Correlation of clinical findings in PCOS with gene variants – a preliminary study in South Indian population

Tamanna Chauhan¹, Dr. Ramani Devi², Dr. Anchana Devi C¹ and Dr. Pavithra Amritkumar¹*

¹Post graduate and Research Department of Biotechnology, Women’s Christian College, College Road, Chennai-600006, India
²Ramakrishna Medical Center, 20-21, Vivekananda Nagar, Woraiyur, Trichy-620003, India
* Corresponding Author: Dr. Pavithra Amritkumar

Abstract: Polycystic ovary syndrome (PCOS) is an endocrine disorder that affects 1 in 10 women of childbearing age. Women with PCOS have a hormonal imbalance and metabolism problems that may affect their overall health and appearance. The present study aims to correlate the clinical findings in PCOS with two gene variants in FSHR gene and TNF-α gene as a preliminary study in south Indian population. In this case-control study, a total of 68 individuals of South Indian origin (34 women with clinical history of PCOS and 34 case-matched healthy controls subjects) were recruited. Following informed consent, 5ml blood was withdrawn from individuals and subsequently subjected to genomic DNA extraction by standard phenol–chloroform-isooamyl alcohol (PCI) method. Two specific sets of polymerase chain reaction, followed by restriction (PCR-RFLP) relating to the gene variants were carried out using specially designed primer pairs. The distribution of Polymorphism rs6166 (A/G) in exon 10 in FSHR gene among the PCOS subjects in this study was found to be G/G (30%) and A/G (35%). In case of control subjects, the same polymorphism was found to be G/G (18%) and A/G (23%). In case of FSHR gene, the PCOS subjects showed nearly double the homozygosity (30%) of the polymorphism (G/G) in the FSHR gene than control subjects (18%), indicating that this polymorphism has significant role in PCOS in South Indian population. In case of the -1031 polymorphism in the promoter region of TNF-α gene, we observed absence of this polymorphism associated with PCOS in our study. This is the first study to screen for two important gene variants in FSHR and TNF-α gene associated with PCOS in south Indian population.

Keywords - Polycystic ovarian syndrome, PCOS, PCR-RFLP, FSHR gene, TNF-α gene, south India

Date of Submission: 03-08-2019
Date of acceptance: 19-08-2019

I. Introduction

Polycystic ovary syndrome (PCOS) has been characterized as an endocrine disorder by the presence of polycystic ovary along with excessive androgen secretion and ovary dysfunction. It was first 'discovered' in 1935 by Doctor Stein and Leventhal, so for many years it was known as the Stein-Leventhal syndrome. It is one of the most common endocrine disorders affecting 5% to 12% of women of reproductive age worldwide and is considered to be one of the major causes of female infertility in reproductive age [1]. Studies of PCOS in India carried out report a prevalence of 3.7% to 22.5%, with 9.13% to 36% prevalence in adolescents only [2,3].

The main characteristics of this syndrome are anovulation (absence of ovulation), resulting in abnormal menstruation, absence of menstruation, heavy menstruation, irregular menstruation, short and light menstruation, or spotting in menstruation, ovulation-related infertility, amenorrhea, and polycystic ovaries; hirsutism, and insulin resistance, excessive amounts or effects of androgenic hormones, often associated with obesity, overweight, or weight gain, high cholesterol levels, Type 2 diabetes, infertility, dark patches of skin in folds and creases, oily skin, acne issues, depression, inappropriate male features, loss of scalp hair, or presence of unwanted hair [4,5,6]. PCOS is becoming a prevalent disorder among women of reproductive age with lifelong complications. One of the most challenging aspects of this syndrome is its ambiguous diagnostic criteria and vast complexity of characteristics. While the diagnosis is straightforward using the Rotterdam Criteria which include two of the following three criteria are required: oligo/anovulation, hyperandrogenism and polycystic ovaries on ultrasound [7], researchers are trying to search for new ways to treat PCOS. Once other conditions are ruled out, one may be diagnosed with PCOS if one has at least two of the following symptoms: Irregular periods, including periods that come too often, not often enough, or not at all, high levels of androgens, extra hair growth on face, chin, and body (hirsutism), acne, thinning of scalp hair, higher than normal blood levels of androgens and multiple cysts on one or both ovaries.
Correlation of clinical findings in PCOS with gene variants – a preliminary study in South Indian.. [https://en.wikipedia.org/wiki/Polycystic_ovary Syndrome].

Globally, many studies have been done regarding the screening of mutations, its effects and find the accurate cause of the syndrome. Certain studies demonstrated that the genetic risk factors are associated with various genes present in human genome. Several polymorphisms and mutations are of clinical and biological significance and helps in the proper functioning of such candidate genes and their products. In case of India, there have been only few genetic studies done. These studies include Screening of CYP1A1 Gene Polymorphism and to screen inactivation mutation of Exon 1 of FSHR Gene from South Indian population [8,9]. In order to decode the underlying molecular mechanisms leading to PCOS, researchers are now investigating candidate genes to understand the inherited causes and its related phenotypes.

Tumor necrosis factor-alpha (TNF-α) is a major pro-inflammatory cytokine and is expressed mainly in monocytes, macrophages and adipose tissue. It maps to chromosome 6p21.3, spans about 3 kilo bases and contains 4 exons. Several association studies have reported that some polymorphisms of tumor necrosis factor-alpha (TNF-α) gene are related with gynecological diseases including pre-eclampsia, endometriosis. TNF-α is associated with the clinical, biochemical manifestations of PCOS. A study by Yun et. al., (2011) has indicated that the promoter -1031(T/C) polymorphism of TNF-α gene is associated with PCOS in a Korean population [11]. Several other studies have suggested considering TNF-α as an immunological and molecular indicator for gynecological-related diseases. [https://www.ncbi.nlm.nih.gov/gene/7124].

In this present study, we have focussed on two variants, namely rs6166 (A>G) in exon 10 of Follicle-stimulating hormone receptor (FSHR) gene and -1031 (T>C) polymorphism in the promoter region of Tumor necrosis factor-alpha (TNF-α) gene to understand the role of genomic variants in clinical PCOS cases. The study of these gene variants comprehensively in clinical cases of PCOS will help in knowing the possible causes of PCOS in south Indian population.

II. Materials and Methods

2.1 Ethical Compliance

The approval for recruiting women subjects of South Indian origin with clinical history of Polycystic Ovarian Syndrome (PCOS) and healthy women control subjects was obtained from the Institute Review Board and Ethics Committee of Women’s Christian College, Chennai. An appropriate questionnaire related to the objectives of the study was designed, which was also approved by the ethical committee.

2.2 Subjects and Clinical documentation

34 women of South Indian origin with clinical history of PCOS and 34 case-matched healthy controls subjects were recruited for this study. The samples were collected from the following sources: Ramakrishna Medical Centre, Trichy, Women’s Christian College, Chennai and Seethapathy Clinic & Hospital, Chennai. 5ml of blood sample was collected after obtaining written and signed informed consent from all the participating members.

Women with clinical history of oligomenorrhea, amenorrhea, clinical hyperandrogenism and or PCOS detected in sonography, based on the revised diagnostic criteria according to the 2003 ASRM/ESHRE Rotterdam consensus [7] and adult subjects of south Indian origin willing to participate in the study were included. Women suffering from Diabetes mellitus, Hypertension, Thyroid disorder, ovarian tumours, premature ovarian tumours and Minor subjects were not included in this study. South Indian origin fertile healthy women having normal menstrual cycle were included as control for this study. Detailed medical history and family history was documented through structured questionnaire. Consanguinity, if married and Parental consanguinity were also noted down from both PCOS and Healthy subjects to relate and check with their family history. Pre-test counseling relating to genetic studies was provided to each of these individuals prior to testing.

2.3 Methodology

2.3.1 Genomic DNA isolation

Five ml of blood was drawn by venipuncture in EDTA-coated vacutainers™ (Becton and Dickinson, USA) and the samples from both subjects and controls were coded systematically and records were maintained appropriately. Genomic DNA was extracted by standard phenol– chloroform-isoamyl alcohol (PCI) method [12].
Correlation of clinical findings in PCOS with gene variants – a preliminary study in South Indian..

2.3.2 PCR Amplification- FSHR gene

The amplification of a portion of FSHR gene (size 520 bp) containing the polymorphism region rs6166 in exon 10, was carried out by hot-start PCR, using specific primer pairs, Forward Primer: 5’-TTT GTG GTC ATC TGT GCC TGC-3’ and Reverse Primer: 5’-CAA AGG CAA GGA CTG AAT CAT TAT CAT T-3’ [13]. The reaction was carried out in Hi-Media Gradient Thermocycler, India.

2.3.3 PCR Amplification of TNF-αgene

The amplification of a portion of TNF-αgene (size 264 bp) containing the -1031 polymorphism in the promoter region, was carried out by Polymerase Chain Reaction, using specific primer pairs, Forward Primer: 5’-TAT GTG ATG GAC TCA CCA GG-3’ and Reverse Primer: 5’-CCT CTA CAT GGC CCT GTC TT-3’[11]. The reaction was carried out in Hi-Media Gradient Thermocycler, India. Table-1 indicates the conditions used for the two PCR reactions mentioned in the study.

2.3.4 RFLP analysis for FSHRgene polymorphism

The PCR generated 520 bp amplicon was subjected to RFLP analysis using BsrI restriction enzyme as per manufacturer’s instruction (Thermo Scientific Labs). The restriction site of BsrIis:

5’...A C T G G N↓...3’
3’...T G A C↑C N ...5’

Concentration: 10 U/μL
Source: Bacillus species N

2.3.5 RFLP analysis of TNF-αgene polymorphism

The PCR generated 264bp amplicon was subjected to RFLP analysis using BbsI restriction enzyme as per manufacturer’s instruction (Thermo Scientific Labs). The restriction site of BbsIis:

5’...G A A G A C (N) 2↓...3’
3’...C T T C T G (N) 6↑...5’

Concentration: 10 U/μL
Source: Bacillus pumilus Sw 4-3

2.3.6 Agarose gel electrophoresis

The PCR products were checked for amplification with 2% agarose gel and RFLP fragments were checked using 3% agarose gel, both containing ethidium bromide (0.5μg/μl). The electrophoresis was carried out in 0.5 X TBE buffer for 25 minutes at 120V using 50bp ladder for reference. The DNA bands were visualized and documented using Gel Documentation system (Gelstan Gel documentation system, Mediccare India).

III. Results and Discussion

3.1 Socio-Demographic Data

This study involved adult women of South Indian origin. A total of 68 individuals participated in this study of which 34 were clinically confirmed PCOS subjects and 34 were normal subjects. All the subjects belonged to the 20-35 years age group.

3.1.1 Nativity

In this study, 30 PCOS subjects were from Tamil Nadu (88%), 1 subject was from Andhra Pradesh and 3 of them hailed from Kerala.

3.1.2 Marital status

About 62% of the PCOS subjects were unmarried and 38% of the subjects were married.

3.1.3 Parental Consanguinity

In this study, 14 PCOS subjects were from a consanguineous parental mating and the 20 were from a non-consanguineous parental mating.

3.2 Clinical Data

The clinical data was collected was analyzed and a comparative data between the cases and control subjects is provided in Table-2. The hormones screened in the study, Luteinizing hormone (LH), Follicle-Stimulating Hormone (FSH), Thyroid Stimulating Hormone (TSH), Testosterone, Progesterone, Sex Binding Hormone, were in range, except Prolactin which was (43.50 ng/ml) higher than in previous studies. In a
study by Liu et al., (2012) on association of the genetic variants of luteinizing hormone [14], luteinizing hormone receptor and polycystic ovary syndrome, the average age at which PCOS was detected was found to be 32.48 ± 3.88years and the average BMI was reported to be 24.18 ± 3.91. In our study we found out the average age to be 21years and the average BMI among PCOS subjects to be 21.59. The average BMI in both the studies is found to be in the same range. The average LH ranges and FSHR range in their study was found to be in the same range as ours (table). Our TSH values were similar to study by Kanwar et al., (2015), while the Prolactin values of our subjects were nearly three times the values reported by them in PCOS subjects [15].

According to study on sex hormone binding globulin (SHBG) by Deswal et al., (2017) lower levels were noted in PCOS subjects [16], but in our study it was in the normal average range comparable with that of the controls. The average insulin values in our study were also in the normal average range (14.26 μIU/ml) as in other studies.

3.3 Molecular Data

3.3.1 Genomic DNA Isolation

The DNA was isolated from the blood drawn from the subjects following the PCI protocol. Working concentration of DNA checked on 0.8% Agarose by gel electrophoresis. The gel containing the isolated DNA from the subject samples was observed under a UV Trans-illuminator as shown in Fig.1.

3.3.2 PCR amplification of FSHR gene

The amplification of a portion of FSHR gene (size 520 bp) containing the polymorphism region was carried out by Polymerase Chain Reaction using specific primer pairs and viewed in a 2% agarose gel under a UV transilluminator as shown in Fig.2.

3.3.3 RFLP analysis for FSHR gene polymorphism

The 520bp length amplicon was digested by the BsrI enzyme to produce fragments that vary for normal and the variant A > G polymorphism as given below. The presence of polymorphism introduces an additional restriction site which was detected through the characteristic banding pattern in a 3% agarose gel (Fig.3).

<table>
<thead>
<tr>
<th>The various banding patterns observed on restriction digestion:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Normal (A/A) - 520 bp</td>
</tr>
<tr>
<td>(Both are normal alleles, visible as single band)</td>
</tr>
<tr>
<td>- Heterozygous (A/G) - (520 bp + 413bp + 107bp)</td>
</tr>
<tr>
<td>(Combination of normal allele and variant allele, visible as three bands)</td>
</tr>
<tr>
<td>- Homozygous (G/G) - (413 bp + 107 bp)</td>
</tr>
<tr>
<td>(Both are variant alleles, visible as two bands)</td>
</tr>
</tbody>
</table>

When subjected to RFLP (Fig. 3), 12 out of the 34 PCOS subjects (35%) were found to be having heterozygous condition (A/G), 10 PCOS subjects (30%) had homozygous condition (G/G) and 12 PCOS subjects (35%) were found to have the common variant (A/A). Over all polymorphism among the PCOS subjects in this study is homozygous (30%) and heterozygous (35%), which is higher than the previous reported studies [17,18]. When the PCR products of the control samples were subjected to RFLP, 8 out of the 34 control subjects were found to be having heterozygous condition of A/G (23%), 6 Normal subjects (18%) revealed having homozygous condition (G/G) and remaining 20 (59%) did not have the A>G variant. PCOS subjects showed nearly double the homozygosity (30%) of the polymorphism (G/G) in the FSHR gene than control subjects (18%), indicating that this polymorphism has significant role in PCOS. Our study showed higher percentage than previous Indian study [19]. The two polymorphisms.p.Thr307Ala (rs6165) and p.Asn680Ser (rs6166), do not clearly alter receptor function in vitro, but may influence the response to endogenous and exogenous FSH stimulation [20,21].

3.3.4 PCR amplification of TNF-α gene

The amplification of a portion of TNF-α gene (264 bp)containing the polymorphism region was carried out by Polymerase Chain Reaction using specific primer pairs and viewed in 2% agarose gel under UV transilluminator as shown in Fig.4.

3.3.5 RFLP analysis of TNF-α gene polymorphism

The 264bp length amplicon was digested by the BbsI enzyme to produce fragments that vary for...
normal and the variant phenotypes as given below.

<table>
<thead>
<tr>
<th>The various banding patterns on restriction digestion:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Normal (T/T) - (251bp + 13bp)</td>
</tr>
<tr>
<td>(Both are normal alleles, visible as single band owing to very small size of 13bp band)</td>
</tr>
<tr>
<td>2. Heterozygous (T/C) – (251bp + 180 bp + 71bp + 13bp)</td>
</tr>
<tr>
<td>(Combination of normal allele and variant allele, visible as 3 bands)</td>
</tr>
<tr>
<td>3. Homozygous (C/C) - (180 bp + 71 bp +13bp)</td>
</tr>
<tr>
<td>(Both are variant alleles, visible as two bands)</td>
</tr>
</tbody>
</table>

In the absence of polymorphism, the amplicon of 264bp was digested to 251bp and 13bp, which normally is visible only as a single band as 13bp is too small to be visible. In the presence of polymorphism T>C, there is an additional restriction site for BbsI enzyme created within the 251bp amplicon, resulting in 180bp and 71bp bands.

All our 34 PCOS subjects and 34 control subjects did not show any variants in the RFLP analysis for the **TNF-α** gene polymorphism (Fig. 5). From our preliminary analysis, the variant in the **TNF-α** gene in the promoter -1031, namely C>T, was absent in our population. Yun et al., (2011) have reported that -1031(T/C) polymorphism in the promoter region of **TNF-α** gene is associated with PCOS in a Korean population but from our preliminary analysis [10], this variant in the **TNF-α** gene in the promoter region was absent in our population. This is the first study in south Indian population on the role of this variant in promoter namely, -1031 (C>T) in the **TNF-α** gene, in PCOS.

IV Conclusion

The distribution of Polymorphism rs6166 (A/G) in exon 10 in **FSHR** gene among the PCOS subjects in this study were: G/G homozygous (30%) and G/A heterozygous (35%), which are higher than the previous reported studies in Indian population. In case of control subjects, the same polymorphism was found to be G/G homozygous (18%) and G/A heterozygous (23%).PCOS subjects showed nearly double the homozygosity (30%) of the polymorphism (G/G) in the **FSHR** gene than control subjects (18%), indicating that this polymorphism has significant role in PCOS in our population.

In case of the -1031 polymorphism in the promoter region of **TNF-α** gene, we observed absence of polymorphism associated with PCOS in our study. This polymorphism has been screened for the first time in Indian PCOS subjects and case matched controls. This is the first study with regard to screening for both **FSHR** gene polymorphism and **TNF-α** gene polymorphism in south Indian population.

This is a preliminary study correlating the molecular data with clinical data in a small subset of PCOS subjects of south Indian origin. Understanding of role of genetic variants in the incidence of PCOS in a population is important and more gene variants should be screened on a larger number of case-controls for a comprehensive understanding of the underlying mechanism of PCOS.

Acknowledgements

The authors thank the PCOS subjects and controls for their graceful participation in this study. The authors are thankful to the Management of Women’s Christian College, Chennai, for providing the infrastructure to conduct this research work.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflict of Interest

The authors report no financial or commercial conflicts of interest.

References

DOI: 10.9790/264X-0504022229 www.iosrjournals.org 26 | Page
Correlation of clinical findings in PCOS with gene variants – a preliminary study in South Indian..
Correlation of clinical findings in PCOS with gene variants – a preliminary study in South Indian..

Fig. 2: 2% agarose gel image showing PCR amplified products of part of FSHR gene

Fig. 3: 3% agarose gel image showing PCR-RFLP analysis for the detection of FSHR gene polymorphism

Fig. 4: 2% agarose gel image showing PCR amplified products of part of TNF-α gene
Correlation of clinical findings in PCOS with gene variants – a preliminary study in South Indian population.

Fig.5: 3% agarose gel image showing PCR-RFLP analysis for the detection of TNF-α gene polymorphism

TABLES

Table-1: PCR cycling conditions used in this study

<table>
<thead>
<tr>
<th>PCR STEPS</th>
<th>FSH/GENE</th>
<th>TNF-α GENE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEMPERATURE/TIME</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial denaturation</td>
<td>95°C/ 5 min</td>
<td>95°C/ 5 min</td>
</tr>
<tr>
<td>Cycle denaturation</td>
<td>95°C/ 30 sec</td>
<td>95°C/ 30 sec</td>
</tr>
<tr>
<td>Annealing</td>
<td>53°C/ 40 sec</td>
<td>63°C/ 40 sec</td>
</tr>
<tr>
<td>Cycle extension</td>
<td>72°C/ 45 sec</td>
<td>72°C/ 45 sec</td>
</tr>
<tr>
<td>Final extension</td>
<td>72°C/ 5 min</td>
<td>72°C/ 5 min</td>
</tr>
<tr>
<td>Hold</td>
<td>4°C/ ∞</td>
<td>4°C/ ∞</td>
</tr>
<tr>
<td>No. of cycles</td>
<td>35</td>
<td>35</td>
</tr>
</tbody>
</table>

Table-2: Clinical and endocrine parameters of PCOS subjects and Controls

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Range observed in Normal subjects</th>
<th>Average Values PCOS subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBERTY ONSET AGE</td>
<td>12-15 years</td>
<td>13 years</td>
</tr>
<tr>
<td>PCOS DETECTED AGE</td>
<td>15-28 years</td>
<td>20.5 years</td>
</tr>
<tr>
<td>BMI</td>
<td>18.5-24.5</td>
<td>21.59</td>
</tr>
<tr>
<td>FSHR</td>
<td>1.4-9.9mIU/ml</td>
<td>5.44 9mIU/ml</td>
</tr>
<tr>
<td>LH</td>
<td>1.7-15.0IU/ml</td>
<td>7.90 mIU/ml</td>
</tr>
<tr>
<td>TSH</td>
<td>0.4-4.2 μIU/ml</td>
<td>3.62 μIU/ml</td>
</tr>
<tr>
<td>PROLACTIN</td>
<td>3.8-23.2 ng/ml</td>
<td>43.50 ng/ml</td>
</tr>
<tr>
<td>SEX HORMONE BINDING GLOBUMIN (SHBG)</td>
<td>20-130 nmol/L</td>
<td>59.14 nmol/L</td>
</tr>
<tr>
<td>TESTOSTERONE</td>
<td>15-70 ng/dl</td>
<td>43.50 ng/dl</td>
</tr>
<tr>
<td>INSULIN</td>
<td>2.0-23.0μIU/ml</td>
<td>14.26 μIU/ml</td>
</tr>
<tr>
<td>BLOOD SUGAR</td>
<td>70-110mg/dl</td>
<td>97.25 ng/dl</td>
</tr>
</tbody>
</table>