Assessment of genetic fidelity of *in vitro* propagated clones of *Celastrus paniculatus* Willd by using RAPD based PCR Amplification

Anusha T S, Manju Mohan, Deepti Madayi, Deepthi V C, M V Joseph and K K ELYAS

Dept of Biotechnology, University of Calicut, Kerala, India.

Abstract: *Celastrus paniculatus* Willd belonging to the family Celastraceae is an endangered Indian medicinal plant having high pharmaceutical application. The objective of the present investigation was to assess the clonal fidelity of *in vitro* propagated clones of *Celastrus paniculatus* with the field grown mother plant to confirm their true to type nature. Micropropagation is an alternative method for the large scale production of endangered medicinal plants. The genetic stability of *in vitro* raised clones of *Celastrus paniculatus* were assessed by using RAPD analysis. Genomic DNA was isolated from healthy and fresh leaves of both mother plant and *in vitro* raised plants of *Celastrus paniculatus* by using CTAB method. Based on the reproducibility of the primers, 15 RAPD primers were selected for the present investigation. The selected primers gave rise to a total of 75 scorable bands with an average of 5.1 bands ranging from 300-2700 bp. The number of bands varied from three (OPQ-07, OPA-13) to seven (OPC-20, OPN-16). Randomly selected 10 micropropagated plants from each culture period was used. Amplification pattern was electrophoresed in 1.5% TBE, revealing that all the bands produced by micropropagated plants were monomorphic and similar to that of the field grown plant. No polymorphism was detected by RAPD analysis.

Keywords: *Celastrus paniculatus*, Polymorphism, Genetic fidelity, RAPD analysis

I. Introduction

*Celastrus paniculatus* Willd is a large, woody, climbing shrub distributed throughout India, mainly in deciduous forest. The root bark extract is a depurative, memory enhancer (Prajapati et.al.,2003) and also shows antimalarial activity (Rastogi and Mehrotra.,1998). The leaves and leaf sap is a good antidote for opium poisoning. The seeds are effective in abdominal disorders, leprosy, various skin disorders, asthma, leucoderma, cardiac debility, inflammation and nephropathy. The seed oil is bitter, thermogenic, intellect promoting and is useful for abdominal disorders, beriberi and sores. (Warrier et.al.,1994). The phytochemical analysis revealed the presence of alkaloid such as celastrine, paniculatin, celapagine and celapanine (CSIR 1992) which possess anticancerous activity.

Plant tissue culture is regarded as one of the key areas of biotechnology and has been exploited as a valuable tool for the conservation and large-scale propagation of medicinally important and endangered plants. (Phulwaria et.al 2013; Thiyagarajan and Venkatachalam 2012). The assessment of genetic stability of tissue culture raised plants is a prerequisite for their commercial application (Rai M K et.al 2012) because the influence of culture conditions, culture media, type of explant, subculture, temperature, pH etc., may lead to genomic variation in the *in vitro* raised plantlets. The genetic stability is considered as one of the most important factor while performing micropropagation. Sharma et.al 2011 revealed that DNA-based molecular markers are powerful tools for analysis of the genetic fidelity of micropropagated plantlets.

II. Materials And Methodes

Plant materials

The plant material was collected from the Botanical garden, University of Calicut, Kerala for successive micropropagation by using various phytohormones. The experiments were conducted to assess the genetic fidelity among clones obtained from the high yielding *Celastrus paniculatus* with micropropagated plantlets from each culture period were used for RAPD analysis.

Genomic DNA isolation

Genomic DNA was isolated from healthy and fresh leaves of both mother plant and *in vitro* raised plants of *Celastrus paniculatus* by using CTAB method. (Doyle and Doyle1990). The pre-cooled samples (about 1g) were made in to powder using liquid nitrogen. Five ml of CTAB buffer (Buffer 1) was added to it, transferred to 30ml polypropylene tubes and warmed up in a water bath at 65°C for 30 minutes. It was cooled down to room temperature and centrifuged at 4°C and 8000 rpm for 10 minutes. The supernatant was collected.

www.iosrjournals.org 29 | Page
Assessment of genetic fidelity of in vitro propagated clones of Celastrus paniculatus Willd by using…

in to fresh tubes and mixed with equal volume of chloroform: isoamyl alcohol (24:1) and centrifuged at 8000 rpm for 10 minutes at room temperature. To the aqueous phase, equal volume of isopropanol was added and kept at -20°C for 30 minutes. Later it was centrifuged at 12000 rpm for 10 minutes at 4°C and the pellet collected was subjected to ethanol wash using 70% ethanol. The pellet was then dissolved in 50μl TE buffer and kept in refrigerator for overnight. After incubation, 350μl of TE buffer was added and tapped well to dissolve all traces of DNA remained if any. It was then incubated in a water bath at 37°C for one hour after adding 20μl of RNase A solution (10μg/ml). After cooling down to room temperature, 500μl of chloroform: isoamyl alcohol (24:1) mixture was added, mixed well and centrifuged at 8000 rpm for 10 minutes and the pellet was air dried in laminar airflow chamber. The dried pellet was finally dissolved in 50μl TE buffer and kept at -20°C until use.

RAPD amplification

RAPD analysis of field grown plant and in vitro raised progenies were performed to assess the clonal fidelity. Randomly selected 10 in vitro regenerated plants were assessed by using PCR based RAPD analysis. Based on the reproducibility of the primers, 15 RAPD primers were selected for the present investigation. The PCR was carried out in a volume of 25μL of reaction mixture containing a final concentration of 10 mM Tris–HCl (pH 9.0), 50 mM KCl, 0.1 Triton X-100, 0.2 mM of each dNTP, 3.0 mM MgCl2, 0.4 μM primer, 25 ng template, and 1 unit Taq DNA polymerase (BioGene, USA). Amplification was performed in a programmed thermal cycler (master cycle epigradient Seppendorf, Germany) with initial denaturation at 94°C for 3min, 42cycles of denaturation at 94°C for 30s, primer annealing at 32°C for 1min, extension at 72°C for 2.5min, and final extension at 72°C for 4min.

Gel electrophoresis and visualization of RAPD

All the reactions were amplified in a mastercycler gradient (Eppendorf, Germany). The PCR products were separated on 1.5% agarose gel stained with ethidium bromide in TBE buffer (pH 8.0). The size of the amplified fragments was determined using 500bp DNA ladder. The gels were documented using a gel documentation system (Alpha Innotech Corporation, USA). Two repeats were performed to confirm the results.

III. Results And Discussion

RAPD fingerprinting

Assessment of genetic fidelity was done with the help of RAPD analysis by using 15 RAPD primers. The selected primers gave a total of 75 scorable bands with an average of 5.1 bands ranging from 300-2700 bp. The number of bands varied from three (OPQ-07, OPA-13, OPC-04) to seven (OPC-20, OPN-16, OPA-10). Randomly selected 10 micropropagated plants from each culture period were used. RAPD amplification pattern obtained with primers OPG-15 (gel-1), OPA-04 (gel-2) and OPN-16 (gel-3) revealed that all bands produced by micropropagated plants were monomorphic and similar to that of the field grown plant.

Table 1 RAPD primers used for testing the genetic fidelity of micropropagated plants of Celastrus paniculatus.
Many works reported that RAPD have been widely used for testing the genetic fidelity among in vitro regenerated plantlets in a number of plant species (Sharma et al., 2011; Ramesh et al., 2011; Ahmad and Anis 2011 Rai M K et al., 2012). The factors like culture periods, genotype and nature of the explant and the application of various growth regulators during the in vitro studies, may disturb the internal polarity and physiology of the explants (Lal et al., 2010 and Premvaranol et al., 2011). So assessment of the genetic stability of in vitro regenerated plantlets were necessary for further studies. Because of the simplicity, cost effectiveness and less expensive RAPD was used as better genetic stability analysis which amplify the different regions of the genome (Asthana et al., 2011 and Martin et al., 2004).

IV. Conclusion

In the present investigation the true to type nature of micropropagated clones were confirmed by using PCR based RAPD analysis. No polymorphism was detected among tissue culture raised clones, hence they can successfully be employed for the commercial application without any risk of genetic instability. The RAPD fingerprinting pattern developed during the present study is very useful for molecular diagnostic purpose to detect the adulteration in herbal drug formulations.

Acknowledgement

The authors are grateful to Department of Biotechnology, University of Calicut for financial assistance and Dr. Archana C P for the valuable suggestions and guidance during the entire progress of the present work.

Reference

[1]. Ahmad N, Anis M An efficient in vitro process for recurrent production of cloned plants of Vitex negundo L. European Journal of Forest Research 2011;130:135-144


Assessment of genetic fidelity of in vitro propagated clones of Celastrus paniculatus Willd by using…

[12]. Thiyagarajan M, Venkatachalam P. Large scale in vitro propagation of Stevia rebaudiana (Bert) for commercial application: pharmaceutically important and antidiabetic medicinal herb. Industrial Crops and Products 2012;37:111-117.