Effect of Different Varieties of Snap Melon on Chemical and Sensory Properties of Syrup

M.D. Korgaonkar¹, Pujari, K.H² and Morgaonkar, V.R³
Department of Post Harvest Management,
Post Graduation Institute of Post Harvest Management, Killa Roha, Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli (MS) India

Abstract: Cucurbits form an important and big group of vegetable crops cultivated extensively in the country. The manufacture of value added products by using vegetable like snap melon. The present investigation shows that, the overall acceptability of the snap melon syrup prepared from Shrivardhan 2 treatment T³ (71.33) was highest and superior. Treatment T³ was more acceptable than all treatments in concerns with colour, flavour, and overall acceptability. The chemical composition of snap melon was affected due to different varieties of snap melon on TSS, Acidity, Reducing Sugars and Total Sugars.

Keyword: Syrup, Varieties Snap melon, Chemical parameters, Sensory parameters

I. Introduction

Vegetables play a vital role in balancing human diet bearing both the nutritious and protective. It is highly essential to take vitamins and minerals in required quantities for sound health of human body to create resistance against diseases and constitute hardly 8 to 10 per cent of total food in India that is very low as compared to 45 per cent in Japan and U.S.A., which is 5 times more than the Indian average (Yawalkar, 1992). Despite, India is a second largest producer of vegetables in the world; it is not able to fulfil our daily requirement (285-300 g/capita/day).

The ripe snap melon fruits are used to prepare rayta. Ripe fruits are used as dessert or as salad. Seed kernels are extracted and are extensively used in sweets and bakery products. The seeds are used as cooling medicine. It has been found to have resistance to downy mildew (More, 1999; Sambandam et al., 1979). Fruits of snap melon are rich in nutrient components. It contains 79.93 g moisture, 0.369 g crude protein, 1.12 g Fat, 15.6 g carbohydrate, 1.34 g crude fibre, 1.64 g total ash, 0.76 mg calcium, 0.088 mg phosphorus, 0.843 mg iron and 0.2023 zinc per 100 g of fruit of fruit sample (Samadia, 2003).

The snap melon fruits are highly perishable in nature and they have poor storage life, to prolong its utilization, the snap melon can be processed into value added product. However, the research work on processing of snap melon is limited. Hence, it is necessary to explore the possibility of utilizing the snap melon type for the preparation of processed product such as syrup.

II. Materials And Methods

2.1 Experimental Material

The fruits required for conducting research were procured from the farm of Vegetable Improvement Scheme, Central Experiment Station, Wakawali of Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli. The fresh, ripe, mature fruits were selected and brought to laboratory for conducting the research.

2.2 Preparation of snap melon syrup

Snap melon syrup was prepared by adding sugar (1:2), citric acid as per the treatment and potassium metabisulphate @ 700 ppm.

Selection of snap melon fruits

Washing of fruits

Preparation of fruits (Removal of peel, seeds and cutting them into small pieces)

Extraction of pulp from pieces

Mixing of sugar with pulp in 1:2 proportion and addition of citric acid as per treatments
Effect of Different Varieties of Snap Melon on Chemical and Sensory Properties of Syrup

2.3 Treatment details
The treatments comprise of syrup recipes as follows.

<table>
<thead>
<tr>
<th>A: Main treatments</th>
<th>B: Sub treatments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snap melon types</td>
<td>Acidity level</td>
</tr>
<tr>
<td>Raigad local – 3</td>
<td>S-1</td>
</tr>
<tr>
<td>DPLSM – 2</td>
<td>S-2</td>
</tr>
<tr>
<td>Shrivardhan - 2</td>
<td>S-3</td>
</tr>
<tr>
<td>Lanja local</td>
<td></td>
</tr>
<tr>
<td>Thane local - 10</td>
<td></td>
</tr>
</tbody>
</table>

2.4 Chemical analysis

2.4.1 Total soluble solids (T.S.S.)
Total soluble solids were determined using Hand refractrometer (Make Erma Japan, 0-32° Brix) and the values were corrected at 20°C with the help of temperature correction chart (A.O.A.C., 1975).

2.4.2 Titratable acidity
A known quantity of sample was titrated against 0.1 N NaOH solution using phenolphthalein as an indicator. The sample of known quantity with 20 ml distilled water was transferred to 100 ml volumetric flask, made up the volume and filtered. A known volume of aliquot (10 ml) was titrated against 0.1 N sodium hydroxide (NaOH) solution using phenolphthalein as an indicator (Ranganna, 1997). The results were expressed as per cent anhydrous malic acid.

\[
\text{Titratable acidity (\%) = \frac{\text{Normality of alkali}}, \text{Titre reading \times Volume made \times Equivalent weight of acid \times 100}} \text{Weight of sample taken for estimation \times 1000}
\]

2.4.3 Reducing sugars
The reducing and total sugars were estimated by using Lane and Eynon method with modifications suggested by Ranganna (1997). A known weight of sample was blended with distilled water using lead acetate (45%) for precipitation of extraneous material and potassium oxalate (22%) to delead the solution. This lead free extract was used to estimate reducing sugars by titrating against standard Fehling’s mixture (Fehling A and B in equal proportion) using methylene blue as an indicator to a brick red end point.

\[
\text{Reducing sugars (\%) = \frac{\text{Factor X Dilution X 100}}{\text{Titre reading X Weight of sample}}}
\]

2.4.4 Total sugars
Total sugars were estimated by the same method after acid hydrolysis of an aliquot of delead sample with 50 per cent hydrochloric acid followed by neutralization with 40 per cent sodium hydroxide.

\[
\text{Total sugars (\%) = \frac{\text{Factor X Dilution}}{\text{Titre reading X Weight of sample X 100}}}
\]

2.5 Sensory evaluation
Sensory analysis carried out by panel of Judges in respect of colour, Flavour and overall acceptability by 9 hedonic scale developed by Amerine et al.(1965).

2.5 Statistical method
The data were analyzed statistically by using by Panse and Sukhatme (1985) using Factorial Completely Randomized Design and valid conclusions were drawn only on significant differences between treatment mean at 0.05 per cent level of significance.
3.1 Chemical composition

The chemical quality of finished product is presented in Table 1. The total soluble solid content in the finished product of different treatment combinations were in the range of 68.00 to 71.00 per cent. The increasing TSS content was noted in the 90 days of storage period, might be due to hydrolysis of polysaccharide like starch, cellulose and pectin substance into simpler substances. The acidity content of snap melon syrup in all treatment combination was significantly differed, which decreased from 1.04 (T1) to 0.97 (T3). This might be due to increasing trends of TSS. The results obtained in the finished products were similar to those reported by Pal and Sethi (1992) reported the increasing trend in T.S.S. and a decreasing trend in acidity during 3 months of storage of kagzi lime syrup. Whereas reducing sugars and total sugars was increasing trend and significantly differed during storage periods.

3.2 Sensory evaluation

The sensory scores given for various samples are presented in Table 2. Snap melon syrup samples in which treatment (T3) Shrivardhan 2 gets highest score (7.61). It was observed that increasing storage days decreased the score of colour and flavour of syrup. The score in respect of colour ranged between 7.30 to 6.91 for 30 days and 60 days storage period. The treatment T3 was significantly superior over the rest of treatments. In case of flavour, the score recorded was highest in T3 and mean score ranged from 7.06 to 6.85. It was noticed that storage period increases the flavour score significantly decreases.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>TSS</th>
<th>Acidity</th>
<th>Reducing sugars</th>
<th>Total sugars</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>30</td>
<td>60</td>
<td>90</td>
</tr>
<tr>
<td>T1</td>
<td>69.06 ± 0.31</td>
<td>70.76 ± 0.33</td>
<td>70.95 ± 0.34</td>
<td>70.64 ± 0.32</td>
</tr>
<tr>
<td>T2</td>
<td>69.93 ± 0.31</td>
<td>71.40 ± 0.33</td>
<td>71.63 ± 0.34</td>
<td>71.67 ± 0.32</td>
</tr>
<tr>
<td>T3</td>
<td>68.67 ± 0.31</td>
<td>70.21 ± 0.33</td>
<td>70.80 ± 0.34</td>
<td>70.66 ± 0.32</td>
</tr>
<tr>
<td>T4</td>
<td>69.07 ± 0.31</td>
<td>70.11 ± 0.33</td>
<td>70.78 ± 0.34</td>
<td>70.67 ± 0.32</td>
</tr>
<tr>
<td>T5</td>
<td>68.89 ± 0.31</td>
<td>70.33 ± 0.33</td>
<td>70.65 ± 0.34</td>
<td>70.66 ± 0.32</td>
</tr>
<tr>
<td>Mean</td>
<td>69.13 ± 0.31</td>
<td>70.46 ± 0.33</td>
<td>70.96 ± 0.34</td>
<td>70.66 ± 0.32</td>
</tr>
</tbody>
</table>

Table 2. Overall acceptability score of snap melon syrup

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Colour</th>
<th>Flavour</th>
<th>Overall acceptability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>T1</td>
<td>7.17 ± 0.53</td>
<td>7.11 ± 0.53</td>
<td>6.50 ± 0.53</td>
</tr>
<tr>
<td>T2</td>
<td>7.61 ± 0.53</td>
<td>7.60 ± 0.53</td>
<td>7.05 ± 0.53</td>
</tr>
<tr>
<td>T3</td>
<td>7.77 ± 0.53</td>
<td>7.88 ± 0.53</td>
<td>7.50 ± 0.53</td>
</tr>
<tr>
<td>T4</td>
<td>7.22 ± 0.53</td>
<td>7.16 ± 0.53</td>
<td>7.44 ± 0.53</td>
</tr>
<tr>
<td>T5</td>
<td>6.50 ± 0.53</td>
<td>6.67 ± 0.53</td>
<td>6.67 ± 0.53</td>
</tr>
<tr>
<td>Mean</td>
<td>7.25 ± 0.53</td>
<td>7.30 ± 0.53</td>
<td>7.10 ± 0.53</td>
</tr>
</tbody>
</table>

IV. Conclusion

It may be concluded all the recipes of snap melon syrup were found to be organoleptically acceptable not only at the time of preparation but also throughout the storage period of 3 months at ambient conditions. The snap melon syrup prepared from different varieties of snap melon fruit pulp by adding sugar with citric acid to maintain acidity of syrup was significantly superior in respect of overall acceptability of the product to that of prepared by traditional method.

DOI: 10.9790/2380-08430407
Effect of Different Varieties of Snap Melon on Chemical and Sensory Properties of Syrup

References