Mitigating The Environmental Consequences Of Fossil Fuel-Based Transportation: A Comprehensive Analysis

Mr. Manju B, Prof. S Venkatesh

Research Scholar, Department Of PG Studies And Research In Commerce, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Karnataka, India

Research Supervisor, Chairman And Dean, Department Of PG Studies And Research In Commerce, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Karnataka, India

Abstract

Road transportation significantly contributes to the greenhouse gas emissions, air pollution, and resource depletion, thereby adversely affecting human health and the environment. The combustion of vehicle fuels releases carbon dioxide and pollutants into the atmosphere, exacerbating climate change and deteriorating air quality in urban areas. Pollution associated with transportation is linked to respiratory and cardiovascular diseases and increased mortality rates. Policymakers are investigating strategies such as congestion pricing, incentives for low-emission vehicles, and stricter fuel efficiency standards. The production of vehicles demands substantial resources, including metals, plastics, and rare-earth elements, further straining natural ecosystems. Additionally, noise pollution from traffic negatively impacts human health and wildlife, disrupts sleep patterns, and alters animal behavior. Technological advancements, including electric vehicles, improved public transportation, and alternative transport infrastructure, are transforming the transportation sector. Sustainable transportation aims to develop efficient, environmentally friendly systems that reduce emissions, minimize resource consumption, and enhance quality of life. By integrating policy measures, technological innovations, and sustainable solutions, it is possible to mitigate the environmental impact of road transportation and create more livable urban environments. Building on these key points, this study delves deeper into the environmental consequences of fossil fuel-based transportation and explores sustainable solutions for a greener future.

Keywords: Sustainable Transportation Solutions, Environmental Impact, Greenhouse Gas Emissions, Road Transportation, Environmental Consequences.

Date of Submission: 26-10-2025 Date of Acceptance: 06-11-2025

I. Introduction

The environmental impact of road transportation has become a critical concern with significant implications for climate change, air quality, and public health. As urban populations expand, the detrimental effects of fossil fuel-based transportation have become increasingly apparent. Road transportation is a major contributor to greenhouse gas emissions, air pollution, and resource depletion. Vehicle emissions release carbon dioxide and other pollutants into the atmosphere, exacerbating climate change and deteriorating air quality. The construction of road infrastructure can result in habitat destruction and ecosystem fragmentation. These environmental impacts have direct consequences for human health, as air pollutants are associated with respiratory diseases, cardiovascular problems, and increased mortality rates. The severity of these issues is evident in both developed and developing countries. Table 1.1 illustrates the health challenges arising from air pollution due to fossil fuel use. Major Indian cities, for instance, experience severe air quality issues attributable to vehicle emissions. Policymakers are investigating strategies to mitigate environmental impacts through measures such as congestion pricing, incentives for low-emission vehicles, and stringent fuel efficiency standards. Urban planning policies that emphasize compact development can reduce long-distance travel and promote sustainable transportation

While policy interventions are essential, technological advancements, including the development of advanced materials and designs, are significantly contributing to the transformation of the transportation sector. These advancements enhance the fuel efficiency of conventional vehicles, while innovations in battery technology extend the range and reduce the cost of electric vehicles. The exploration of alternative fuels, such as hydrogen and biofuels, presents additional opportunities to mitigate the environmental impact of transportation. In response to these challenges, there is an increasing focus on sustainable transportation solutions. This encompasses the promotion of electric and hybrid vehicles, the enhancement of public transportation systems, and the development of infrastructure to support alternative modes of transport, such as cycling and walking. These technological innovations are facilitating the transition to more sustainable transportation options, which aim to reduce greenhouse gas emissions, minimize resource consumption, and enhance overall quality of life. By integrating

policy measures, technological innovations, and sustainable transportation solutions, it is possible to mitigate the environmental impact of road transportation and create more liveable urban environments for future generations. To provide context for these issues, we now turn to a review of the relevant literature on the environmental impacts of fossil fuel usage and transportation.

Table 1.1: Air pollutants and related health impacts

Pollutants	Short-term health effects	Long-term health effects	Source
Sulphur	Increased asthma attack	Reduced lung function	Fossil fuel combustion, smelting,
Dioxide			manufacture of sulphuric acid,
			conversion of wood pulp to paper,
			incineration of refuse and production of
			elemental Sulphur.
Oxides of	Eye and Nasal irritation,	Increased susceptibility to	Nitrogen dioxide is a traffic-related
Nitrogen	cough	respiratory infection and adverse	pollutant, emissions are generally highest
(NO2)		changes in cell structure of lungs.	in urban rather than rural areas.
Suspended	Sneezing, coughing, eye	Many components of SPM are	Motor vehicle use, Combustion products
Particulate	irritation, increase asthma	toxic and carcinogen	from space heating, Industrial processes,
Matter (SPM)	attack		Power generation
Particulate	Coughing, wheezing,	Lung damage, premature death of	Burning of fossil fuels in vehicles, power
matter (PM10)	shortness of breath,	individual with aggravated hear	plants and various industrial processes
	aggravated asthma		

Source: Syamroy, M. (2017). Green Accounting for Sustainable Development: Case Study of Industry Sector in West Bengal. <u>jr4_6_1March2017.pdf</u>

II. Literature Review

The environmental impact of fossil fuel usage is a significant concern, with detrimental effects on the environment and human health. The burning of fossil fuels, such as coal, oil, and natural gas, is a primary driver of environmental degradation due to the emission of pollutants into the atmosphere. These emissions contribute significantly to climate change, air pollution and water contamination (Suryabhan, 2024). In particular, the combustion of fossil fuels releases large quantities of carbon dioxide (CO2) into the atmosphere, exacerbating the greenhouse effect and leading to global warming (Armaroli and Balzani, 2011). Additionally, fossil fuel consumption has been linked to increased mortality rates due to the rise in pollutants that adversely affect human health. Fossil fuel consumption is positively correlated with mortality from diseases such as cardiovascular disease, diabetes mellitus, cancer, and chronic respiratory diseases (Rasoulinezhad et al., 2020). Furthermore, the impact of fossil fuel consumption extends to ecological degradation, as evidenced by its significant contribution to the ecological footprint, a measure of the environmental impact of human activity (Eweade et al., 2023). Fossil fuels also contribute to the degradation of land and water. The extraction and use of these resources impact soil and water quality, biodiversity, and the carbon cycle of the region. The use of coal, for instance, is associated with higher environmental impacts than renewable energy sources (Acar and Dincer, 2017). In Turkey, electricity generation primarily from fossil fuels significantly contributes to CO2 emissions and the depletion of natural resources, although transitioning from lignite and hard coal to natural gas could mitigate some of these effects (Atilgan and Azapagic, 2014). India has witnessed huge population growth since independence and urbanization linked to population growth create environmental pollution, and all natural resources have become poisoned (Arshdeep Singh 2012). Rapid urbanization has led to significant environmental challenges, particularly in major cities. Bengaluru, the Silicon Valley of India, has four million vehicles that produce significant pollutants. The environmental challenges faced by Bengaluru are not unique, as pollution has become a widespread issue affecting major metropolitan cities across India. The main sources of SO2 are the burning of fossil fuels and diesel exhaust, which affect human health, causing lung dysfunction, respiratory issues, eye irritation, asthma, and premature death (Chinnaswamy et al., 2014). Pollution is a global issue, and major metropolitan cities in India are heavily affected by this phenomenon in different sectors such as health, economy, and economic development. Environmental pollution also impacts present and future generations; for example, pollution in the Ganga explains the level of impact (Jain and Jain, 2020). Although the current situation is concerning, future projections for other major cities are equally alarming. Significant increases in the number of vehicles used, energy consumption, and greenhouse gas (GHG) emissions are projected to significantly increase in Delhi over the next two decades, with emissions potentially doubling or quadrupling (Kumar Bose and Sperling 2002). The impact of pollution extends beyond health concerns to the global environment. Greenhouse gas emissions harm the ozone layer, leading to consequences, such as diseases, ocean food chain disruptions, melting glaciers, and flooding. Human activities, including urbanization, factories, vehicle pollution, and thermal power plants, are responsible for this environmental crisis. (Ramamohan Reddy Appannagari 2017). Industrial activities contribute significantly to environmental degradation in addition to vehicular and urban pollution. Increased industrial activity and Transport freight negatively impacts environmental quality, whereas short-term findings reveal a causal relationship between industrial activity and CO₂ emissions (Anwar et al., 2019). Environmental pollution affects both

environmental and human health. Human greed causes pollution, which leads to health issues, including pneumonia, asthma, cancer, leukaemia, hypertension, hearing loss, sleep disorders, and cardiovascular problems. Air pollution raises Earth's temperature through acid rain and ozone depletion, harming health and the environment (Khasanova et al., 2023). Given these substantial environmental impacts, it is crucial to shift energy consumption from fossil fuels to renewable sources, such as solar, wind, tidal, and hydropower. Such a transition not only reduces greenhouse gas emissions but also helps protect natural resources and improve environmental quality (Suryabhan, 2024). Countries such as Nigeria are exploring the potential of renewable energy and energy efficiency as sustainable solutions for environmental conservation and reduced carbon emissions (Riti and Shu, 2016). Although fossil fuels have historically been vital for economic growth and energy supply, their continued use poses a challenge to environmental sustainability. There is a pressing need for regulatory efforts and policy measures to facilitate the transition to sustainable energy practices, further supported by technological innovations in renewable energy consumption (Destek and Pata, 2023).

Mitigating the environmental consequences of road transportation involves several strategies that focus on technological innovations, policy reforms, and sustainable practices. Here's an overview of some key approaches. Advances in road construction, such as soil stabilization methods, reduce the environmental impact by using eco-friendly binding additives. These innovations decrease cement consumption, leading to lower CO2 emissions and improved road durability (Piechowicz et al., 2024). Implementing transport taxes and investing in infrastructure improvements are effective methods for reducing the ecological footprint. Higher transport taxes can disincentivize excessive fossil fuel use, while targeted infrastructure investment supports more sustainable transportation networks (Chi, 2024). ITS use technology to optimize traffic flow, reduce congestion, and monitor environmental factors like air quality and emissions. These systems promote a more efficient and safer transportation environment, decreasing pollution from idle vehicles and congested roadways. Integrating electric vehicles, shared mobility services, and other alternative transportation modes can significantly reduce emissions and environmental degradation. Mobility-as-a-service models in urban settings reduce private vehicle usage, thereby minimizing the ecological footprint (Butler et al., 2020). Addressing oil spills in transportation, especially in regions like Nigeria, involves stringent legislation and proactive spill response measures. Preventive strategies and quick remediation can significantly lessen the environmental harm and protect ecosystems from heavy metal contamination (George et al., 2023). Investing in green technologies and enhancing productive capacities are crucial for reducing ecological impacts. These investments are especially relevant for large-scale initiatives, such as the Belt and Road Initiative, where economic activities can be harmonized with environmental sustainability goals (Madni, 2023).

By reviewing the broader literature, we now focus specifically on defining and exploring the concept of environmental impact as it relates to road transportation.

III. Concept Of Environmental Impact

Environmental impact encompasses the consequences of human activities on the natural environment, including alterations in physical, chemical, and biological systems. These impacts range from localized pollution to global climate change and may be direct, such as deforestation, or indirect, such as the emission of greenhouse gases. The severity of these impacts varies from reversible to permanent. A comprehensive understanding of environmental impact facilitates the evaluation of detrimental practices, informs policy-making, and directs conservation efforts aimed at preserving ecosystems.

Road transportation significantly contributes to environmental degradation through emissions and infrastructure development. Vehicles are a major source of greenhouse gases, particularly carbon dioxide (CO2), which are key drivers of climate change. Additionally, transportation emits air pollutants, such as nitrogen oxides and particulate matter, which deteriorate air quality and pose health risks. The construction of road infrastructure leads to habitat destruction and soil erosion, while the production of vehicles results in resource depletion. Furthermore, traffic noise adversely affects both wildlife and urban communities. To address these environmental challenges, solutions such as the adoption of electric vehicles, the enhancement of public transit systems, and strategic urban planning to minimize reliance on personal vehicles have been proposed. Consequently, the concept of sustainable transportation has emerged as a viable approach to mitigate these issues.

IV. Concept Of Sustainable Transportation

Sustainable transportation is centered on the development of efficient and environmentally friendly transportation systems aimed at reducing emissions, minimizing resource consumption, and enhancing quality of life. Key strategies encompass the promotion of electric vehicles, the implementation of intelligent traffic management systems, and the development of infrastructure to support cycling and walking. In the realm of sustainable road transportation, emphasis is placed on the use of recycled materials in construction, the application of green technologies for maintenance, and the integration of public transportation systems to decrease reliance on private vehicles. By harmonizing economic growth with environmental protection, sustainable transportation

plays a crucial role in urban development and contributes to the mitigation of climate change. These approaches not only reduce the carbon footprint of transportation but also promote social equity by improving access to mobility for all population segments. Additionally, integrating renewable energy sources into transportation infrastructure further enhances sustainability by decreasing dependence on fossil fuels. Continuous innovation and policy support are essential to accelerate the transition toward sustainable transportation systems globally.

These initiatives have been extended to encompass improvements in road safety through design and technology, the reduction of noise pollution, and the enhancement of accessibility for all societal members. Sustainable road transportation advocates for compact, mixed-use urban planning, which diminishes travel distances and promotes efficient land utilization. Collaboration among governmental bodies, private sector entities, and communities is essential for the implementation of sustainable practices. The integration of smart technologies and data-driven processes augments the efficiency of transportation systems. By utilizing real-time traffic data and analytics, cities can optimize traffic flow and reduce emissions. The adoption of electric and autonomous vehicles offers opportunities to revolutionize urban mobility and enhance transportation efficiency. With this understanding of sustainable transportation, we can now clearly articulate the objectives of the present study.

V. Objectives Of The Study

The central theme of this study was to analyze the health impacts of transportation-related air pollution in urban areas. The specific objectives were as follows:

- a. To explore sustainable solutions for mitigating the environmental impact of road transportation.
- **b.** To understand the role of policymaking and technological innovations in reducing greenhouse gas emissions from road transportation.
- c. To explore the concept of sustainable transportation and its potential to create more liveable urban environments.

To address these objectives, the following methodology was employed.

VI. Methodology

In constructing the conceptual framework, this study employs a range of published secondary sources, including journals and articles, which were examined in relation to the paper's title. To facilitate a comprehensive comparison, secondary data were collected from recent literature reviews to encapsulate the principal issues in sustainable transportation and the environmental impacts of non-renewable energy consumption. Utilizing this methodological approach, a conceptual framework was developed to elucidate the relationships between key concepts in sustainable transportation.

VII. Conceptual Framework Of The Study

Sustainable transportation is crucial for addressing the environmental and health challenges associated with current systems. Reducing fossil fuel consumption and adopting cleaner alternatives can significantly contribute to mitigating climate change and enhancing air quality. The utilization of electric vehicles, public transit, cycling, and walking can decrease pollution while improving urban livability. Moreover, sustainable transportation supports efficient urban planning, reduces congestion, and fosters economic opportunities through innovative technology. This approach will ensure a resilient and environmentally sustainable future. Chart 1.1 illustrates the relationship between sustainable transportation and a sustainable future. Expanding on these points, sustainable transportation also plays a vital role in decreasing greenhouse gas emissions by shifting away from traditional internal combustion engines toward low- or zero-emission modes. Investment in infrastructure such as dedicated bike lanes, pedestrian zones, and charging stations for electric vehicles is essential to facilitate this transition. Furthermore, policies that incentivize the use of clean transportation options and discourage reliance on private fossil-fuel vehicles can accelerate behavioral change at the societal level. Applying this conceptual framework to the findings of our literature review and analysis yields the following results and discussion points.

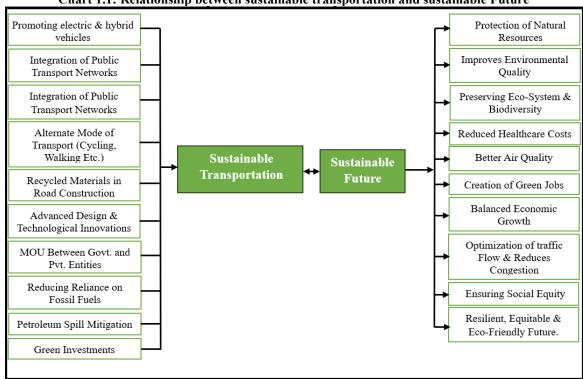


Chart 1.1: Relationship between sustainable transportation and sustainable Future

Source: Compiled by Authors

VIII. Results And Discussions

Sustainable transportation is integral to shaping a sustainable future by addressing environmental, social, and economic challenges. By advocating for efficient and low-emission travel modes, such as public transit, cycling, and electric vehicles, sustainable transportation can significantly reduce greenhouse gas emissions and air pollution, thereby enhance air quality and contribute to climate change mitigation. Furthermore, it improves urban liveability by alleviating traffic congestion, reducing noise pollution, and minimizing the need for extensive road infrastructure. Sustainable transportation systems also advance social equity by enhancing accessibility for all societal members, including those with limited mobility. Additionally, they bolster economic development through increased efficiency, reduced healthcare costs associated with pollution-related illnesses, and the creation of green jobs within the transportation sector. As cities and nations pursue a more sustainable future, integrating sustainable transportation practices into urban planning and policymaking is essential for achieving long-term environmental, social, and economic objectives. The implementation of sustainable transportation strategies necessitates collaboration among governments, businesses, and communities to develop comprehensive and integrated solutions. This collaborative approach can foster the development of innovative technologies and policies to further enhance the efficiency and sustainability of transportation systems. Moreover, investing in sustainable transportation infrastructure can yield long-term benefits, including reduced reliance on fossil fuels, improved public health outcomes, and increased resilience to climate change. Effective public engagement and educational programs are vital for raising awareness and encouraging the widespread adoption of sustainable transportation practices. These initiatives can facilitate a shift in societal norms and individual behaviors towards more environmentally friendly travel modes. Additionally, the integration of smart technologies and data-driven decision-making processes can optimize transportation networks, resulting in reduced congestion, improved safety, and enhanced overall mobility for urban and rural populations. To further support these efforts, governments and private sector organizations should collaborate to develop comprehensive incentive programs that reward sustainable transportation choices. These programs could include tax incentives for electric vehicle purchases, subsidies for public transit use, and infrastructure improvements to support active transportation modes, such as cycling and walking. Moreover, investing in research and development of innovative transportation technologies, such as autonomous vehicles and advanced traffic management systems, can pave the way for more efficient and sustainable mobility solutions. In light of these findings and discussions, several important conclusions can be drawn regarding the environmental impact of road transportation and the potential of sustainable solutions.

IX. Conclusion

Addressing the environmental impact of road transportation necessitates a comprehensive approach that integrates policy measures, technological advancements, and sustainable solutions. The transition towards electric vehicles, enhanced public transportation, and alternative transport infrastructure presents promising avenues for reducing greenhouse gas emissions and air pollution. Sustainable transportation strategies not only mitigate climate change but also improve urban liveability, promote social equity, and support economic development through increased efficiency and the creation of green jobs. Collaboration among governments, businesses, and communities is essential for implementing comprehensive and integrated solutions. By investing in sustainable transportation infrastructure and promoting awareness, we can establish more resilient, equitable, and environmentally friendly urban environments for future generations. Ultimately, the transition to sustainable transportation systems is crucial for achieving long-term environmental, social, and economic objectives in the rapidly urbanizing world.

Author contributions: MB was responsible for drafting the manuscript, conducting data analysis, and preparing all figures included in the manuscript. SV contributed by revising the manuscript and supporting the research infrastructure. All authors collectively participated in designing and preparing the draft manuscript, conceptualizing and reviewing the results, and approving the final version of the manuscript.

Funding: The authors did not receive any specific financial support from public, commercial, or not-for-profit funding agencies for the research, authorship, or publication of this study.

Declarations: The authors affirm that there are no conflicts of interest associated with any entity or organization concerning the research, authorship, or publication of this article. This work is the original creation of the authors. The manuscript has not previously been published elsewhere, or even submitted and been in reviewed in another journal.

References

- [1]. Acar, C., & Dinçer, I. (2017). Environmental Impact Assessment Of Renewable And Conventional Fuels For Different End-Use Purposes. International Journal Of Global Warming, 13(3/4), 260. https://Doi.org/10.1504/ljgw.2017.087197
- [2]. Anwar, A., Ahmad, N., & Madni, G. R. (2019). Industrialization, Freight Transport And Environmental Quality: Evidence From Belt And Road Initiative Economies. Environmental Science And Pollution Research, 27(7), 7053–7070. https://doi.org/10.1007/S11356-019-07255-8
- [3]. Armaroli, N., & Balzani, V. (2011). The Legacy Of Fossil Fuels. Chemistry An Asian Journal, 6(3), 768–784. Https://Doi.Org/10.1002/Asia.201000797
- [4]. Arshdeep Singh And Jaypreet Singh Kohli (2012) "Effect Of Pollution On Common Man In India: A Legal Perspective" Advances In Life Science And Technology, Volume 4, PP 35-41 Effect Of Pollution On Common Man In India: A Legal Perspective | Singh | Advances In Life Science And Technology
- [5]. Atilgan, B., & Azapagic, A. (2014). Life Cycle Environmental Impacts Of Electricity Generated From Fossil Fuels In Turkey. Journal Of Cleaner Production, 106, 555–564. Https://Doi.Org/10.1016/J.Jclepro.2014.07.046
- [6]. Butler, L., Yigitcanlar, T., & Paz, A. (2020). Smart Urban Mobility Innovations: A Comprehensive Review And Evaluation. IEEE Access, 8, 196034–196049. Https://Doi.Org/10.1109/Access.2020.3034596
- [7]. Chi, J. (2024). Exploring The Drivers Of Ecological Footprint: Impacts Of Road Transportation Infrastructure, Transport Tax, And Environment Technologies. International Journal Of Sustainable Transportation, Ahead-Of-Print(Ahead-Of-Print), 920–934. https://doi.org/10.1080/15568318.2024.2423726
- [8]. Chinnaswamy, A. K., Balisane, H., Wickramasinghe, N., Yaacob, N., Nguyen, Q. T., Marshall, I. M., Vallar, E. A., Shaker, M. H., Ton, T. N., Santos, G. N., Galvez, M. C. D., Trodd, N., & Naguib, R. N. G. (2015). Data Quality Issues In GIS Modeling Of Air Pollution And Cardiovascular Mortality In Bangalore. International Journal Of Information Quality, 4(1), 64. https://Doi.Org/10.1504/Ijiq.2015.071690
- [9]. Destek, M. A., & Pata, U. K. (2023). Carbon Efficiency And Sustainable Environment In India: Impacts Of Structural Change, Renewable Energy Consumption, Fossil Fuel Efficiency, Urbanization, And Technological Innovation. Environmental Science And Pollution Research, 30(40), 92224–92237. https://Doi.Org/10.1007/S11356-023-28641-3
- [10]. Eweade, B. S., Pata, U. K., Adeshola, I., Karlilar, S., & Olaifa, J. O. (2023). Examining The Asymmetric Effects Of Fossil Fuel Consumption, Foreign Direct Investment, And Globalization On The Ecological Footprint In <Scp>M</Scp>Exico. Sustainable Development, 32(4), 2899–2909. https://Doi.Org/10.1002/Sd.2825
- [11]. George, I. I., Nawawi, M. G. M., Mohd, Z. J., & Farah, B. S. (2023). Environmental Effects From Petroleum Product Transportation Spillage In Nigeria: A Critical Review. Environmental Science And Pollution Research International, 31(2), 1719–1747. https://Doi.Org/10.1007/S11356-023-31117-Z
- [12]. Jain, D., & Jain, A. K. (2020). Pollution: Past, Present, And Future An Indian Perspective. Current Science, 119(7), 1087. https://Doi.Org/10.18520/Cs/V119/I7/1087-1092
- [13]. Khasanova, S., Alieva, E., Shemilkhanova, A. (2023). Environmental Pollution: Types, Causes, And Consequences. BIO Web Of Conferences, 63, 07014. https://Doi.Org/10.1051/Bioconf/20236307014
- [14]. Kumar Bose, R., & Sperling, D. (2002). Transport In Delhi, India: Environmental Problems And Opportunities. Transportation Research Record: Journal Of The Transportation Research Board, 1815(1), 3–10. https://Doi.Org/10.3141/1815-01
- [15]. Madni, G. R. (2023). Meditation For Role Of Productive Capacities And Green Investment On Ecological Footprint In BRI Countries. Environmental Science And Pollution Research, 30(28), 72308–72318. https://Doi.org/10.1007/S11356-023-27478-0
- [16]. Piechowicz, K., Kowalski, J., Lendo-Siwicka, M., & Szymanek, S. (2024). Stabilization Of Loose Soils As Part Of Sustainable Development Of Road Infrastructure. Sustainability, 16(9), 3592. https://Doi.Org/10.3390/Su16093592

Mitigating The Environmental Consequences Of Fossil Fuel-Based Transportation......

- [17]. Ramamohan Reddy Appannagari (2017) "Environmental Pollution Causes And Consequences: A Study", North Asian International Research Journal Of Social Science & Humanities, Volume 3, Issue 8, PP 152-161. Https://Www.Researchgate.Net/Publication/323944189 Environmental Pollution Causes And Consequences A Study
- [18]. Rasoulinezhad, E., Taghizadeh-Hesary, F., & Taghizadeh-Hesary, F. (2020). How Is Mortality Affected By Fossil Fuel Consumption, CO2 Emissions, And Economic Factors In The CIS Region? Energies, 13(9), 2255. Https://Doi.Org/10.3390/En13092255
- [19]. Riti, J. S., & Su, Y. (2016). Renewable Energy, Energy Efficiency, And Eco-Friendly Environment (R-E5) In Nigeria. Energy, Sustainability And Society, 6(1). Https://Doi.Org/10.1186/S13705-016-0072-1
- [20]. Suryabhan, M. (2024). Environmental Degradation And Renewable Energy. International Journal Of Advanced Research In Science, Communication And Technology, 160–165. Https://Doi.Org/10.48175/Ijarsct-19529