Comparative study of biochemical composition and sensory characteristics of salt and garlic treated smoke-dried Chapila (Gudusia chapra, Hamilton; 1822) and Guchi Baim (Mastacembelus panchal, Hamilton-Buchanan; 1822) stored at refrigeration temperature (4°C)

Mosarrat Nabila Nahid*1, Dr. Gulshan Ara Latifa1, Dr. Subhash Chandra Chakraborty2, Farzana Binte Farid1 and Mohajira Begum3
1Department of Zoology, University of Dhaka, Dhaka 1000, Bangladesh
2Department of Fisheries Technology, Bangladesh Agricultural University, Mymensingh, Bangladesh
3Institute of food Science and Technology, BCSIR, Dhaka-1205, Bangladesh.

Abstract: To minimize the loss of spoilage, the most perishable food item (ex-fish) different types of processing and preservation method like smoking have been introduced and practiced throughout the world including Bangladesh. The aim of this study is to investigate the effects of natural preservatives such as salt and garlic on the shelf-life of smoke-dried commercially important freshwater fish species in Bangladesh viz., Chapila and Guchi Baim fish product and to analyzed biochemical composition and sensory qualities storage at refrigeration temperature (4°C). During storage, moisture and TVB-N were increased significantly (p<0.05) ranged from 6.77-10.12% and 4.09-20.14 mgN/100gm in case of salt and garlic(S +G) treated chapila (21month) and 7.53-8.70% and 5.74-18.92 mgN/100gm in case of S +G Guchi Baim (24 month) respectively. The percentage of protein, fat and ash content were decreased significantly (p<0.05) varied from 45.24-42.54 %, 30.52-28.94 % and 18.71-16.45% in case of S +G chapila (21 month) and 59.07-58.59% , 11.32-10.77% and 22.15-21.48% in case of S +G Guchi Baim (24 month) respectively. There was a general decline in sensory characteristics i.e. color, texture, odor, general appearance and mean of acceptability of fish- product during storage. From the overall performance, smoke-dried S+G Guchi Baim have better shelf-life.

Key words: Smoke-drying, biochemical-composition, chapila, Guchi-Baim, salt-garlic.

I. Introduction

The country Bangladesh abounds in a large variety of fish species [1]. Fish is a key ingredient on the global menu, a vital factor in the global environment and an important basis for livelihood worldwide [2]. Fish is also widely acceptable because of its high palatability, low cholesterol and tender flesh [3]. Fresh, but more often smoked-dried or oven powdered fish is a critical source of dietary protein and micronutrients for many isolated communities in rural areas [4]. Fish is one of the most perishable staples; it spoils very quickly because of intrinsic and extrinsic factors. The high ambient temperature in the tropics hastens fish spoilage by accelerating the activities of bacteria, enzymes and chemical oxidation of fat in fresh fish [3]. Unfortunately, post harvest losses have been estimated at 20-50% in the tropical countries [3]. This level of post harvest losses could be very significant especially in this period of fish scarcity and escalating prices and could have negative impact on the national food security. In view of the fact that post harvest spoilage has contributed immensely to the poor supply of fish protein to the Bangladeshi populace, the need to preserve fish for better shelf-life, good flavor as well as creation of employment opportunities becomes imperative.

Fish spoilage is a metabolic process that causes fish to be undesirable for human consumption due to changes in sensory and nutritional characteristics. Thus processing and preservation of fresh fish were utmost importance to maintain product quality, reduce wastage and prevent economic losses [5]. Methods of fish preservation include freezing, smoking, canning, sun-drying etc [6]. Smoke curing method is a method which is not affected by climatic condition. It also has worldwide acceptability as process fish food. Smoking is the oldest and most common method of fish preservation in many developing countries [7]. Smoke-dried fish is a traditional part of the diet of a large section of the world’s population and it is relished for its appetizing flavor and taste [8].

Fresh water fish constitute an important part of fish distribution in Bangladesh and the marketing trends predict an increase in consumer demands. Preservation of fish generally slows down spoilage. Preservation

* To whom communication should be made, e-mail: mnanbilanahid@yahoo.com
Comparative study of biochemical composition and sensory characteristics of salt and garlic

methods are applied with an intention of making the fish safer and extend its shelf-life [9]. Many fish species have very good preservation qualities after salting, sun drying and even smoking [10]. Smoking method mostly imparts a desirable flavor and inhibits the growth of microbe [11]. In this experiment we used common freshwater lean fish Chapila and Guchi Baim which has unique test.

Small indigenous fishes like Chapila and Guchi Baim have been considered as an excellent source of essential animal protein, as they are eaten whole have a very high content of bioavailability calcium, vitamin-A, Iron and Zinc which can play an important role in the elimination of malnutrition problem in Bangladesh. Much attention is being directed at fresh water small indigenous fishes because of its health benefits, as a result of the presence of omega-3 fatty acids in the fish oil [12,13]. The reduction of these losses can only be achieved by systematic improvements in handling, processing, storage and distribution [14].

Considerable work has been done on smoked large fish species such as smoked thai pangus, smoked Ilish, smoked Tilapia but no serious attempt has yet been made to preserve smoke-dried lean fishes.

In Bangladesh smoked fish is recent addition to the fishery products. Fish is normally salted before smoking. Different salting methods are being practiced by the smoked fish industry in different parts of the world [15, 16]. But in this research salt & garlic used before smoking which is easily available and cheaper cost wise. Garlic is widely used as curing agents in a variety of food products. Garlic (Allium sativum) exhibit antioxidative activities and inhibit the microbial growth in a variety of foods [17, 18]. The active compound present in garlic is the allicin, allyl alcohol which is a thiosulfinate compound reported for its anti-microbial activity [19].

Thus, this research is aimed at studying the effectiveness of fresh salt and garlic on extending the shelf-life by analysis biochemical composition (proximate and chemical composition) and sensory score value.

II. Materials and methods

2.1. Sample collection: Two freshwater fish species; Chapila (Gudusia chapra) and Guchi Baim (Mastacembelus pancalus) was collected from the Meghna River early in the morning. Fresh mature fish samples were transported to laboratory in sterile polythene to avoid any type of microbial contamination. This study was conducted between October 2011 to January 2014 at the Fish Technology Section of the Institute of Food Science and Technology (IFST) of Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhamondi, Dhaka.

2.2. Preparation of Sample: At first, the collected Chapila fish was discaled while Guchi Baim fish was beheaded. Then both fishes were gutted and washed properly with clean water. The dressed fish samples were then weighed and prepared for further processing.

2.3. Preparation of samples for processing: The dressed fish samples were then dip in freshly prepared 30% salt and 30% garlic solution for 15 minutes followed by draining.

2.4. Fish smoke-drying: The fishes were smoked in improved traditional type of smoking kiln [20]. The fish smoking kiln was operated by first loading tamarind wood chips and rice-husk into the heat chamber, preheating for some minutes and then loading the fish-samples onto removable wire mesh trays in its central chamber for the smoking process. The desired temperature (75-80°C) was maintained manually. Smoking was done approximately for 4 hours. During the smoking fish samples were turned upside down in the middle period, to make the sample smooth and steady in texture and appearance. The smoked fishes showed characteristic attractive golden brown color and acceptable texture with smoky flavor, which was followed by cooling for 20-30 minutes at ambient temperature to make fish muscle compressed and facilitate to prevent breaking of smoked products. The cooled smoked fish samples were then packed and sealed in vacuum condition with marking taken in two different polythene bags (transparent). Two groups of smoke-dried fish product were then kept for storage at refrigerator temperature for further analysis of sensory and biochemical compositions. During the storage period the two types of smoke-dried fish samples were checked on three month interval basis.

2.5. Biochemical analysis: Analytical methods were applied for the determination of sensory and biochemical composition of the processed fish products on experimental basis. The analytical methods are given below:

- Physical changes were assessed by the sensory method. Parameters on the questionnaires were as follows:
 - (Like extremely = 9; Like very much = 8; Like moderately = 7; Like slightly = 6; Neither like nor dislike = 5; Dislike slightly = 4 ; Dislike moderately = 3; Dislike very much = 2 ; and Dislike extremely = 1) [21].
 - Moisture, fat and ash contents of the fish were determined by AOAC method [22].
 - The crude protein of the fish was determined by Micro-Kjeldhal method [23].
 - Chemical changes were studied by determining the TVB-N using Conway modified micro-diffusion technique [24].
Comparative study of biochemical composition and sensory characteristics of salt and garlic ...
During storing at refrigeration temperature, after 21 month it was found that the salt-garlic treated smoked-dried Chapila fish product was spoiled while the salt-garlic treated Guchi Baim fish were found to be in their normal characteristics up to the 24 months. Because of antifungal effect of garlic, there is no fungal attack shown on salt-garlic treated smoked-dried Chapila and Guchi Baim fish product.

Significant statistical differences were found between the initial product and end product (P < 0.05) after storage period.

3.3. TVB-N value: It was observed that spoilage of fish flesh resulted from the action of enzymes and bacteria; this can be slowed down through the application of salt and removal of moisture to increase the shelf life of fish. Total Volatile base Nitrogen (TVB-N) is widely used as an indicator of the degree of lipid oxidation [41]. It helps to measure the level of fish spoilage and to explore the shelf life of fish. During storage period total volatile base nitrogen value (TVB-N) increased. In salt-garlic treated smoked-dried Chapila fish product, the TVB-N values ranges from 4.09 (0 day) to 20.14 mgN/100g (21 month) whereas ranges of TVB-N value was 5.74 (0 day) to 18.92 (24 month) mgN/100g in salt-garlic treated smoked-dried Guchi Baim fish product respectively (Fig. 4). Pearson recommended that the limit of acceptability of fish is 20-30mg N per 100g [42]. While Kirk and Sawyer suggested a value of 30-40mg N/100g as the upper limit [43]. Increase in final values of TVB-N in this study is similar with other researchers [38, 44]. During hot smoking fish are exposed to heat and atmospheric oxygen. These factors can accelerate the oxidation of the fish lipids resulting in an increased in TBA [45].

IV. Conclusion

The present study demonstrates the efficacy of salt and garlic solution as a potent antibacterial and antioxidant agent that can be used for the preservation and shelf-life extension of fish products. The improvement and development of packaging and good storage condition (refrigeration temperature) will protect the smoke-dried products against spoilage.

Acknowledgements

The author acknowledges the scientist and technicians of BCSIR, Dhaka, Bangladesh for their technical help.

References

[3]. Eyo, A. A. 2001. Fish processing technology in the tropics, University of Ilorin Press. 403pp
Comparative study of biochemical composition and sensory characteristics of salt and garlic

Table 1. Sensory evaluation score of salt and garlic treated Smoke-dried Chapila and Guch Baim fish stored at refrigerator temperature.

<table>
<thead>
<tr>
<th>Storage period (month)</th>
<th>Product</th>
<th>Color</th>
<th>Odor</th>
<th>Texture</th>
<th>General appearance</th>
<th>Mean of general acceptability</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Chapila</td>
<td>8.81</td>
<td>8.88</td>
<td>8.85</td>
<td>8.94</td>
<td>8.87</td>
</tr>
<tr>
<td></td>
<td>Guchi Baim</td>
<td>8.81</td>
<td>8.87</td>
<td>8.84</td>
<td>8.89</td>
<td>8.85</td>
</tr>
<tr>
<td>3</td>
<td>Chapila</td>
<td>7.86</td>
<td>7.75</td>
<td>7.79</td>
<td>7.89</td>
<td>7.82</td>
</tr>
<tr>
<td></td>
<td>Guchi Baim</td>
<td>7.74</td>
<td>7.74</td>
<td>7.76</td>
<td>7.81</td>
<td>7.77</td>
</tr>
<tr>
<td>6</td>
<td>Chapila</td>
<td>6.81</td>
<td>6.83</td>
<td>6.82</td>
<td>6.88</td>
<td>6.83</td>
</tr>
<tr>
<td></td>
<td>Guchi Baim</td>
<td>6.84</td>
<td>6.83</td>
<td>6.81</td>
<td>6.85</td>
<td>6.83</td>
</tr>
<tr>
<td>9</td>
<td>Chapila</td>
<td>5.69</td>
<td>5.65</td>
<td>5.71</td>
<td>5.77</td>
<td>5.70</td>
</tr>
<tr>
<td></td>
<td>Guchi Baim</td>
<td>6.34</td>
<td>6.38</td>
<td>6.33</td>
<td>6.47</td>
<td>6.38</td>
</tr>
<tr>
<td>12</td>
<td>Chapila</td>
<td>5.41</td>
<td>5.40</td>
<td>5.31</td>
<td>5.45</td>
<td>5.39</td>
</tr>
<tr>
<td></td>
<td>Guchi Baim</td>
<td>5.73</td>
<td>5.71</td>
<td>5.65</td>
<td>5.78</td>
<td>5.72</td>
</tr>
<tr>
<td>15</td>
<td>Chapila</td>
<td>4.65</td>
<td>4.71</td>
<td>4.63</td>
<td>4.75</td>
<td>4.68</td>
</tr>
<tr>
<td></td>
<td>Guchi Baim</td>
<td>5.38</td>
<td>5.40</td>
<td>5.33</td>
<td>5.47</td>
<td>5.39</td>
</tr>
<tr>
<td>18</td>
<td>Chapila</td>
<td>4.33</td>
<td>4.25</td>
<td>4.36</td>
<td>4.40</td>
<td>4.33</td>
</tr>
<tr>
<td></td>
<td>Guchi Baim</td>
<td>4.73</td>
<td>4.75</td>
<td>4.69</td>
<td>4.78</td>
<td>4.74</td>
</tr>
<tr>
<td>21</td>
<td>Chapila</td>
<td>3.62</td>
<td>3.60</td>
<td>3.68</td>
<td>3.71</td>
<td>3.65</td>
</tr>
<tr>
<td></td>
<td>Guchi Baim</td>
<td>4.34</td>
<td>4.32</td>
<td>4.35</td>
<td>4.42</td>
<td>4.36</td>
</tr>
<tr>
<td>24</td>
<td>Chapila</td>
<td>3.33</td>
<td>3.28</td>
<td>3.31</td>
<td>3.42</td>
<td>3.33</td>
</tr>
<tr>
<td></td>
<td>Guchi Baim</td>
<td>3.52</td>
<td>3.50</td>
<td>3.54</td>
<td>3.60</td>
<td>3.54</td>
</tr>
<tr>
<td>27</td>
<td>Chapila</td>
<td>3.34</td>
<td>3.30</td>
<td>3.33</td>
<td>3.42</td>
<td>3.35</td>
</tr>
<tr>
<td></td>
<td>Guchi Baim</td>
<td>3.34</td>
<td>3.30</td>
<td>3.33</td>
<td>3.42</td>
<td>3.35</td>
</tr>
</tbody>
</table>

*=Rejected
Comparative study of biochemical composition and sensory characteristics of salt and garlic

Figure 1. Changes in biochemical composition of fresh chapila and Guchi Baim fish.

Figure 2. Changes in Proximate Composition of salt and garlic (S+G) treated smoke-dried Chapila fish during Storage at refrigerator temperature (4°C).

Figure 2. Changes in Proximate Composition of salt and garlic (S+G) treated smoke-dried Guchi-Baim fish during storage at refrigerator temperature (4°C).
Figure 4. Changes in TVB-N value of salt and garlic (S+G) treated smoke-dried Chapila and Guchi-Baim fish during storage at refrigerator temperature (4°C).