi models for rules as the following: 

 

 

http://datamarket.com/data/set/22vj/
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𝑅1:  if 𝑥1  𝑖𝑠 𝐴 1,3 ∧ 𝑥2  𝑖𝑠 𝐴 2,1 ∧ 𝑥3  𝑖𝑠 𝐴 3,3 ∧ 𝑥4  𝑖𝑠 𝐴 4,1 ∧ 𝑥5  𝑖𝑠 𝐴 5,3 ∧ 𝑥6  𝑖𝑠 𝐴 6,1 ∧ 𝑥7  𝑖𝑠 𝐴 7,3 ∧ 𝑥8  𝑖𝑠 𝐴 8,2

∧ 𝑥9 𝑖𝑠 𝐴 9,1 ∧ 𝑥10  𝑖𝑠 𝐴 10,2 ∧ 𝑥11  𝑖𝑠 𝐴 11,2 ∧ 𝑥12  𝑖𝑠 𝐴 12,1 ∧ 𝑥13  𝑖𝑠 𝐴 13,3  then  𝑦 𝑖𝑠 𝑌1 

𝑅2:  if 𝑥1  𝑖𝑠 𝐴 1,2 ∧ 𝑥2  𝑖𝑠 𝐴 2,1 ∧ 𝑥3  𝑖𝑠 𝐴 3,2 ∧ 𝑥4  𝑖𝑠 𝐴 4,1 ∧ 𝑥5  𝑖𝑠 𝐴 5,1 ∧ 𝑥6  𝑖𝑠 𝐴 6,1 ∧ 𝑥7  𝑖𝑠 𝐴 7,1 ∧ 𝑥8  𝑖𝑠 𝐴 8,3

∧ 𝑥9 𝑖𝑠 𝐴 9,1 ∧ 𝑥10  𝑖𝑠 𝐴 10,1 ∧ 𝑥11  𝑖𝑠 𝐴 11,1 ∧ 𝑥12  𝑖𝑠 𝐴 12,1 ∧ 𝑥13  𝑖𝑠 𝐴 13,1  then 𝑦 𝑖𝑠 𝑌1 

: 

𝑅𝑛 :  if 𝑥1  𝑖𝑠 𝐴 1,1 ∧ 𝑥2  𝑖𝑠 𝐴 2,2 ∧ 𝑥3  𝑖𝑠 𝐴 3,4 ∧ 𝑥4  𝑖𝑠 𝐴 4,2 ∧ 𝑥5  𝑖𝑠 𝐴 5,1 ∧ 𝑥6  𝑖𝑠 𝐴 6,1 ∧ 𝑥7  𝑖𝑠 𝐴 7,1 ∧ 𝑥8  𝑖𝑠 𝐴 8,2

∧ 𝑥9 𝑖𝑠 𝐴 9,2 ∧ 𝑥10  𝑖𝑠 𝐴 10,2 ∧ 𝑥11  𝑖𝑠 𝐴 11,2 ∧ 𝑥12  𝑖𝑠 𝐴 12,1 ∧ 𝑥13  𝑖𝑠 𝐴 13,3  then 𝑦 𝑖𝑠 𝑌2 

There are 270 observations of heart diseases divided into two parts: the first part contains 150 cases 

were the heart disease absence, and the second part contains 120 cases were the heart disease presence. Each 

case that has thirteen an inputs are described by IT2 FSs. Consider one case of an input vector,    

x′ =  x1
′  , x2

′ , x3
′ , x4

′ , x5
′ , x6

′ , x7
′ , x8

′ , x9
′ , x10

′ , x11
′ , x12

′ , x13
′  =

 (0.87,0.01,0.78,0.55,0.95,0.14,0.94,0.79,0.14,0.26,0.6,0.27,0.69)                         

The firing intervals for the first fifth rules at an input vector  x′ are as the following (see Table 1): 

For this an input vector  x′, we must repeat this procedure for all rules. The firing intervals of the rules are com-

puted using the minimum function as the following: 

 
 

We have to complete these procedures for all rules. Consequently, we obtain the Table 2. 

The TR for an IT2 FLS uses the iterative KM algorithms, this may cause a computational bottleneck, 

even for real medical applications of the IT2 FLSs, where it has been demonstrated that very good performance 

can be satisfied by doing this. From (20) and (21), we are calculated left and right endpoints   𝑦𝑙 , 𝑦𝑟  as    fol-

lows: 

𝑦𝑙 =
𝑎

1
𝑦1 + 𝑎2𝑦2 + 𝑎3𝑦3 + 𝑎4𝑦4 + 𝑎5𝑦5 + 𝑎6𝑦6 +⋯+ 𝑎𝑛𝑦𝑛

𝑎
1

+ 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5 + 𝑎6 +⋯+ 𝑎𝑛
, 

𝑦𝑙

=
0.42 0.146 + 0.17 0.149 + 0.067 0.18 + 0.46 0.162 + 0.067 0.91 + 0.2 0.896 + ⋯+ 0.2 0.949 

0.42 + 0.17 + 0.067 + 0.46 + 0.067 + 0.2 +⋯+ 0.2
, 

𝑦𝑟 =
𝑎1𝑦

1
+ 𝑎2𝑦

2
+ 𝑎3𝑦

3
+ 𝑎4𝑦

4
+ 𝑎5𝑦

5
+ 𝑎6𝑦

6
+⋯+ 𝑎

𝑛
𝑦
𝑛

𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5 + 𝑎6 +⋯+ 𝑎
𝑛 , 

𝑦𝑟

=
0.18 0.228 + 0.17 0.23 + 0.067 0.19 + 0.46 0.174 + 0.067 0.92 + 0.2 0.96 +⋯+ 0.58 0.96 

0.18 + 0.17 + 0.067 + 0.46 + 0.067 + 0.2 +⋯+ 0.58
. 
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Therefore, we obtained the values of left and right endpoints 𝑦𝑙 and  𝑦𝑟 , respectively. Finally, we are de-

fuzzified the interval set (output of the IT2 FLS) in order to compute the crisp output 𝑦 of the IT2 FLS using 

(28). We repeated all these procedure with each an input vectors (all observations) to compute the crisp output 

𝑦𝑖  (𝑖 = 1, … ,270) of the IT2 FLS for all cases.  

 

6.2. Software Performance 

First part the performance of Matlab is used a function ―IT2FLS‖ that is provided for computing the out-

put ‎of an IT2 FLS. For performance, the program of ―IT2FLS‖ we need to given the rule-base and inputs for the 

‎problem. The application is performed using the function ―IT2FLS‖. A nine-point vector  𝑝1 , 𝑝2 , … , 𝑝9  
represents each IT2 FS. Therefore, the IT2 FS  A 1,1 is represented as (0.3 0.3 0.35 0.65 0.3 0.3 0.36 0.6 0.8), A 1,2 

is represented as (0.4 0.62 0.68 0.9 0.5 0.62 0.68 0.8 0.8), and A 1,3  is represented as (0.65 0.95 1 1 0.7 0.94 1 1 

0.8), such shown in Figure. 7. Second part of performance is performed using IT2FLS software in visual C# that 

includes some modules as the linguistic variable, the mf, the rule-base, and the simulator editors. The linguistic 

variable is used to define the input and the output linguistic variables. The MF is used to define the membership 

functions related with the linguistic variable. IT2FLS software also allows user to creating and editing rules. The 

simulator is used to present an interactive view of the logic inference. IT2FLS software does not limit the num-
ber of linguistic variables, membership functions of linguistic variables and rules. For our application, we have 

created the MFs and the rules that are depicted in Figure 8. 

 

 

 

 

 

 

 

 

 

 

Table 2.  The firing intervals and theirs consequents 
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for rules 

No. of 

rule 
Firing Interval Consequent 

R1 
  a1 , a

1
 

= [0.18,0.42] 

  y1 , y
1
 = 

[0.146,0.228] 

R2 
  a2 , a

2
 

=  0.17,0.42  

  y2 , y
2
 = 

[0.149,0.23] 

R3 
  a3 , a

3
 

= [0.067,0.5] 

  y3 , y
3
 = 

[0.18,0.19] 

R4 
  a4 , a

4
 

= [0.46,0.74] 

  y4 , y
4
 = 

[0.162,0.174] 

R5 
  a5 , a

5
 

= [0.067,0.5] 

  y5 , y
5
 = 

[0.91,0.92] 

R6 
  a6 , a

6
 

= [0.2,0.47] 

  y6 , y
6
 = 

[0.896,0.96] 

: : : 

  Rn  
  an , a

n
 

= [0.2,0.58] 

  yn , y
n
 = 

[0.949,0.96] 

 

 

6.3. Experimental Comparison 

In this subsection, we compare the performance of the four methods. We present results of a compari-

son of Heart Diseases (HDs) using an intelligent architecture between interval type-2 fuzzy logic systems using 

the IT2FLS in MATLAB and the IT2FLS in Visual C# models with type-1 fuzzy inference systems (Mamdani, 
and Takagi-Sugeno). The prediction root mean square error (RMSE) was 0.00075. Table 3 shows the various 

 (A)  (B) 

Fig. 8. (A) Creation fuzzy set in IT2 FLS. (B) Rule-base in IT2 FLS of heart diseases application in 

C# 

 

Table 3.  The various RMSEs of four predicting 

methods 

 

Method of model RMSE 

IT2 FLS in MATLAB 0.00075 

IT2FLS in visual C# 0.0253 

T1 FIS (Mamdani) 0.2441 

T1 FIS (Takagi-
Sugeno) 

0.1988 
Fig. 9.  The comparison of the predictions 
RMSE for three methods 
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RMSE of four predicting methods, where the IT2 FLS in MATLAB and the IT2FLS in Visual C# evaluate the 

best HDs predicts respectively. The advantage of using the IT2FLS predicting method is that it obtains better 

results, even when data contains high uncertainty. The IT2 provide rather modest performance improvements 

over the T1 predictor. The comparison of the predictions RMSE for three methods is shown in Fig. 9. Observe 
from Fig. 9 that: the blue line represents the prediction errors between the actual output of HDs and prediction 

output using T1 FLS, that has limitation between -0.5 and 0.5; The green line represents the prediction errors 

using IT2 FLS in C# limited by [-0.1435,0.2325]. While, the prediction errors using IT2 FLS by Matlab has 

limited by [-0.2194, 0.1385], that are represented by the red line. Note that, the best prediction RMSE when 

used IT2 FLS by Matlab that was closer to zero. 

 

VII. CONCLUSIONS 

This work shows that expression (2), which was given by Mendel et al. but on discrete domain, in or-

der to prove an IT2 FS 𝐴  is the union of countable-infinity number of embedded IT2 FSs for a continuous IT2. 

We extended the derivation of the union of two IT2 FSs, which was given by Mendel and Bob John, to the inter-

section and union of N IT2 FSs, depend on the various concepts such as Theorem 3.1 and 3.2. We presented the 
meet operation of N IT2 FSs depending on the concept of the secondary MF such as Theorem 3.3, which was 

given by Karnik and Mendel but for the join operation. Theorem 4.1 and 4.2 provided the derivation of the rela-

tionship between the consequent and the DOU of the T2 fired output for SF and NSF. We have provided the 

derivation of the general form for continuous domain to calculate the different kinds of type-reduced, which was 

given by Karnik et al. but for discrete domain. Additionally, we applied the medical application of IT2 FLS‘s to 

HDs, in which it demonstrated the basic ideas and the mathematical operations of IT2 fuzzy sets and systems. 

Finally, we have compared the performance of the four methods of HDs between IT2 FLS using the IT2FLS in 

MATLAB and the IT2FLS in Visual C# models with T1 FISs (Mamdani, and Takagi-Sugeno). The best result 

of RMSE was 0.00075 with the IT2FLS in MATLAB. The prediction errors using IT2 FLS in Matlab has li-

mited by [-0.2194, 0.1385], that are represented by the red line that was closer to zero. Our future work includes 

optimizing the knowledge base of the IT2 FLS, and modelling the IT2 FLS to neural network model on conti-
nuous domain. 

 

VIII. APPENDIX A: THE BASIC CONCEPTS OF TYPE 2 FUZZY SETS 

Definition 1: A type-2 fuzzy set, expresses the non-deterministic truth degree with uncertainty for an 

element that belongs to a set. A type-2 fuzzy set denoted by  𝐴  is described by a type-2 MF 𝜇𝐴 (𝑥, 𝑢), where  𝑥 ∈
𝑋 and 𝑢 ∈ 𝐽𝑥

𝑢 ⊆ [0,1] , and 0 ≤ 𝜇𝐴 (𝑥, 𝑢) ≤ 1 is defined as the following:  

 𝐴 =    𝑥, 𝑢 , 𝜇𝐴 (𝑥, 𝑢) | ∀ 𝑥 ∈ 𝑋, ∀  𝑢 ∈ 𝐽𝑥
𝑢

⊆ [0,1]                                                                                                                (1. A) 

It can also be expressed as: 

 𝐴 = ∫ ∫  𝜇𝐴  𝑥, 𝑢 /(𝑥, 𝑢)
.

𝑢∈𝐽𝑥
𝑢

.

𝑥∈𝑋
,    𝐽𝑥

𝑢 ⊆  0,1 ,                                                                                                             

(2.A) 

where ∬. denotes union over all allowable  𝑥 and  𝑢. When uncertainties disappear, a T2 MF must reduce to a 

T1 MF, in which the variable 𝑢 equals  𝜇𝐴  𝑥, 𝑢 , and the third dimension disappears. The amplitudes of a MF 

should locate between or be equal to zero and one. If all 𝜇𝐴  𝑥, 𝑢  equal to one then 𝐴  is an interval T2 FS (IT2 

FS). 

Definition 2: At each value of 𝑥, say 𝑥 = 𝑎, the 2-dimentional plane whose axes are 𝑢 and  𝜇 𝐴  𝑎, 𝑢  is 

called a vertical-slice of  𝜇𝐴  𝑥, 𝑢 . A secondary MF is a vertical-slice of  𝜇𝐴  𝑥, 𝑢 . It is  𝜇𝐴  𝑥 = 𝑎, 𝑢  for 𝑎 ∈ 𝑋 

and ∀ 𝑢 ∈ 𝐽𝑥
𝑢 ⊆  0,1 , i.e, 

𝜇𝐴  𝑥 = 𝑎, 𝑢 ≡ 𝜇𝐴  𝑎 = ∫ 1/𝑢
.

𝑢∈𝐽𝑥
𝑢 , 𝐽𝑥

𝑢 ⊆  0,1 .                                                                                                          

(3.A) 

Because ∀ 𝑎 ∈ 𝑋, we drop the prime notation on  𝜇𝐴 (𝑎), and refer to  𝜇𝐴  𝑥  as a secondary MF, the IT2 FS can 

be expressed (2.A) as the following [10], [12-13], [17]: 

𝐴 = ∫   𝜇𝐴  𝑥 𝑥 
,

𝑥∈𝑋
= ∫  ∫ 1/𝑢

.

𝑢∈𝐽𝑥
𝑢  𝑥 

,

𝑥∈𝑋
                                                                                                                    

(4.A) 

The domain of a secondary MF  𝐽𝑥
𝑢   is called the primary membership of  𝑥, where  𝐽𝑥

𝑢 ⊆  0,1  for  ∀ 𝑎 ∈ 𝑋. 
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Definition 3: The amplitude of a secondary MF is called a secondary degree. The secondary degrees of 

an IT2 FS are all equal to one. If  𝑥 and  𝐽𝑥
𝑢  are both continuous, then the right-hand side of (4.A) can be denoted 

as: 

𝐴 = ∫  ∫ 1/𝑢
.

𝑢∈𝐽𝑥
𝑢  𝑥 

,

𝑥∈𝑋
= ∫  ∫ 1/𝑢

.

𝑢∈𝐽𝑥
𝑢  𝑥𝑖 

𝑁

𝑖=1
=  ∫ 1/𝑢1𝑗

𝑀1

𝑗=1
 𝑥1 ∪…∪  ∫ 1/𝑢𝑁𝑗

𝑀𝑁

𝑗=1
 𝑥𝑁 ,                                      

(5.A) 

where the simple ∪ denotes the union and 𝑁 is an approach infinity. Note that, the variable 𝑥 has been divided 

into 𝑁   values, and at each of this value 𝑢 has been divided into 𝑀𝑖 values. 

Definition 4: Uncertainty in the primary memberships of an IT2 FS 𝐴  consists of a bounded region that 

we call the footprint of uncertainty (FOU). It is the union of all primary memberships as the following [21-23]: 

𝐹𝑂𝑈 𝐴  =   𝐽𝑥
𝑢

𝑥∈𝑋  .                                                                                                                                                     
(6.A) 

Equation (6.A) represents a vertical-slice of the FOU, because each of   𝐽𝑥
𝑢  is a vertical slice. The shaded region 

on the 𝑥𝑢 plane in Fig. 2 is the FOU. If a T2 FS is continuous with a naturally ordered primary variable then the 

domain of uncertainty (DOU) for a T2 FS equal to FOU, i.e., 𝐷𝑂𝑈 𝐴  = 𝐹𝑂𝑈 𝐴  . 

Definition 5: The lower membership function (LMF) and upper membership function (UMF) of  𝐴  are 

two T1 MFs that bound the DOU. The LMF is associated with the lower bound of 𝐷𝑂𝑈 𝐴   and is denoted by 

𝜇𝐴  𝑥 , ∀ 𝑥 ∈ 𝑋 and the UMF is associated with the upper bound of 𝐷𝑂𝑈 𝐴   and is denoted by  𝜇
𝐴 
 𝑥 , ∀ 𝑥 ∈ 𝑋, 

as following: 

𝜇𝐴  𝑥 ≡ 𝐷𝑂𝑈 𝐴  , and  𝜇
𝐴 
 𝑥 ≡ 𝐷𝑂𝑈 𝐴  ,          ∀ 𝑥 ∈ 𝑋                                                                                             

(7. A)  

We observe that for an IT2 FS  𝐽𝑥
𝑢 =   𝜇𝐴  𝑥 ,  𝜇

𝐴 
 𝑥   , ∀ 𝑥 ∈ 𝑋. Thus, interval type-2 fuzzy set is denoted by: 

𝐴 = ∫  ∫ 1/𝑢
.

𝑢∈  𝜇  𝐴 
 𝑥 , 𝜇𝐴  𝑥   ⊆[0,1]

 𝑥 
.

𝑥∈𝑋
 .                                                                                                                      

(8.A) 

Definition 6: For continuous universes of discourse 𝑋 and 𝑈, an embedded IT2 FS has 𝑁 → ∞ counta-

ble-infinity number of elements, where 𝐴 𝐸  contains exactly one element from  𝐽𝑥𝑖
𝑢 , namely 𝑢𝑖 ,  𝑖 = 1,2,…  , each 

with a secondary degree equal to one, i.e., 

𝐴 𝐸 = ∫ [1 𝑢𝑖 ] 𝑥𝑖 
∞

𝑖=1
, 𝑢𝑖 ∈ 𝐽𝑥𝑖

𝑢 ⊆ 𝑈 =  0,1                                                                                                                               

(9. A) 

Set 𝐴 𝐸  is an embedded in 𝐴 . There are a countable-infinite number of embedded IT2 FSs for a continuous IT2. 
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