HsCRP And Serum Zinc Levels In Type 2 Diabetes Mellitus And Their Correlation With GLYCEMIC Status

Dr .Mamatha B.V¹, Dr. Leela P², Dr. Chandrakanth K.H³, Dr. Kashinath R.T⁴
¹(Assistant Professor,Department of Biochemistry, Subbaiah institute of Medical sciences, Shimoga, Karnataka, India)
²(Assistant Professor,Department of Biochemistry, Subbaiah institute of Medical sciences, Shimoga, Karnataka, India)
³(Professor and Head,Department of Biochemistry, Subbaiah institute of Medical sciences, Shimoga, Karnataka, India)
⁴(Professor, Department of Biochemistry, Subbaiah institute of Medical sciences, Shimoga, Karnataka, India)
Corresponding Author: Dr. Leela P

Abstract: Background: Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder in which prevalence has been increasing steadily all over the world. Type 2 DM represents a significant global health problem. Metabolically triggered inflammation has been proposed as a key step in the pathogenesis of this disease and accelerate atherosclerosis and premature death in subjects. C-reactive protein is an acute phase reactant protein, which is found elevated and serum zinc levels are lower in T2DM.

Objectives: To estimate hsCRP (high sensitivity C reactive protein) and serum zinc levels in cases and controls and to compare and analyze the levels of these parameters between two groups.

Methods: A case control study conducted on 80 patients with clinically diagnosed T2DM and age and sex matched 80 apparently healthy subjects as controls from the general population. 3ml of venous blood was collected to study hsCRP and serum zinc levels in each subject. The data was analyzed and expressed in terms of mean ± SD.

Results: There was statistically highly significant increase in the levels of hsCRP (p < 0.0001) and statistically highly significant decreased levels of serum zinc (p < 0.0001) in cases and there was highly significant positive correlation between hsCRP – HbA₁c levels in cases. There was highly significant negative correlation between serum zinc – HbA₁c levels in cases.

Interpretation & Conclusion: It can be concluded that hsCRP which had diagnostic utility and correlated well with HbA₁c, could be used as a good diagnostic tool and serum zinc could be considered as a supportive diagnostic tool in T2DM.

Keywords: T2DM; hsCRP; serum Zinc; inflammation; Oxidative stress.

Date of Submission: 02-06-2018 Date of acceptance: 18-06-2018

I. Introduction

Type 2 Diabetes Mellitus (T2DM) is the most common form of DM characterized by hyperglycemia, insulin resistance, and relative insulin deficiency. T2DM results from interaction between genetic, environmental and behavioral risk factors. People living with T2DM are more vulnerable to various forms of both short- and long-term complications.¹ It is estimated that 366 million people had DM in 2011; by 2030 this would have risen to 552 million.²

Within the last decade, hypotheses have been proposed to explain the pathogenesis of T2DM that connects the disease to a state of subclinical chronic inflammation.³ Metabolically triggered inflammation has been proposed as a key step in the pathogenesis of the disease which accelerate atherosclerosis and premature death in patients.⁴

Insulin resistance is the primary event and it is followed by increasing degree of β-cell dysfunction in T2DM. Insulin resistance often associated with excess visceral adiposity, dyslipidemia, hypertension, impaired fibrinolysis, increased platelet aggregation, vascular inflammation, endothelial dysfunction and premature atherosclerosis.⁵

All these events may lead to thromboembolic manifestations in the body. Liver produces certain protein collectively known as the acute phase response, early in inflammation. CRP, a pentameric protein produced by the liver has emerged as the ‘golden marker for inflammation’.¹ CRP, is an extremely sensitive marker of systemic inflammation.⁴ It is proposed that chronic
low grade inflammation as evidenced by elevated high sensitivity C reactive protein (hsCRP) might potentially be a cause underlying the etiology and manifestation of T2DM.

The metabolism of several minerals have been reported to alter in diabetes mellitus and these elements might have specific roles in the pathogenesis of this disease. Zinc, an essential element, is useful in synthesis, storage and secretion of insulin. Zinc is a component of many enzymes. Zinc has been found to enhance the effectiveness of insulin in vitro. It has an important role in modulating the immune system. Many studies have shown that serum zinc levels are lower in T2DM.

The aim of this study is to estimate the serum levels of hsCRP and zinc and their association with glycemic status in diabetic and non-diabetic subjects.

II. Material And Methods

This was a case control study. The study was conducted on 80 randomly selected, clinically diagnosed and confirmed cases of T2DM without any complications attending the medicine outpatient department. Detailed history and clinical examination of the selected subjects was carried out.

Ethical clearance was obtained from the Institutional Ethical Committee. Informed and written consent was taken from the cases and controls, respectively, after explaining the procedure.

Under aseptic precautions 3 ml of venous fasting blood sample was collected for estimation of fasting blood glucose, postprandial blood glucose, serum hsCRP, serum zinc and HbA1C. The tests were done on the same day after serum separation on Stat Fax 3300 Semi-automated analyser. HbA1C was estimated by Nycocard reader II.

Inclusion criteria:
1. Patients diagnosed as T2DM on the basis of Clinical history and WHO criteria.
2. Age group between 30 years to 70 years.

Exclusion criteria:
1. Patients of diabetes having nephropathy, neuropathy, retinopathy and other microvascular complications.
2. Individuals with severe inflammatory diseases, infections, cardiac, hepatic or renal diseases and persons on drugs that would affect blood glucose levels were excluded from the study.
3. Patients with malabsorption or chronic diarrhea.
4. Pregnant and lactating women were excluded from the study.
5. Persons not willing to participate in the study.

Procedure methodology:
Blood glucose was estimated by glucose oxidase-peroxidase Method, Glycated haemoglobin using Nycocard Reader II, hsCRP by quantitative turbidimetric method (Euro Diagnostic Systems Kit) and Serum Zinc by NITRO-PAPS method (kits supplied by Tulip diagnostics).

Statistical analysis:
SPSS software was used for statistical analysis. Data was expressed in mean±SD. p < 0.05 was considered as statistically significant. Unpaired 't'-test was used to study the changes in the serum zinc, hsCRP levels. Pearson correlation between the study variables is performed to establish the relationship.

III. Result

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Cases</th>
<th>Controls</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age in years</td>
<td>52.82±10.3</td>
<td>51.65±10.8</td>
<td>0.48</td>
</tr>
<tr>
<td>FBS (mg/dL)</td>
<td>164.5±40</td>
<td>84.1±13.7</td>
<td><0.0001</td>
</tr>
<tr>
<td>PPBS(mg/dL)</td>
<td>215.5±46.2</td>
<td>138.4±48.2</td>
<td><0.0001</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>6.7±0.64</td>
<td>5.2±0.52</td>
<td><0.0001</td>
</tr>
<tr>
<td>hsCRP (mg/dL)</td>
<td>0.34±0.06</td>
<td>0.1±0.05</td>
<td><0.0001</td>
</tr>
<tr>
<td>Zinc (μg/dL)</td>
<td>60.5±11.9</td>
<td>90.16±19.4</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

| TABLE 2: Correlation of hsCRP and serum zinc with HbA1c in cases. |
|-------------------|------------------|------------------|
| Correlation between | Pearson’s Coefficient (r) | Significance |
| hsCRP and HbA1c | + 0.80 | P < 0.0001 |
| Serum zinc and HbA1c | - 0.57 | P < 0.0001 |

Highly significant positive correlation
Highly significant negative correlation
IV. Discussion

The metabolic dysregulation associated with diabetes causes secondary pathophysiologic changes in multiple organ systems which cause a heavy burden of morbidity and mortality from macrovascular and microvascular complications.¹

Our analysis provides evidence for a positive association between hsCRP levels and T2DM. In our study the mean FBS (mg/dL) values were 164.5±40 and 84.1±13.7 in cases and in controls respectively which is statistically highly significant (p <0.0001). FBS values were higher than the cut off value of 110mg/dL in cases which correlated well with the clinical diagnosis.

Similarly the mean PPBS(mg/dL) values were 215.5±46.2 in cases and 138.4±48.2 in controls. This increase in mean value of PPBS in cases as compared to controls is statistically highly significant (p <0.0001).

Glycated hemoglobin is effective in monitoring long term glucose control in patients with diabetes mellitus. In our study the mean HbA1c values were 6.7± 0.64 in cases and 5.2±0.52 in controls which is statistically highly significant (p <0.0001). In cases HbA1c values were higher which correlated well with the clinical diagnosis. The values in this study are in accordance with the several studies²,³,⁷,⁸,⁹ which have shown increased in HbA1c levels in diabetic patients compared to controls.

The novel risk factor like hsCRP is gaining importance as the predictor of vascular events beyond the blood glucose levels. hsCRP levels have been shown to be the markers of atherosclerosis in different studies. In our study, we found significantly high levels of hsCRP in the cases (p < 0.0001). Many previous studies²,⁸,¹⁰ found that median hsCRP levels were significantly higher in diabetic group as compared to their non diabetic counterparts (p < 0.0001), which is in accordance with our study. However in contrast to our results, Luigi M. Biasucci et al.¹¹ study showed no statistically significant difference in hsCRP levels in both the groups.
In the current study, we found highly significant positive correlation between hsCRP and HbA1c levels. This is supported by many studies9,12,13 which reported significantly higher hsCRP levels in diabetic patients with poor glycemic control compared to those with good glycemic control. Safiullah Amanullah5, in the year 2010 in Chennai studied the association of hsCRP with diabetic and non-diabetic individuals, and found that low HbA1c levels are strongly related to low hsCRP levels.

Zinc has many antioxidant properties and it has been suggested that chronic zinc deprivation may result in increased sensitivity to oxidative stress. Oxidative damage is more pronounced in diabetics because of the defective function of superoxide dismutase due to zinc deficiency which leads to more pronounced lipid peroxidation. Highly Significant decrease in serum zinc was observed in patients with T2DM as compared to controls (p<0.0001) in our study. Previous studies by others14,15,16,17, also found similar results. In contrast to our results, Anthony U. Emeribe18 also found similar results. In contrast to our results, Anthony U. Emeribe18 study stated higher serum zinc levels in diabetes group when compared to non diabetes group.

There was highly significant negative correlation between serum zinc and HbA1c levels in our study. Gautom Kumar Saharia19, study showed serum zinc levels correlated inversely with the glycemic status of the cases and p < 0.005.

V. Conclusion
Thus, it can be concluded that hsCRP and serum zinc which are increased in T2DM and correlated well with the HbA1c, could be used as good diagnostic tool in prediction and prevention of complications of the disease.

Acknowledgement
We would like to thank our institution authorities and subjects in extending their cooperation to carry out this research work.

References
[19] Saharia GK, Goswami RK. Evaluation of Serum Zinc Status and Glycated Hemoglobin of Type 2 Diabetes Mellitus Patients in a Tertiary Care Hospital of Assam. Journal of Laboratory Physicians;Jan-Jun 2013 :5(1).