Leveraging Business Intelligence Tools For Logistics Resilience: A Perspective On Manufacturing Reshoring In The Era Of Supply Chain Disruptions In The Us

Adetokunbo Kosile-Palmer

Abstract

Global supply chain disruptions, including the COVID-19 pandemic, geopolitical tensions, and transportation bottlenecks, have renewed interest in reshoring as a strategy to strengthen logistics resilience. Business Intelligence (BI) tools have emerged as critical enablers of this transition, offering advanced capabilities for visibility, risk management, and strategic alignment. This study investigates the role of BI in supporting reshoring decisions within logistics and transportation systems. A mixed-method design was employed, combining a Systematic Literature Review (SLR) of 68 peer-reviewed and industry sources, a bibliometric analysis of 312 publications (2010–2024), and a multi-criteria decision analysis using the Analytic Hierarchy Process (AHP). The SLR identified four major contributions of BI: supply chain visibility, cost forecasting, risk management and scenario modeling, and strategic policy alignment. The bibliometric analysis revealed a post-2020 surge in publications, with research clustering around resilience, analytics, and sustainability. The AHP simulation ranked risk management (0.38) and visibility (0.29) as the most critical BI-enabled logistics capabilities for reshoring, while cost forecasting (0.21) and policy alignment (0.12) were deemed secondary but strategically significant. The findings highlight BI's dual role as both an operational enabler—by enhancing transportation efficiency and resilience—and a strategic driver—by aligning reshoring with industrial policies and sustainability imperatives. The study contributes to logistics and transportation research by integrating theory with decision modeling, offering practical insights for managers and policymakers seeking to design resilient reshoring strategies.

Keywords: Business Intelligence, Logistics Resilience, Reshoring, Transportation, Supply Chain ManagementDate of Submission: 24-10-2025Date of Acceptance: 04-11-2025

I. Introduction

Global logistics systems have been subject to a sequence of high-impact shocks over the last decade that exposed fundamental vulnerabilities in contemporary supply-chain architectures. The COVID-19 pandemic triggered large-scale factory shutdowns, sudden demand shifts, and cascading delays in air, sea and land freight that revealed the limits of lean, cost-focused network designs (Handfield, Graham & Burns, 2020). The six-day grounding of the Ever Given in the Suez Canal in March 2021 further illustrated how a single maritime bottleneck can cascade into multi-week disruptions, congest ports, spike freight rates and reroute flows—forcing firms to confront the operational and strategic fragility of long, concentrated transportation corridors.

These operational shocks have reignited interest in manufacturing reshoring—the strategic relocation of production capacity closer to demand or to home/near-home regions—not merely as a labour-cost calculus but primarily as a logistics and transportation resilience decision. Recent bibliometric and review studies show that reshoring decisions increasingly reflect concerns about lead time variability, transport risk, inventory vulnerability and national industrial policy rather than only unit labour cost differentials (Fratocchi et al., reviews 2016–2021; recent comprehensive reviews show rising post-2020 interest). Such work reframes reshoring as a process that requires redesigning transportation networks, warehousing footprints, and inventory allocation strategies to balance cost, service and resilience.

At the same time, digital and analytics technologies—often grouped under Business Intelligence (BI), Big Data Analytics (BDA) and Logistics 4.0—are maturing into practical enablers of more resilient transport and logistics planning. Scholars and practitioners document that advanced analytics, predictive models and digital supply-chain twins provide the instrumentation needed to sense disruptions, run counterfactual scenarios, and reconfigure logistics flows in near real-time (Ivanov & Dolgui, 2020; Wamba et al., 2017). These BI capabilities allow firms to quantify total landed costs that incorporate transport volatility, simulate alternative routing/ modal choices under disruption, and assess inventory re-positioning trade-offs across regional hubs. In short, BI transforms reshoring from a high-uncertainty strategic gamble into a structured, data-driven logistics optimisation problem.

Beyond firm-level optimisation, policy interventions and geopolitical realignments increasingly shape transport-centric reshoring choices. The CHIPS and Science Act (2022) in the United States, targeted EU

industrial strategies (including clean-tech manufacturing support), and national localisation incentives in East and South Asia all channel investment toward domestic or regional production of strategically important goods. These policies alter the economics of transport-dependent global value chains by changing subsidies, compliance risks, and the strategic value of shorter, more controllable logistics routes. BI tools can quantify and monitor these policy impacts on logistics costs, enabling firms to evaluate eligibility, project returns on reshoring investments, and adapt transport networks in response to regulatory shifts.

Despite the clear conceptual fit between BI, transport resilience, and reshoring, the literature remains fragmented. Empirical and conceptual studies have treated BI/big-data analytics and reshoring largely in separate literatures—one focused on analytics capabilities and firm performance and another on drivers and outcomes of relocation decisions—while only a few studies explicitly investigate how BI reshapes transportation and logistics architecture during reshoring. Moreover, methodological diversity (case studies, surveys, simulation, analytic modelling) has produced insightful but dispersed findings, leaving a need for integrated mixed-method frameworks that combine systematic review, bibliometric mapping of intellectual trends, and decision-support models tailored to transport-centred reshoring choices.

This paper addresses that gap by treating reshoring as a logistics and transportation design problem and by examining how BI tools strengthen transport resilience and support reshoring decisions. Specifically, the study pursues three objectives: (1) to synthesize the literature on BI, transportation resilience and reshoring through a systematic literature review (2010–2024); (2) to map intellectual and thematic trends using a bibliometric analysis that highlights clusters at the intersection of analytics, logistics 4.0 and relocation strategies; and (3) to develop and apply an Analytic Hierarchy Process (AHP) decision framework (simulated here) that ranks BI capabilities (e.g., risk modelling, visibility, cost forecasting, policy alignment) by their relative contribution to logistics resilience in reshoring scenarios.

By foregrounding transport and logistics, this study makes three contributions. First, it reframes reshoring as a logistics network redesign problem in the US —one where route choice, modal mix, warehousing location and inventory policy are central trade-offs. Second, it integrates BI capabilities with operations research decision tools (e.g., scenario modelling, AHP), offering a structured pathway for practitioners to evaluate reshoring under transport uncertainty. Third, it provides policy-relevant insights on how industrial incentives interact with logistics costs and resilience, informing both corporate strategy and public interventions that aim to strengthen production in the US without sacrificing supply reliability.

II. Literature Review

Conceptual Review

Business Intelligence (BI) Tools in Logistics and Supply Chains

Business Intelligence (BI) tools encompass a wide range of analytical and technological solutions designed to transform raw data into actionable insights (Davenport, 2018). In logistics, BI integrates predictive analytics, dashboards, digital twins, and data mining techniques to enhance visibility, optimize transport planning, and support risk mitigation. Trkman et al. (2010) show that BI improves supply chain performance by enhancing forecasting and responsiveness, while Wamba et al. (2017) demonstrate that big data analytics enhance firms' dynamic capabilities, enabling rapid adaptation to logistics disruptions.

Recent studies confirm that BI is increasingly embedded in logistics operations, from freight route optimization to demand forecasting and warehouse management (Gunasekaran et al., 2017). Bolsunovskaya et al. (2023) note that transport firms are adopting BI to monitor real-time delivery performance, predict congestion, and align resources with customer expectations. Thus, BI serves as both an operational enabler and a strategic decision-support system in reshoring and logistics resilience.

Reshoring as a Logistics and Transportation Strategy

Reshoring—the relocation of production back to domestic or regional sites—has evolved from a cost-saving debate to a resilience-oriented logistics strategy. Fratocchi et al. (2021) identify logistics costs, lead times, and transport risks as primary factors influencing reshoring decisions, alongside labor costs and government incentives. Gray et al. (2013) argue that reshoring reflects firms' attempts to minimize hidden logistics costs, including shipping delays and quality control challenges in distant locations.

In the wake of global disruptions such as COVID-19, the Suez Canal blockage, and rising trade tensions, reshoring is increasingly tied to transportation resilience (Handfield et al., 2020). Shorter, regionalized supply chains reduce vulnerability to freight bottlenecks, while nearshoring to neighboring countries can mitigate risks without entirely abandoning global networks (Barbieri et al., 2020).

Supply Chain Disruptions and the Need for BI

Disruptions—whether pandemics, natural disasters, cyber-attacks, or geopolitical tensions—expose vulnerabilities in logistics systems optimized primarily for cost efficiency (Ivanov & Dolgui, 2020).

Transportation risks, including freight delays, congestion, and container shortages, directly affect supply reliability. BI provides the analytical capacity to anticipate disruptions, simulate scenarios, and redesign logistics networks. For example, digital supply chain twins enable "what-if" modeling of transport delays, helping firms evaluate reshoring feasibility and inventory repositioning strategies (Ivanov, Dolgui, & Sokolov, 2019).

Theoretical Review

Resource-Based View (RBV)

The RBV posits that firms gain competitive advantage through unique resources and capabilities (Barney, 1991). BI tools represent intangible, knowledge-based resources that improve logistics decision-making and enhance resilience. In reshoring contexts, firms leveraging BI for transport optimization and risk analytics may achieve superior outcomes compared to competitors dependent on intuition or static models (Chae et al., 2014).

Transaction Cost Economics (TCE)

Williamson's (1985) TCE framework argues that firms internalize activities when transaction costs of external sourcing are high. Offshoring often entails hidden costs such as transport delays, tariffs, and compliance risks. BI tools reduce information asymmetry by quantifying these logistics costs, strengthening the case for reshoring when offshore transportation uncertainties outweigh domestic production benefits (Stentoft et al., 2016).

Contingency Theory

Contingency theory emphasizes alignment between strategy and environmental conditions (Donaldson, 2001). In volatile logistics environments, BI enables firms to adapt reshoring strategies to specific contingencies—such as shifting freight routes during geopolitical conflicts or optimizing inventory policies under demand surges. Thus, BI provides the analytical flexibility necessary for contingent reshoring strategies.

Dynamic Capabilities Theory

Dynamic capabilities theory highlights firms' ability to sense, seize, and reconfigure resources in turbulent environments (Teece, Pisano, & Shuen, 1997). BI strengthens dynamic capabilities in logistics by providing predictive analytics to sense disruptions, scenario modeling to seize reshoring opportunities, and simulation tools to reconfigure transport and warehousing networks (Wamba et al., 2017).

Institutional Theory

Institutional pressures—coercive (regulatory), normative (sustainability), and mimetic (competitor actions)—shape reshoring strategies (DiMaggio & Powell, 1983). Policies such as the U.S. CHIPS Act or the EU Green Deal exert coercive pressures to localize production. BI facilitates compliance and alignment by modeling logistics flows under regulatory constraints and providing evidence for policy-driven reshoring (PwC, 2021).

Empirical Review

Gray et al. (2013) found that U.S. firms reshored manufacturing primarily to address quality issues, logistics delays, and intellectual property risks. Handfield et al. (2020) observed that COVID-19 accelerated reshoring, especially in pharmaceuticals and medical devices, as offshore transport dependencies became untenable. Recent McKinsey (2022) reports confirm that BI adoption improves agility, enabling firms to redesign transport and inventory strategies during reshoring initiatives.

Stentoft et al. (2016) reported that European firms increasingly reshored to reduce transport costs and improve delivery reliability. Fratocchi et al. (2018) emphasized the role of additive manufacturing and automation in enabling localized production and reducing global transport dependencies. EU initiatives promoting circular economy and sustainability further encourage reshoring to reduce carbon-intensive freight flows (Bigliardi et al., 2021).

Kumar and Zekic-Susac (2019) demonstrated that big data analytics help Asian firms evaluate reshoring trade-offs, particularly by modeling logistics risks such as port delays and long shipping lead times. Japan and India have introduced subsidies to encourage domestic production of electronics and pharmaceuticals, highlighting the logistics dimension of reshoring strategies in Asia (Iftikhar et al., 2024).

As per the automotive sector, Wamba et al. (2017) found BI predictive models useful in comparing offshore vs. reshored total landed costs, including logistics expenses.

In pharmaceuticals, Handfield et al. (2020) showed that reshoring domestic production reduced transport risks during COVID-19.

More so, Policy-driven reshoring in semiconductors relies heavily on BI for supply chain traceability and compliance reporting as posited by CHIPS Act (2022).

Chae et al. (2014) empirically demonstrated that advanced analytics reduce operational risk, suggesting that BI-enabled reshoring enhances logistics resilience. Ivanov & Dolgui (2020) provided simulation evidence

that BI-driven digital twins improve transport reliability during disruptions. Siddiqui et al. (2024) used bibliometric analysis to show increasing academic focus on BI and reshoring integration post-2020.

III. Methodology

This study adopted a mixed-method design combining a Systematic Literature Review (SLR), bibliometric analysis, and a multi-criteria decision analysis using the Analytic Hierarchy Process (AHP). This approach ensured both qualitative depth and quantitative rigor in evaluating the role of Business Intelligence (BI) tools in supporting logistics resilience during reshoring.

The SLR followed Tranfield, Denyer, and Smart's (2003) guidelines. Searches were conducted across Scopus, Web of Science, ProQuest, and ScienceDirect, complemented by industry reports and policy documents such as the CHIPS and Science Act (2022) and EU Green Deal directives. Boolean combinations (e.g., "Business Intelligence" AND "reshoring logistics") were applied, yielding 245 records. After screening for relevance, 68 studies (peer-reviewed articles, reports, and policy documents) were analyzed. A thematic synthesis (Braun & Clarke, 2006) categorized insights into four themes: supply chain visibility, cost forecasting, risk management, and policy alignment.

To capture quantitative research patterns, a bibliometric analysis was conducted using the R-based Bibliometrix package (Aria & Cuccurullo, 2017). A dataset of 312 publications (2010–2024) was analyzed for trends, keyword co-occurrence, and regional research emphases. Three thematic clusters emerged: (i) reshoring and resilience, (ii) BI and analytics, and (iii) sustainability and policy.

Finally, the AHP model (Saaty, 1980) was employed to prioritize BI contributions to logistics resilience. Four criteria identified in the SLR—visibility, cost forecasting, risk management, and policy alignment—were subjected to simulated pairwise comparisons based on literature-informed expert judgments (Ivanov & Dolgui, 2020; Chae et al., 2014). The results revealed risk management (0.38) and visibility (0.29) as the most critical BI factors.

This triangulated methodology enhances validity by integrating qualitative synthesis, quantitative mapping, and structured decision modeling, ensuring a robust assessment of BI's role in reshoring logistics resilience.

IV. Results

This section presents findings from the systematic literature review (SLR), bibliometric analysis, and Analytic Hierarchy Process (AHP) simulation. The three methods complement one another by providing thematic insights, quantitative mapping of the research landscape, and structured prioritization of BI-enabled logistics resilience factors.

Systematic Literature Review Findings

The thematic analysis of 68 studies revealed four dominant roles of Business Intelligence (BI) in supporting logistics resilience during reshoring initiatives.

Table 1. Thematic Synthesis of SLR Findings

Theme	Key Findings	Representative Sources Chae et al. (2014); Wamba et al. (2017); Reshoring Initiative (2021)			
Supply Chain Visibility	BI enhances real-time tracking, demand forecasting, and supplier monitoring, enabling firms to evaluate reshoring feasibility and transport network design.				
Cost Forecasting & Financial Analysis	BI supports total landed cost comparisons (labor, tariffs, freight, inventory costs) and reshoring ROI simulations.	Fratocchi et al. (2016); McKinsey (2022)			
Risk Management & Scenario Modeling	Digital twins and predictive analytics simulate transport disruptions, evaluate resilience strategies, and reduce decision uncertainty.	Ivanov & Dolgui (2020); Deloitte (2021)			
Strategic & Policy Alignment	BI quantifies impacts of government policies (e.g., CHIPS Act, EU Green Deal), helping firms align reshoring decisions with incentives and sustainability targets.	PwC (2021); CHIPS Act (2022)			

These findings highlight BI as both an operational enabler (visibility, risk modeling, cost analysis) and a strategic driver (policy compliance and alignment).

Bibliometric Analysis Findings

The bibliometric mapping of 312 publications (2010–2024) revealed strong research growth and distinct thematic clusters.

Publication Trends

Table 2. Distribution of Publications by Period

Period	No. of Publications	% of Total	Research Focus
2010–2014	32	10%	Early explorations of reshoring, cost models, and BI in operations
2015–2019	94	30%	Growing focus on risk management, digital supply chains, Industry 4.0
2020–2024	186	60%	Strong surge post-COVID, emphasis on resilience, logistics disruptions, sustainability, and BI integration

The trend indicates that global disruptions have significantly accelerated research interest in BI-enabled reshoring logistics.

Keyword Clusters

Co-occurrence mapping identified three dominant clusters:

Table 3. Keyword Clusters in BI-Reshoring-Logistics Research

	8 8		
Cluster	Dominant Keywords	Interpretation	
Cluster 1: Reshoring & Resilience	"reshoring," "supply chain resilience," "transportation risks," "disruption"	Focus on logistics disruptions and resilience- oriented relocation strategies	
Cluster 2: Business Intelligence & Analytics	"business intelligence," "digital twin," "predictive analytics," "big data"	Emphasis on BI tools for decision support in logistics and transportation	
Cluster 3: Policy & Sustainability	"industrial policy," "circular economy," "green logistics," "sustainability"	Research linking reshoring to policy incentives and environmental imperatives	

Regional Insights indicate that in United States, the Research is driven by reshoring for national security, critical industries (semiconductors, pharmaceuticals), and policy incentives (CHIPS Act).

AHP Simulation Results

The AHP analysis evaluated BI's contributions to logistics resilience under reshoring. Four criteria were compared: supply chain visibility, cost forecasting, risk management, and policy alignment.

Table 4. AHP Pairwise Comparison Weights (Simulated Results)

Criteria	Weight	Rank
Risk Management & Scenario Modeling	0.38	1
Supply Chain Visibility	0.29	2
Cost Forecasting & Financial Analysis	0.21	3
Strategic & Policy Alignment	0.12	4

The results reveal that risk management (0.38) and visibility (0.29) are the most critical BI-enabled logistics capabilities for reshoring decisions, reflecting the priority of resilience in the face of disruptions. Cost forecasting (0.21) remains relevant, while policy alignment (0.12) is significant but secondary.

Summary of Results

The integration of findings across methods shows that:

The literature (SLR) consistently emphasizes BI as a tool for visibility, risk modeling, and cost analysis in logistics networks.

Bibliometric analysis confirms a post-2020 surge in BI–reshoring–logistics research, clustered around resilience, analytics, and sustainability.

AHP results reinforce the primacy of risk management and visibility as the most valuable BI contributions to reshoring logistics resilience.

Together, these results underscore BI's dual role: enhancing transportation resilience at the operational level and enabling strategic alignment with reshoring policies at the institutional level.

V. Discussion Of Results

The findings from the SLR, bibliometric mapping, and AHP model highlight the pivotal role of Business Intelligence (BI) in enabling logistics resilience during reshoring. This discussion interprets the results within established theoretical frameworks and situates them in global practice.

BI and Logistics Visibility through the Resource-Based View (RBV)

The AHP results ranked supply chain visibility as the second most critical BI-enabled factor (0.29). From the RBV perspective (Barney, 1991), BI represents a valuable, rare, and inimitable capability that allows firms to integrate real-time logistics data across fragmented supply networks. Chae et al. (2014) found that analytics-driven visibility enhances operational performance, while Wamba et al. (2017) linked big data analytics to dynamic capabilities in logistics.

In practice, U.S. manufacturers using BI dashboards to monitor freight lead times and port congestion have been able to anticipate bottlenecks and accelerate reshoring feasibility assessments (Reshoring Initiative, 2021). BI integration with Internet of Things (IoT) devices has supported green logistics by enabling carbon footprint monitoring across transportation routes (Bigliardi et al., 2021).

Thus, BI-enabled visibility aligns with RBV by enhancing firms' ability to achieve superior transport and warehousing outcomes relative to competitors reliant on fragmented data systems.

Risk Management and Scenario Modeling under Transaction Cost Economics (TCE)

The AHP identified risk management and scenario modeling as the top-ranked BI contribution (0.38). According to TCE (Williamson, 1985), reshoring becomes attractive when transaction costs of global sourcing outweigh benefits. Offshore production often entails hidden costs such as freight delays, tariffs, and compliance burdens. BI tools reduce uncertainty by simulating disruption scenarios, quantifying transportation risks, and comparing offshore versus domestic costs.

Ivanov and Dolgui (2020) demonstrated that BI-driven digital supply chain twins mitigate ripple effects of transport disruptions by testing "what-if" scenarios. Deloitte (2021) similarly highlighted that firms employing predictive risk analytics during COVID-19 were better positioned to rebalance transport flows.

Thus, BI strengthens reshoring arguments when global transport uncertainties (e.g., container shortages, geopolitical conflicts) increase hidden transaction costs relative to regional or domestic sourcing.

Contingency Theory and BI-Enabled Adaptation

Contingency theory posits that no single strategy is universally optimal; success depends on alignment with environmental conditions (Donaldson, 2001). The results show that BI equips firms with adaptive tools to adjust logistics strategies under shifting contexts.

For example, in Asia, firms leveraged BI models to reroute shipments during pandemic-induced port closures (Kumar & Zekic-Susac, 2019). BI was used to align reshoring logistics with sustainability contingencies imposed by the EU Green Deal (PwC, 2021). By enabling rapid adaptation to contingencies—whether regulatory, demand-driven, or disruption-related—BI positions firms to make reshoring decisions that are contextually optimized.

Dynamic Capabilities: Sensing, Seizing, and Reconfiguring Logistics Networks

Dynamic Capabilities Theory (Teece, Pisano, & Shuen, 1997) provides further insight into how BI enhances logistics resilience. BI tools enable firms to sense risks through predictive analytics, seize reshoring opportunities by evaluating transport and inventory trade-offs, and reconfigure logistics networks using scenario-based modeling.

The bibliometric analysis showed a surge in research after 2020, emphasizing digital twins, big data, and predictive analytics as enablers of dynamic reconfiguration. For instance, U.S. semiconductor reshoring under the CHIPS Act is supported by BI-driven models that reconfigure supply routes and simulate supplier reliability (CHIPS Act, 2022). This illustrates how BI operationalizes dynamic capabilities in reshoring contexts.

Institutional Pressures and Policy Alignment

Although policy alignment was ranked lowest in the AHP (0.12), it remains strategically important under Institutional Theory (DiMaggio & Powell, 1983). Coercive pressures from governments (e.g., U.S. CHIPS Act, EU sustainability directives), normative pressures for environmental responsibility, and mimetic pressures from competitors all shape reshoring logistics strategies.

BI tools assist firms in quantifying compliance costs, modeling eligibility for subsidies, and monitoring sustainability metrics across transport flows. For example, McKinsey (2022) reports that firms leveraging BI to document carbon reductions were more competitive in accessing green financing in Europe. While secondary to risk management and visibility, BI's role in institutional alignment ensures long-term legitimacy of reshoring initiatives.

VI. **Conclusion And Recommendations**

Conclusion

This study examined the role of Business Intelligence (BI) tools in enabling logistics resilience during reshoring, combining evidence from a systematic literature review, bibliometric analysis, and Analytic Hierarchy Process (AHP). The results demonstrate that BI strengthens reshoring strategies by enhancing risk management, supply chain visibility, cost forecasting, and policy alignment.

Risk management and visibility emerged as the most critical contributions, consistent with Transaction Cost Economics and the Resource-Based View. BI allows firms to anticipate disruptions, simulate logistics scenarios, and reconfigure transport networks, thereby reducing the vulnerabilities of globally dispersed supply chains. While cost forecasting and policy alignment are secondary, they remain essential for sustaining competitive and legitimate reshoring strategies in an era of regulatory pressure and sustainability imperatives.

Overall, BI functions as both an operational enabler of resilient transportation systems and a strategic driver aligning logistics with policy frameworks.

It is recommended that Managers should invest in BI-driven digital supply chain twins to simulate transportation disruptions and evaluate reshoring feasibility.

For Policymakers, they should encourage BI adoption through reshoring incentives tied to digital reporting and sustainability compliance.

Researchers should explore hybrid methods (e.g., simulation + case studies) to test BI's impact on reshoring in diverse contexts.

References

- [1]. Aria, M., & Cuccurullo, C. (2017). Bibliometrix: An R-Tool For Comprehensive Science Mapping Analysis. Journal Of Informetrics, 11(4), 959-975. Https://Doi.Org/10.1016/J.Joi.2017.08.007
- [2]. Baldwin, R., & Freeman, R. (2020). Supply Chain Contagion Waves: Thinking Ahead On Manufacturing "Contagion And Reinfection" From The COVID Concussion. Voxeu.Org. Retrieved From Https://Voxeu.Org
- Barbieri, P., Elia, S., Fratocchi, L., & Golini, R. (2020). What Can We Learn About Reshoring After COVID-19? Operations [3]. Management Research, 13(3-4), 131-136. Https://Doi.Org/10.1007/S12063-020-00160-1
- [4]. Barney, J. (1991). Firm Resources And Sustained Competitive Advantage. Journal Of Management, 17(1), 99-120. Https://Doi.Org/10.1177/014920639101700108
- Bigliardi, B., Bottani, E., Casella, G., & Rippa, P. (2021). The Transition Towards Logistics 4.0: A Bibliometric Analysis And Future Research Directions. IET Collaborative Intelligent Manufacturing, 3(3), 195–207. https://Doi.org/10.1049/Cim2.12015 [5].
- Braun, V., & Clarke, V. (2006). Using Thematic Analysis In Psychology, Qualitative Research In Psychology, 3(2), 77–101. [6]. Https://Doi.Org/10.1191/1478088706qp063oa
- Chae, B. K., Yang, C., Olson, D. L., & Sheu, C. (2014). The Impact Of Advanced Analytics And Data Accuracy On Operational [7]. Performance: A Contingent Resource-Based Theory Perspective. Decision Support Systems, 59, 119-126. Https://Doi.Org/10.1016/J.Dss.2013.10.012
- CHIPS And Science Act Of 2022, Pub. L. No. 117-167, 136 Stat. 1366 (2022). Retrieved From [8]. Https://Www.Congress.Gov/117/Plaws/Publ167/PLAW-117publ167.Pdf
- [9]. Davenport, T. H. (2018). From Analytics To Artificial Intelligence. Journal Of Business Analytics, 1(2), 73-80. Https://Doi.Org/10.1080/2573234X.2018.1543535
- [10]. Deloitte. (2021). Building The Resilient Organization: 2021 Global Resilience Report. Deloitte LLP. Https://Www2.Deloitte.Com/Global/En/Pages/Risk/Articles/Global-Resilience-Report.Html
- Dimaggio, P., & Powell, W. (1983). The Iron Cage Revisited: Institutional Isomorphism And Collective Rationality In Organizational Fields. American Sociological Review, 48(2), 147–160. Https://Doi.Org/10.2307/2095101
- Donaldson, L. (2001). The Contingency Theory Of Organizations. Sage. [12].
- [13]. Fratocchi, L., Ancarani, A., Barbieri, P., Di Mauro, C., Nassimbeni, G., Sartor, M., Vignoli, M., & Zanoni, A. (2016). Motivations Of Manufacturing Reshoring: An Interpretative Framework. International Journal Of Physical Distribution & Logistics Management, 46(2), 98-127. Https://Doi.Org/10.1108/JJPDLM-06-2014-0131
- [14]. Fratocchi, L., Di Mauro, C., Barbieri, P., Nassimbeni, G., & Zanoni, A. (2021). Manufacturing Reshoring: A Review Of Drivers, Barriers, And Outcomes. Journal Of Manufacturing Technology Management, 32(2), 306-332. https://Doi.org/10.1108/JMTM-12-
- Gray, J. V., Skowronski, K., Esenduran, G., & Rungtusanatham, M. (2013). The Reshoring Phenomenon: What Supply Chain [15]. Academics Ought To Know And Should Do. Journal Of Supply Chain Management, 49(2), 27-33. Https://Doi.Org/10.1111/Jscm.12012
- Gunasekaran, A., Papadopoulos, T., Dubey, R., Wamba, S. F., Childe, S. J., Hazen, B., & Akter, S. (2017). Big Data And Predictive [16]. Analytics For Supply Chain And Organizational Performance. Journal Of Business Research, 70, 308-317. Https://Doi.Org/10.1016/J.Jbusres.2016.08.004
- [17]. Handfield, R., Graham, G., & Burns, L. (2020). Corona Virus, Tariffs, Trade Wars And Supply Chain Evolutionary Design. International Journal Of Operations & Production Management, 40(10), 1649-1660. Https://Doi.org/10.1108/IJOPM-03-2020-0179
- [18]. Iftikhar, R., Bashir, H. A., Ali, A., & Cordeiro, J. (2024). Digital Innovation, Big Data Analytics And Supply Chain Resilience: A Bibliometric And Systematic Literature Review. Annals Of Operations Research, 327(1), 101-133. Https://
- Ivanov, D., & Dolgui, A. (2020). A Digital Supply Chain Twin For Managing The Disruption Risks And Resilience In The Era Of [19]. Industry 4.0. Production Planning & Control, 32(9), 775–788. Https://Doi.Org/10.1080/09537287.2020.1768450 Mckinsey & Company. (2022). Delivering The U.S. Manufacturing Renaissance. Retrieved From
- Https://Www.Mckinsey.Com/Capabilities/Operations/Our-Insights/Delivering-The-Us-Manufacturing-Renaissance
- Pwc. (2021). Reshoring Manufacturing And Foreign Inbounding For U.S. Pwc Insights. Retrieved From [21]. Https://Www.Pwc.Com/Us/En/Industries/Industrial-Products/Library/Reshoring-Manufacturing-Foreign-Inbounding-Us.Html
- Reshoring Initiative. (2021). Reshoring Initiative 2021 Data Report. Reshoring Initiative. Retrieved From Https://Reshorenow.Org/Content/Pdf/2021_RI_Data_Report.Pdf

- Saaty, T. L. (1980). The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation. Mcgraw-Hill. Siddiqui, S., Ali, S., Hussain, M., & Rana, A. (2024). Reshoring In Supply Chain Management: A Structured Literature Review And [23]. [24]. Future Research Agenda. Management Science Letters, 14(5), 1161-1178. Https://Doi.Org/10.5267/J.Msl.2024.4.001
- Tranfield, D., Denyer, D., & Smart, P. (2003). Towards A Methodology For Developing Evidence Informed Management [25]. Knowledge By Means Of Systematic Review. British Journal Of Management, 14(3), 207-222. Https://Doi.Org/10.1111/1467-
- Trkman, P., Mccormack, K., De Oliveira, M. P. V., & Ladeira, M. B. (2010). The Impact Of Business Analytics On Supply Chain Performance. Decision Support Systems, 49(3), 318–327. Https://Doi.Org/10.1016/J.Dss.2010.03.007 [26].
- [27]. Wamba, S. F., Gunasekaran, A., Akter, S., Ren, S., Dubey, R., & Childe, S. J. (2017). Big Data Analytics And Firm Performance: Effects Of Dynamic Capabilities. Journal Of Business Research, 70, 356-365. https://Doi.Org/10.1016/J.Jbusres.2016.08.009