
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661,p-ISSN: 2278-8727,
PP 37-44

www.iosrjournals.org

National Conference on Advances in Engineering, Technology & Management 37 | Page

(AETM’15)”

Generating &Prioritization of test cases using Static Program

Slices

Ms. JyotiArora, Ms, RadhikaThapar
Rukmini Devi Institute of Advanced Studies

(2A & 2B, Phase-1, MadhubanChowk, Outer Ring Road, Rohini, Delhi-110085)
1jyoti.arora@rdias.ac.in,2radhika.thapar@rdias.ac.in

Abstract: Program slicing is a process to classify the program into number of parts based on various types of

dependencies between program statements.This paper presents an overview of basic concept of generating

static program slices and on the basis of these program slices generating and prioritization of test cases.

Keywords: Program dependency, static program slices, test cases prioritization and execution history

I. INTRODUCTION

Program Slicing enables programmers to view subsets of a program by filtering out code that is not

relevant to the computation of interest. It was originally introduced by Mark Weiser. A slice consists of all

statements of a program that might affect the value of a variable at a program point of interest for every possible

input to the program. [1]

A concept of Program Slicing is introduced to aid developer debugging, testing and program

comprehension by reducing the complexityof the program. With the help of these static program slices, we can

easily generating and prioritizing test cases.

II. PROGRAM SLICING
Software Testing is the process of executing a program or system with the intent of finding errors.

There are two methods for software testing: - Black box testing (Functional Testing) and White box testing
(Structural Testing). The term „Black Box‟ refers to the software which is treated as a black box. By treating it

as a black box, we mean that the system or source code is not checked at all. It is done from customer‟s

viewpoint. White box testing is a way of testing the external functionality of the code by examining and testing

the program code that realizes the external functionality. Full white-box testing is a large task. However, for

many properties, only a small portion of the program is relevant.

Hence property-based testing has the potential to substantially simplify much of the testing work. The

portion of a program that relates to a given property can be identified through slicing.

Slicing is an important technique which has a wide range of applications in software testing. Basically,

slicing is a technique for simplifying programs by focusing on selected aspects of semantics. It is method of

program analysis which is used to extract a set of statements in a program which is relevant for a particular

computation. This set of statements is called a program slice. Various type of slicing strategies exist such as
forward slicing, backward slicing, static slicing, dynamic slicing, etc. These different slicing techniques have

different application domains such as software maintenance, software optimization, program analysis,

information flow control, etc.

Program slicing refers to finding all statements in a program that directly or indirectly affect the value

of a variable occurrence. The selected statements constitute a slice.

Depending on the run-time environment, Program Slicing classified as static slicing and dynamic

slicing. In the case stacte slicing, a slice S consists of all statements in program P that may affect the value of

variable v at some point p. The slice is defined for a slicing criterion C=(x, V), where x is a statement in

program P and V is a subset of variables in P. A static slice preserves the program‟s behavior (value of variable

v) for all possible program executions.Static Slicing is used to identify those parts of the program that

potentially contribute to the computation of the selected functions for all possible programs inputs. In the case
of dynamic slicing, a dynamic program slice is part of a program that “affects” the computation of a variable of

interest during program execution on a specific program input. This paper focus on static program slicing.

mailto:1jyoti.arora@rdias.ac.in,2radhika.thapar@rdias.ac.in

IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661,p-ISSN: 2278-8727,
PP 37-44

www.iosrjournals.org

National Conference on Advances in Engineering, Technology & Management 38 | Page

(AETM’15)”

2.1 Terminology used in Static Program Slicing:-

2.1.1 Program Slice:- A program slice is a subset of a program.

2.1.2 Slicing Criteria :- Assume that: P is a program and V is the set of variables at a program location (line

number) n. A slice S(V,n) produces the portions of the program that contribute to the value of V just before
or after the statement at location n is executed.

2.1.3 Slicing Variable:- Slicing variable is variable specified in the slicing criteria , used to find out directly or

indirectly affected lines from the program at the slicing Point.

2.1.4 Slicing Point:- Slicing Point is point from where programmer wants to slice the program that contribute to

the value of slicing variable.

2.1.5 Slicing Direction:- Slicing direction used to exact the slice from the program in the forward or backward

manner.

2.1.6 Type of the Slicing result:- The result of slicing may be equivalent to the program or few set of statements

from the program.

A Program slice Must Satisfy the following Conditions:-

1. Slices created with respect to one variable not a set of variables.
2. Creating slices for all nodes/program statements whose focus is on the variables in the right hand side of an

assignment.

3. Slices should be executable.

For Example Figure 1. shows C‟ Program

1. void main()

2. {

3. inti,sum,mul;

4. i=1;

5. sum=0;

6. mul=1;

7. while(i<=10)

8. {

9. sum=sum+i;

10. mul=mul*i;

11. i=i+1;

12. }

13. printf(“%d”,i);

14. printf(“%d”,mul);

15. printf(“%d”,sum);

16. getch();

17. }

IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661,p-ISSN: 2278-8727,
PP 37-44

www.iosrjournals.org

National Conference on Advances in Engineering, Technology & Management 39 | Page

(AETM’15)”

Fig.1 C‟ Program Example

Figure-2 shows the demonstration for various program slices of program -1.

Figure 2. Shows executable program slices of all variables of program -1, every program slice includes

statements from program-1 that directly or indirectly affects the value of that program slice variable.
With the help of program slices, we decompose our program -1 into number of slices containing statements that

directly or indirectly affect the slice variable in program-1. Finally for slice S1, count the value of i variable, for

slice S2, compute the multiplication function and for slice S3 compute the sum function.

S1(i, 13)

void main()

{

inti,sum,mul;

i=1;

while(i<=10)

{

i=i+1;

}
Printf(“%d”,i);

getch();

}

S2(mul,14)

void main()

{

inti,sum,mul;

mul=1;

i=1;

while(i<=10)

{

mul=mul*i;
i=i+1;

}

printf(“%d”,mul);

getch();

}

S3(sum,15)

void main()

{

inti,sum,mul;

sum=0;

i=1;

while(i<=10)

{

sum=sum+I;
i=i+1;

}

printf(“%d”,sum);

getch();

}

Fig. 2 Executable Program Slices for above C‟ language Program

III. PROGRAM SLICING PROCESS
The step by step activities for generating static program slicing are:-

Fig. 3 Static program slicing process

Fig. 4 Example Program

IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661,p-ISSN: 2278-8727,
PP 37-44

www.iosrjournals.org

National Conference on Advances in Engineering, Technology & Management 40 | Page

(AETM’15)”

3.1.1 Select the slicing criterion:- The slicing criterion specifies a point of interest (a statement in the

program to be sliced) and interested variable. For static program slices, criterion is expressed as (n,V)-

where n is point of interest and V is interested variable. For dynamic program slices, criterion is expressed

as (value,n,V)- where value is input variable value, n is point of interest and V is interested variable. For
example Slicing criterion for above program is (i,8)[2]

3.1.2 Create Program Dependency Graph:- The second step for program slicing process is to create program

dependency graph on the basis of various types of dependencies between the statements[4]. For example

dependency can be data, control, function call etc. The Program Dependency Graph for above program is as

follow:

Fig. 5 Program Flow Graph

3.1.3 Slice Extraction: - After creating dependency graph, the next step is to extract slices from program

dependency graph using forward or backward approaches. Backward slices contain all parts of the program that

might have influenced the variable in the statement under consideration. Here the slice is computed by working

backwards from the point of interest finding all statements that can affect the specified variable at the point of

interest and discarding the other statements. Forward slices contain all parts of the program that might be

influenced by the variable in those statements which are affected by the slicing criterion. Here the slice is
computed by working forwards from the point of interest finding all statements that can affect the specified

variable at the point of interest and discarding the other statements[3].

Fig. 6 Program flow graph of variable i

IV. APPLICATION OF PROGRAM SLICING
4.1 DEBUGGING: - PROGRAM SLICING IS HELPFUL IN DEBUGGING FOR:-

4.1.1 Finding errors: Execute the program by a given input. If the result is not coincident with the expected

result, it indicates that there are errors in the program. Suppose there may be error when we input the value of a

variable V at statement i.

4.1.2 Localizing errors: Localizing errors is a trivial and time-consuming work in debugging. It is difficult to

find errors quickly and precisely without tools. In order to find errors, insert breakpoints into the program. The

IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661,p-ISSN: 2278-8727,
PP 37-44

www.iosrjournals.org

National Conference on Advances in Engineering, Technology & Management 41 | Page

(AETM’15)”

purpose is to narrow the errors to the program section before the breakpoint. The i in a slicing criterion <i, V> is

a breakpoint in nature and V is the variable set interesting. But program slice only includes the statements that

influence the V at i, not all the statements before i. Thus, the error codes are localized to a less program section.

If the slice is executable, the errors are to be localized by executing the slice, not the whole program repeatedly.
4.1.3 Analyzing ripple effort:- Program is a system with interactions among statements. The modification of

an error (statement) might cause other unexpected errors. Thus when a statement is modified we must check

the statements affected by the modification and modify them if necessary. The process to analyze the

affected statements is called ripple analysis. Such statements can be obtained from the slicing[15].

4.2 Program Understanding:- With the help of program slices, understanding the program is more easier than

full program. Each program slice having statements relevant to the specific variable.

4.2.1 Testing: - Program slicing play very important role in software testing. At the tim e of

regression testing, it is very difficult to find out number of test cases that need to be re -run

again or effected test cases due to the modification of original program. But with the help of

program slices, we can easily find out effected test cases after modification of original

program. Program slices contains execution statement of the program. [5] With the find out

difference between executions history of program and program slices execution statements, we
can find out effected and non -effected test cases after the modification of the program.

V. EXISTING PROGRAM SLICING TOOLS

Fig. 7 Comparison between static Program Slicing Tools

The above figure shows various existing tools for static program slicing.

IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661,p-ISSN: 2278-8727,
PP 37-44

www.iosrjournals.org

National Conference on Advances in Engineering, Technology & Management 42 | Page

(AETM’15)”

VI. PROPOSED APPROACH

Fig. 8 Proposed Approach

6.1 Create executable Static Program Slices Module

This module includes four steps:-

1. Select the Slicing Criteria.

2. Create Software Dependence Graph.
3. Slicing Extraction

4. Slicing Execution

In the first step of this module, input the slicing criteria from user –slice variable and slicing point.

In the second step of this module, create program dependence graph.

6.2 Generate Test Cases from the Executable Static Program Slices Module:- The executable static

program slices contained line numbers of original program. On the basis of line numbers of individual

executable static program slices generate test cases and maintained its execution history.

6.3 Identify differences between Original & Modified Program in case of Regression Testing Module:-

This module includes four steps:-

1. Input original and modified java program.

2. Creation of flow graph of original and modified program.
3. Identify differences between flow graph of original and modified java program.

4. Display difference- new lines, deleted lines and modified lines.

IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661,p-ISSN: 2278-8727,
PP 37-44

www.iosrjournals.org

National Conference on Advances in Engineering, Technology & Management 43 | Page

(AETM’15)”

6.4 Prioritization of Test Cases in case of Regression Testing Module:-

This module includes two steps:-

1. Search Modified lines into all slices of original java program & find out effected program slices: - In

this step if slice contain modified lines, then it declared effect program slice.

2. Compare execution history of original test suite with lines numbers of every effected program slices:-
In this step compare execution history of original test suite with lines numbers of every effected program

slices and if both are equals then it declared effected test cases after modification.
3. Prioritization of Test Cases:- On the basis of maximum number of matches from the execution history of

original test suite with lines numbers of every effected program slices, prioritized the test cases.

VII. CONCLUSIONS
Program slicing is a well-known program analysis and transformation technique that uses program

statement dependence information to identify parts of a program that influence or are influenced by an initial set

of program points of interest (called the slice criterion). This paper had shown an approach for generated test

cases and prioritized test cases using executable static program slices.

On the basis of maximum

number of lines comparing,

prioritized test cases

IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661,p-ISSN: 2278-8727,
PP 37-44

www.iosrjournals.org

National Conference on Advances in Engineering, Technology & Management 44 | Page

(AETM’15)”

REFERENCES
[1]. M.Weiser, Programmers use slices when debugging, Communications of the ACM, vol. 25, 446-

452(1982)

[2]. Weiser, Program Slicing, IEEE Transactions on Software Engineering 10(4), 352-357 (1984).

[3]. Tip,F, A survey of program slicing techniques, Journal of programming languages 3, 121-189 (1995).

[4]. Jianjun Zhao, Applying Program Dependence Analysis to Java Software, In Proc. Workshop on Software

Engineering and Database Systems, Taiwan 162-169, December 1998.

[5]. Andrea De Lucia, Program Slicing: Methods and Applications, IEEE international workshop,2001

[6]. Indus Project. http://indus.projects.cis.ksu.edu/

[7]. Unravel Project. http://hissa.nist.gov/unravel/

[8]. Wisconsin Program Slicing Project. http://www.cs.wisc.edu/wpis/html/

[9]. Topics in Program Slicing, http://www.cs.drexel.edu/~spiros/teaching/CS576/slides/5.slicing.pdf.

[10]. Ferrante, Ottenstein, The program dependence graph and its use in optimization, et al.-1987,

http://indus.projects.cis.ksu.edu/
http://hissa.nist.gov/unravel/
http://www.cs.wisc.edu/wpis/html/
http://www.cs.drexel.edu/~spiros/teaching/CS576/slides/5.slicing.pdf

