The comparativestudyon the influenceof warranty period to thepractical age-replacementunder two situations

Tao Na^a,*, Zhang Sheng^b

^a School of Management,Xi 'an Jiaotong University, Xi 'an 710049,China ^bSchool of Public policy and Management,Xi 'an Jiaotong University, Xi 'an 710049,China

Abstract: The paper focus on analyzing the impact of warranty periods on the optimal age-replacement from the consumers' perspectives. First we construct themathematical formulations for age-replacement model. After optimizing we find there exists a unique optimal replacement age based the long-run expected cost rate is minimized. Further, a concise numerical example is demonstrated, and the sensitivity analysis of the warranty period to practical replacement age is carried out as well. Afterwards, the influnce of warranty periods on the optimal age-replacement under two situations that preventive replacement is within and beyond the warranty periods are compared analytically.

Keywords: Warranty period; Practical replacement age; Preventive replacement age; Long-run expected cost rate.

I. Introduction

Manufacturers provide warranty as a means of advertising the quality of product to increase the sale of a product, finally promoting marketcompetitiveness. In past decades, a hugenumber of warranty policies have been proposed (Theodore, Glickman & Paul, 1976; Priest & George, 1981; Mann & Wissink, 1990; Emons & Winand, 1988; Jain & Maheshwari, 2006; Jackson & Pascual, 2008). On the age-replacement, some reaesrches also are shown (Chun & Lee , 1992; Jackand Van der Duyn Schouten, 2000; Chien, 2005; Yeh et al, 2005; Won et al, 2008). But what about the relation between the warranty and the age-replacement? How the waranty influnce the age-replacement? Jack & Murthy (2007) propose the method describing the degree of a PM are failure-rate reduction and age-reduction. Wu&Longhurst (2011) studied the lifecycle cost of a product protected by the extended warranty policies from consumer's perspective. Chien (2010) developed a model to determine the optimal replacement age based minimizing the long run expected cost rate. Shaomin and Phil (2011) assumed that the product has two types of failures and the length of the extended warranty can be chosen. based minimize the expected life cycle cost pertime unit the optimal values of theopportunity-based age replacement is derived.

In this paper, we focus on analyzing the impact of warranty periods on the optimal age-replacement from the consumers' perspectives. Taking product warranty period into account, a age-replacement model for a productunder the general is developed. We find there exists a unique optimal replacement age based the long-run expected cost rate is minimized. Furthermore, the impact of warranty periods on the optimal age-replacement under two situations that preventive replacement is within and beyond the warranty periods are compared analytically. Theremainder of this paper is organized as follows. Mathematical formulations for cost models are established in Section 2. Based on the cost models, the optimal replacement ages are derived in Section 5.

II. Mathematical model

Before constructing the age-replacement modelbased the long-run expected cost rate is minimized, we make the following assumptions:

Assuming 1:The product has two types of possible failures at age t: type 1 failure and type 2 failure.Type 2 failureoccurs with probability p_1 and only be corrected by replacement. Type 1 failureoccurs with probability $q_1 = 1 - p_1$ and can be corrected by minimal repair.

Assuming 2: The cost product is repaired is at fully charge to the manufacturer during the base and extended warranty periods. Whereas the consumer is fully charged for any maintenance occurs when the extended warranty expires.

Assuming 3: Within thewarranty period, although the maintenance is free for consumers, the consumers also will experience inconvenience by the product failure, the corresponding cost is expressed as C_0 .

Assuming 4: Time on either minimal repair or replacement is negligible.

Assuming 5: The failure rate function of the product r(t) is continuous and positive increasing for t > t

In order tocompare the effects of a product warranty on the optimal age for the replacement in the two situations that are preventive replacement is within and beyond the warranty period.we first develop the cost model under the two situations that are preventive replacement is within and beyond the warranty period.

Case 1.Practical replacement age T is within the warranty $periodt_w$:under this case, there are two possible replacements for a product.

First, if the practical replacementage is less than preventive replacement age (Y < T). Which occurs with probability A₁,the cycle time is Y.The cost type 1 failureoccurred is responsible formanufacturers,but the cost inconvenience occurred by the product failure 1 is C₀ for consumers. The cost type 2 failureoccurred is responsible forconsumers. It is the selling price of a new productC_P. Therefore, the total cost consumers be denoted as

$$E(C_{11}) = \frac{C_0 q_1 \int_0^{t_w} r(u) \overline{G}(u) du + C_p G(Y)}{\overline{G}(w)}$$
(1)

Second, if the practical replacementage is equals to preventive replacement age (Y = T)., Which occurs with probability B_1 , the cycle time is T. the total cost incurred in a renewal cycle is the selling price of a new product C_p . Threfore, the total cost consumers bear can be expressed as

$$E(C_{21}) = \frac{C_P G(T)}{\overline{G}(w)}$$
(2)

Conbining(1)and(2), Assuming the cost obeys liner relation. Therefore, the average cost can be denoted

$$E(C_{1}) = E(C_{11}) + E(C_{21}) = \frac{A_{1}[C_{0}q_{1}\int_{0}^{t_{w}}r(u)G(u)du + C_{P}G(Y)] + B_{1}C_{P}G(T)}{\overline{G}(w)}$$
(3)

As preventive replacement is within the warranty, the operating time can't cover the warranty period. According to Ross(1970), the cycle time is

$$E(D_1) = \frac{\int_0^T \overline{G}(u) du}{\overline{G}(w)}$$
(4)

Therefore, the long-run expected cost rate is

$$\frac{\mathrm{E}(\mathrm{C}_{1})}{\mathrm{E}(\mathrm{D}_{1})} = \frac{\mathrm{A}_{1}[\mathrm{C}_{0}\mathrm{q}_{1}\int_{0}^{\mathrm{t}_{w}}\mathrm{r}(\mathrm{u})\overline{\mathrm{G}}(\mathrm{u})\mathrm{d}\mathrm{u} + \mathrm{C}_{\mathrm{P}}\mathrm{G}(\mathrm{Y})] + \mathrm{B}_{1}\mathrm{C}_{\mathrm{P}}\mathrm{G}(\mathrm{T})}{\int_{0}^{\mathrm{T}}\overline{\mathrm{G}}(\mathrm{u})\mathrm{d}\mathrm{u}}$$
(5)

Case 2.Practical replacement age T is beyond the warranty period t_{ew} : Under this case, there are three possible replacements for a product.

First, if the practical replacement age is less than preventive replacement age ($Y < t_w$). Which occurs with probability A_2 , the cycle time is Y.The cost type 1 failure occurred is responsible formanufacturers, but the cost inconvenience occurred by the product failure 1 is C_0 for consumers. The cost type 2 failure occurred is responsible for consumers. It is the selling price of a new product C_P . Therefore, the total cost consumers be denoted as

$$E(C_{21}) = \frac{C_0 q_1 \int_0^{t_w} r(u) \overline{G}(u) du + C_p G(Y)}{\overline{G}(w)}$$
(6)

Second, if the practical replacementage is more than warranty period and less than preventive replacement $age(t_w \le Y < T)$. Which occurs with probability B_2 , the cycle time is Y.Forconsumers, the cost type 2 failure occurred is the selling price of a new product C_P . The cost type 1 failure occurred is r_c . Therefore, the total cost consumers bear can be denoted as

$$E(C_{22}) = \frac{C_p G(Y) + r_c q_1 \int_{t_w}^{T} r(u) \overline{G}(u) du}{\overline{G}(w)}$$
(7)

Third, if the practical replacementage is equals to preventive replacement age (Y = T). Which occurs with probability C_2 , the total cost incurred in a renewal cycle is the selling price of a new product C_P . Threfore, the total cost consumers bear can be expressed as

$$E(C_{23}) = \frac{C_P G(T)}{\overline{G}(w)}$$
(8)

Conbining(6),(7),(8), Assuming the cost obeys liner relation. Therefore, the average cost can be denoted $\Gamma(C_{1}) = \Gamma(C_{2}) + \Gamma(C_{2}) + \Gamma(C_{2})$

$$E(C_{2}) = E(C_{21}) + E(C_{22}) + E(C_{23})$$

$$= \frac{A_{2}[C_{0}q_{1}\int_{0}^{t_{ew}}r(u)\overline{G}(u)du + C_{P}G(Y)] + B_{2}[C_{p}G(Y) + r_{c}q_{1}\int_{t_{w}}^{T}r(u)\overline{G}(u)du] + C_{2}C_{P}G(T)}{\overline{G}(w)}$$
(9)

As preventive replacement is beyond the warranty, the operating time can cover the warranty period. the cycle time is

$$E(D_{21}) = \frac{\int_{t_w}^{T} \overline{G}(u) du}{\overline{G}(w)}$$
(10)

Therefore, the cycle time is

$$E(D_2) = E(D_{11}) + E(D_{21}) = \frac{\int_0^1 \overline{G}(u) du}{\overline{G}(w)}$$
(11)

Therefore, the long-run expected cost rate is $E(C_2)$ $\overline{E(D_a)}$

$$= \frac{A_2[C_0q_1\int_0^{t_w}r(u)\overline{G}(u)du + C_PG(Y)] + B_2[C_pG(Y) + r_cq_1\int_{t_w}^{T}r(u)\overline{G}(u)du] + C_2C_PG(T)}{\int_0^{T}\overline{G}(u)du}$$
(12)

III. **Optimal solutions**

3.1. preventive replacement is within the warranty period To derive an optimal replacement age, we first derived the expected cost rate function with respect to Y. the result is

$$\frac{d[\frac{E(C_1)}{E(D_1)}]}{dY} = \frac{C_P[A_1g(Y) + B_1g(T)] \int_0^T \overline{G}(u) du - \Box \overline{G}(T)}{(\int_0^T \overline{G}(u) du)^2}$$
(13)

Where, $\Box = A_1 C_0 q_1 \int_0^w r(u) G(u) du + A_1 C_p G(Y) + B_1 C_P G(T)$ $When \frac{d[\frac{E(C_1)}{E(D_1)}]}{dY} < 0, \quad C_P[A_1g(Y) + B_1g(T)] \int_0^T \overline{G}(u) du < \Box \overline{G}(T), \text{ which implies } \frac{E(C_1)}{E(D_1)} \text{ is an decreasing function of Y.Then there exists a finite, and unique optimal replacement age } Y^* = t_{ew}.$

When $\frac{d[\frac{E(C_1)}{E(D_1)}]}{dY} > 0$, $C_P[A_1g(Y) + B_1g(T)] \int_0^T \overline{G}(u) du > \Box \overline{G}(T)$, which implies $\frac{E(C_1)}{E(D_1)}$ is an increasing function of Y.Then there exists a finite, and unique optimal replacement $ageY^* = 0$.

When $\frac{d[\frac{E(C_1)}{E(D_1)}]}{dY} = 0$, $C_P[A_1g(Y) + B_1g(T)] \int_0^T \overline{G}(u) du = \Im \overline{G}(T)$, Then there exists a finite, and unique optimal replacement age $Y^* \in [0, t_{ew}]$.

3.2. preventive replacement is beyond the warranty period

To derive an optimal replacement age, we first derived the expected cost rate function with respect to Y the result is

$$\frac{\partial [\frac{E(C_2)}{E(D_2)}]}{\partial Y} = \frac{[A_2 C_P g(Y) + B_2 C_P g(Y) + B_2 r_c q_1 r(T) \overline{G}(T) + C_2 C_P g(T)] \int_0^T \overline{G}(u) du - \aleph \overline{G}(T)}{(\int_0^T \overline{G}(u) du)^2}$$
(14)

Where,

$$\aleph = A_2[C_0q_1\int_0^{t_w} r(u)\overline{G}(u)du + C_PG(Y)] + B_2[C_pG(Y) + r_cq_1\int_{t_w}^{T} r(u)\overline{G}(u)du] + C_2C_PG(T)$$

$$\frac{\partial [\frac{E(C_2)}{E(D_2)}]}{\partial [\frac{E(C_2)}{E(D_2)}]} + C_2(G(T) + C_2(T)) + C_2(G(T)) + C_2(T)$$

when $\frac{\sigma_{[\overline{E(D_2)}]}}{\sigma_T} < 0$, $[A_2C_Pg(Y) + B_2C_Pg(Y) + B_2r_cq_1r(T)\overline{g}(T) + C_2C_Pg(T)]\int_0^T \overline{G}(u)du < \aleph \overline{G}(T)$, which implies $\frac{E(C_2)}{E(D_2)}$ is an decreasing function of Y.Then there exists a finite, and unique optimal replacement age

 $When \frac{\partial [\frac{B(C_2)}{E(D_2)}]]}{dY} > 0, \quad [A_2C_Pg(Y) + B_2C_Pg(Y) + B_2r_cq_1r(T)\overline{g}(T) + C_2C_Pg(T)]\int_0^T \overline{G}(u)du > \aleph \overline{G}(T), \text{ which}$ implies $\frac{E(C_2)}{E(D_2)}$ is an increasing function of Y.Then there exists a finite, and unique optimal replacement ageY^{*} = t_{ew}.

When $\frac{\partial [\frac{E(C_2)}{E(D_2)}]}{\partial Y} = 0$, $[A_2C_Pg(Y) + B_2C_Pg(Y) + B_2r_cq_1r(T)\overline{g}(T) + C_2C_Pg(T)]\int_0^T \overline{G}(u)du = \aleph \overline{G}(T)$, Then there exists a finite, and unique optimal replacement age $Y^* \in [[t_{ew}, \infty]]$.

IV. Numerical examples

To compare the practical replacement age between preventive replacement is within and beyond the warranty.we crystallize the function in the model. the failure rate (hazard) function can be expressed

$$r(t) = \frac{f(t)}{1 - F(t)} \tag{15}$$

6)

Where f(t)The failure time density function; F(t) is the failure time cumulative distribution; 1 - F(t) denotes the survival function, we can take $\overline{F}(t) = 1 - F(t)$.

Assume that the failure rate function follows square function, the failure rate function is $r(t) = t^2$. the failure rate (hazard) function can become

$$\frac{f(t)}{1-F(t)} = t^2$$
 (1)

We can solve differential equation about (7-20) to get the failure time cumulative distribution $F(t) = 1 - e^{-\frac{t^3}{3}} (17)$

Correspondingly, the survival function is

$$\overline{F}(t) = 1 - F(t) = e^{-\frac{t^3}{3}}(18)$$

The survival distribution of the time between successive unplanned replacements is given by

$$\overline{G}(t) = [\overline{F}(t)]^{p} = e^{-\frac{t^{3}p_{1}}{3}} (19)$$
Its cumulative distribution function is
$$G(t) = 1 - \overline{G}(t) = 1 - e^{-\frac{t^{3}p_{1}}{3}} (20)$$
Correspondingly, the derivative function is

 $g(t) = e^{-\frac{t^3 p_1}{3}} t^2 p_1(21)$

When preventive replacement is within the warranty, we set the first derivative to0,

$$\begin{aligned} \frac{\partial [\frac{E(C_{1})}{E(D_{1})^{j}}}{\partial Y} &= \frac{C_{P}[A_{1}g(Y) + B_{1}g(T)] \int_{0}^{T} \overline{G}(u) du \neg \overline{G}(T)}{(\int_{0}^{T} \overline{G}(u) du)^{2}} = 0(22) \\ \text{Taking (19),(21) into(22),We can get} \\ C_{P} \int_{0}^{T} \overline{G}(u) du \left[A_{1} \left(e^{-\frac{Y^{3}p_{1}}{3}} Y^{2} p_{1} \right) + B_{1} \left(e^{-\frac{T^{3}p_{1}}{3}} T^{2} p_{1} \right) \right] = e^{-\frac{T^{3}p_{1}}{3}} [A_{1}C_{0}q_{1} \int_{0}^{t_{w}} r(u) \overline{G}(u) du + A_{1}C_{p} \left(1 - e^{-\frac{Y^{3}p_{1}}{3}} \right) + B_{1}C_{P} \left(1 - e^{-\frac{T^{3}p_{1}}{3}} \right)] \end{aligned}$$

$$(23)$$

The following values are considered for the model parameters. $C_P = 1000$, $C_o = 50$, $p_1 = 0.2$, $q_1 = 0.8$, $A_1 = 0.5$, $B_1 = 0.5$. we let t_w from 0.5 to 2.5, the interval is 0.04. The simulation result is shown as fig 1.

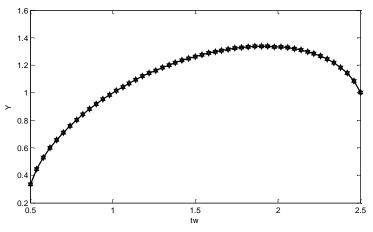


Fig 1 the influence ont_w to Ywhen $T < t_w$

From Fig 1, the following observations can be drawn:when preventive replacement is within the warranty period, as the warranty period becomes longer, the practical replacementage fistly is increasing, nextly decreasing. And the increasing region is more than decreasing region.

When the preventivereplacement is beyond the warranty, we set the first derivative to0,

$$\frac{\partial [\frac{B(C_2)}{B(D_2)}]}{\partial Y} = \frac{[A_2 C_{Pg}(Y) + B_2 C_{Pg}(Y) + B_2 r_c q_1 r(T) \overline{G}(T) + C_2 C_{Pg}(T)] \int_0^T \overline{G}(u) du - \aleph \overline{G}(T)}{(\int_0^T \overline{G}(u) du)^2} = 0(24)$$

 $\begin{aligned} \text{Taking (19),(21) into(24),We can get} \\ &\int_{0}^{T} \overline{G}(u) du \left[(A_2 C_P + B_2 C_P) \left(e^{-\frac{Y^3 p_1}{3}} Y^2 p_1 \right) + B_2 r_c q_1 T^2 (e^{-\frac{T^3 p_1}{3}}) + C_2 C_P \left(e^{-\frac{T^3 p_1}{3}} T^2 p_1 \right) \right] = \\ &e^{-\frac{T^3 p_1}{3}} \{ A_2 [C_0 q_1 \int_{0}^{t_{ew}} r(u) \overline{G}(u) du + C_P (1 - e^{-\frac{Y^3 p_1}{3}})] + B_2 [C_P (1 - e^{-\frac{Y^3 p_1}{3}}) + r_c q_1 \int_{t_{ew}}^{T} r(u) \overline{G}(u) du] + \\ &C_2 C_P (1 - e^{-\frac{T^3 p_1}{3}}) \} (25) \end{aligned}$

The following values are considered for the model parameters. $C_P = 1000$, $C_o = 50$, $p_1 = 0.2$, $q_1 = 0.8$, $r_c = 40$, $A_2 = 0.3$, $B_2 = 0.4$, $C_2 = 0.3$. we let t_w from 0.5 to 2.5, the interval is 0.04. The simulation result is shown as fig 2.

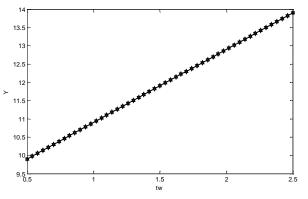


Fig 2 the influence on t_w to Ywhen $T > t_w$

From Fig 2, the following observations can be drawn:when the preventivereplacement is beyond the warranty period, as the warranty period becomes longer, the practical replacementage is increasing during the whole region.

Comparing the Fig 1 and Fig 2, we can see the difference on the influence on the warranty period to the practical replacementage under the preventive replacement is within and beyond the warranty. First, on the influence direction, the impact of the warranty period to the practical replacementage presents the reverse U shape, and the peak is near the right when the preventive replacement is within the warranty; the warranty period postively influence the practical replacementage when the preventive replacement is beyond the warranty. Second, on the influence degree, the influence degree on the warranty period to the practical replacement is beyond the warranty period to the practical replacement is beyond the warranty period to the practical replacement is beyond the warranty period to the practical replacement is beyond the warranty period to the practical replacement is beyond the warranty period to the practical replacement is beyond the warranty period to the practical replacement is beyond the warranty period to the practical replacement is beyond the warranty period to the practical replacement is beyond the warranty is greater than the influence degree on the warranty period to the practical replacementage when the preventive replacement is within the warranty.

IV. Conclusion

The impact of warranty periods on the optimal age-replacementmainly is researched from the consumers' perspectives. First themathematical formulations for age-replacement model is established, we find there exists a unique optimal replacement age based the long-run expected cost rate is minimized by optimizing theage-replacement model. Further, we make concise numerical example on the impact of the warranty period to practical replacement age. Afterwards, the influnce of warranty periods on the optimal age-replacement under two situations that preventive replacement is within and beyond the warranty periods are compared analytically.

We obtained the following conclusions by comparing: Firstly the impact of the warranty period to thepractical replacementage presents the reverse U shape, and the peak is near the right when the preventive replacement is within the warranty; the warranty period postively influnce the practical replacementage when the preventive replacement is beyond the warranty. Secondly the influnce degree on the warranty period to the practical replacement is beyond to the practical replacement is beyond the preventive replacement is beyond the warranty.

References

- [1] Chin-ChunWua, Chao-Yu Choub, Chikong Huang. Optimal Price,Warranty Length and Production Rate for Free Replacement Policy in The Static Demand Market[J].The International Journal of Management Science,2009,37(1):29-39.
- [2] Chien YH.Determining Optimal Warranty Periods from the Seller's Perspective and Optimal Out-of-Warranty Replacement Age from the Buyer's Perspective[J].International Journal of Systems Science,2005,36(10):631-637.
- [3] Chien, Y.,2010.Optimal age for preventive replacement under a combined fully renewable free replacement with a pro-rata warranty. International Journal of Production Economics 124,198-205.
- [4] Emons B, Winand T. Warranties, Moral Hazard and The Lemons Problem [J]. Journal of Economic Theory, 1988 (46):16-33.

- [5] Jack N, MurthyDNP. A Flexible Extended Warranty and Related Optimal Strategies[J].Journal of the Operational Research Society,2007,58:1612-1620.
- [6] JackN, Van der Duyn Schouten F. Optimal repair–replace strategies for awarranted product[J]. International Journal of Production Economics,2000,67:95-100.
- [7] Jackson C,Pascual R.Optimal maintenance service contract negotiation with aging equipment[J].European Journal of Operational Research,2008,189:387-398.
- [8] Jain M, MaheshwariS. Discounted costs for repairable units under hybridwarranty[J]. Applied Mathematics and Computation, 2006, 173: 887-901.
- [9] Mann DP,Wissink JP.Hidden Actions and Hidden Characteristics in Warranty Makerts[J].International Journal of Industrial Organization,1990(8):53-71.
- [10] Priest M, GeorgeL. A Theory of The Consumer Product Warranty [J]. Yale Law Journal, 1981 (90):1297-1352.
- [11] ShaominW,Phil,Longhurst.Optimising age-replacement and extendednon-renewing warranty policies in lifecycle costing[J]. International Journal ofEconomics,2011,130:262–267.
- [12] Theodore G,Paul D. Optimal Price and Protection Period Decisions for A Product Under Warranty[J]. Management Science,1976,22(12):1381-1390.
- [13] Won, MurthyDNP, Jack N et al. Warranty servicing with imperfectrepair[J]. International Journal of Production Economics,2008,111:159-169.
- [14] Wu,S., Longhurst,P.,2011. Optimising age-replacement and extended non-renewing warranty policies in lifecycle costing. International Journal of Production Economics 130,262-267.
- [15] YehRH, ChenGC, ChenMY. Optimal age-replacement policy for non-repairable products under renewing free-replacement warranty[J]. IEEE Transactions on Reliability,2005, 54 (1): 92-97.