Biochemical Changes in post harvested *Allium cepa* (Onion) and *Capsicum annuum* (Capsicum) under the influence of pathogens

Alka Srivastava\(^1\) And Sanjay Kumar\(^2\)

1. Department of Botany, Govt. M.S.J. College Bharatpur, Rajasthan University, India
2. Department of Botany, Govt. M.S.J. College Bharatpur, Rajasthan University, India

Abstract: Vegetables play an important role in human balanced diet and maintaining of good health. These are also called as "Protective supplementary foods" because of its nutritive value. Study were conducted on changes in important biochemical content of the post harvested infected economically important vegetables like onion and capsicum. Result indicates losses in reducing sugar, non reducing sugar, vitamin C, alpha-amylase, protein, phenol, antioxidant activity and pigments like chlorophyll, xanthophylls, carotene in these vegetables but enhance phenol activity in onion. Thus nutrient value of vegetables decreases or increases due to infection of *Botrytis* fungus (in onion) and *Colletotrycum* fungus (in capsicum). It can be concluded from the present investigation that fungus infection responsible for decrease or increase nutrient value of vegetables because they use them for their successful growth and establishment.

Key Words: Antioxidant activity, *Botrytis*, *Capsicum*, *Colletotrycum*, Onion, Phenol

I. **Introduction**

Vegetables are very important commodities not only in India but all over the world. Vegetables are high yield, comparatively lower cost, palatable and nutritious agriculture product. The nutritive value as these vegetables are having, carbohydrate in abundance, protein of superior quality, minerals and fibers in appreciable amount, vitamin C in good quantity, antioxidant and some other good quality also. Vegetables are most perishable agricultural product which has tremendous post harvested losses. Field observations over past the 40 years have reported that 40 to 50% of horticultural crops produced in developing countries are lost before they can be consumed, mainly because of high rates of bruising, water loss and subsequent decay during postharvest handling. (Kitinoja, 2002; Ray and Ravi, 2005). Losses can also show up as decreased nutritional quality (loss of vitamins, development of health dangers such as myco-toxins) or decreased market value. Producers have to suffer a huge economic loss due to lack of proper understanding about causes and nature of loss, proper preservation methods and their transportation and marketing techniques. A number of post harvested pathogen attacks on these economically important vegetables which resulted diminution in the nutritional values. Fungi and bacteria Infection may take place during the growing season, during harvest time, during handling and storage, during transport and marketing or even after purchase by the consumer (Dennis, 1983). Previous studies of Mba and Akueshi (2001) indicated that pathogenic infections affect the overall level of nutritional component in a plant. The research of Nwaukwu et al., (2012) emphasized the role pathogenic fungi affect the nutritional composition of the edible fruit of *D. guineenses*, a fruit mostly eaten in Africa. The nutrient component generally decreases due to disease pressure, plant responds quickly to disease pressure by showing a decrease in the nutrient composition. The fungi influenced the stored substance or nutrient by absorbing them or by converting some of the substance complex into simple ones (Sawant and Gawai, 2011).

The present investigation was conducted for finding out the biochemical changes altering the nutritional status of the vegetables due to infection by major pathogens.

II. **Material and Methods**

Fresh and infected samples of vegetables verify which are extensively cultivated in Rajasthan (India) were collected from farmer’s field and vegetable market for the biochemical and pathological analysis. Total 20 samples were collected for study. Spoiled or diseased vegetables were identified by physical examination. Healthy samples were used as control. The organic chemicals vitamin C, reducing sugar, non reducing sugar, protein, phenol, alpha amylase, chlorophyll, xanthophylls, carotene and antioxidant activity were estimated.

2.1 **Isolation of fungi:**

In pathological study, 10 gm of samples was taken and blended with 100 ml of buffered peptone water. In initial suspension 1 ml was taken aseptically and transferred to the sterile petri dishes. 15 ml of Yeast extract-dextrose chloramphenical-agar medium was poured (previously melted and maintained at 45±1°C in water bath from culture bottle) into each petri dish. Inoculums was carefully mixed with medium and allowed to solidify by leaving petri dishes to stand on cool horizontal surface of bio safety cabinet (Indian standard method
for yeast and mould count of food stuff IS 5403:1999). A separate controlled plate was made with 15 ml of medium to check its sterility. Petri dishes were placed inverted in the BOD incubator at 25±1°C for five days. After 5 days a loop full of fungus was taken from petri dishes on slide. Staining was done by cotton blue stain and morphological characters were observed under microscope.

2.2 Biochemical study:
Estimation of vitamin c or ascorbic acid was done by Aberg method of Johnson (1948). The changes in non reducing sugar and reducing sugar was estimated by following the phenol sulphuric method Dubois et al., (1956) and Miller method (1972) respectively. Alpha amylase was detected by the method of Bernfield (1955). Total phenols were estimated using standard method of Bray and Thorpe (1954). Protein was separated by the method described by the Lowry et al., (1951). The estimation of total antioxidant activity has done by following the method described by Teow et al., (2007). Chlorophyll was studied by the method of Comar (1942). Xanthophyll was estimated by AOAC (1954). Carotene was detected by the chromatography method of Interscience publishers (1956).

III. Result and Discussion
Two types of fungi, botrytis in onion(Fig.4) and colletotrycum in capsicum (Fig.6) were isolated from infected vegetables which caused Neck Rot Disease in Onion and Anthracnose disease in Capsicum (Fig.3 and Fig.5). Biochemical changes in the nutrient value of vegetables were observed due to these infections. Observation of Amadihahia (1998) also indicates that the nutrients were used by fungus for its successful establishment, cellular growth, reproduction and survival within the tissues of the infected fruit or vegetables. The results indicate that quantity of vitamin c decreases in both infected vegetables as compare to fresh one. The loss of vitamin c (L-ascorbic acid) may be related to its rapid oxidation by the enzyme ascorbic acid oxidase or due to the host – parasite interaction to the diketone lactone form dehydro L-ascorbic acid (Srivastava and Tondon, 1966).

Carbohydrate (reducing sugar and non reducing sugar) also reduces in fungi inoculated vegetables as compared with the uninoculated control. The decrease in the inoculated vegetables could be due to the utilization of storage starch and sugar as a carbon source by the microorganisms during respiration and also a source of energy for microbial growth (Monday, 2005). Same result was also reported in DialiumGuineense (Nigerian fruit) Nwaukuw et al., (2012).

The results show that phenol level was high in infected onion in comparison to fresh onion. The study of William (1962) indicated that high level of total phenol in pathogen inoculated pepper seedlings was found due to in-built resistance against pathogenic infection by the phenolic compounds and it also confirmed the presence of enemy. According to investigation Mahadevan et al., (1965) a post inflectional change in the phenolic compounds of host plant is characteristic of host pathogen interaction in diseased plant. The results of Majumdar and Pathak (1989) also point out the increase level of phenol in rhizopus and pestalotopsis infected guava fruit. According to result, a possible reason might be the breakdown of carbohydrate and intermediates of which was utilized for the formation of phenolic compounds in infected fruit. However, oppositeresult noticed in capsicum, Phenolic compounds decreases in capsicum due to higher activity of phenolic metabolic enzymes or change in auxin metabolism leading to less synthesis and/or more oxidation of phenol. Same results were also observed by Majumdar and Patak (1989) incolletotrichum and botrydiplodia infected guava fruit. Result indicate that protein content in infected capsicum and onion got decreased. This may be due to the protein metabolism. Same results were also observed in tomato and brinjal by Ghad Singh and Mandge (2012).

Antioxidant activity also reduces after infection. Same result was given by Dikilitas et al., (2011) in pepper plant by virus. Decrease level of antioxidant in fruit may be due to higher rate of oxidation after infection.

The result indicate that pigments like chlorophyll, xanthophylls and carotene were absent in onion and reduced in capsicum. The fungus produces different types of toxic substances in the cell which might reduces the amount of chloroplast or pigments like chlorophyll, carotene and xanthophylls in infected vegetables. Results of Zorn et al., (2003) confirmed that during microbial growth there was an increase in respiration rate which have generated some amount of heat in the micro atmosphere which might have affected on stability of carotenes. The outcomes of Mistry et al., 2008 studies indicated that fruit rot disease of capsicum also reduces fruit dry weight and quantities of capsacain and oleoresin.

As per result, alpha amylase activity is absent or negligible in onion due to lack of sugar amount. Alfa amylase activity also reduces in capsicum after infection this may be due to the presence of alfa amylase inhibitors which reduces production of alfa amylase caused by fungus. Same result were also reported by M.A. Farukely (2001) in corn plant and (Roy and Gupta, 2000; Heidari et al., 2005; Muralikrishna and Nirmala, 2005) in cereals and Giri and Kachole(1998) in legumes.
Biochemical Changes in post harvested Allium cepa (Onion) and Capsicum annuum (Capsicum)

Figure-1 Biochemical content in fresh and infected Onion (*Allium cepa*)

Figure-2 Biochemical content in fresh and infected Capsicum (*Capsicum annuum*)

Figure-3 Neck Rot Disease in Onion

Figure-4 *Botrytis* fungus in Onion
Figure-5 Anthracnose disease in Capsicum
Figure-6 colletotrycum fungus in Capsicum

IV. Conclusion

The present findings suggest that the onion and capsicum are economic important vegetables and are rich of vitamin c, phenol, sugar, total antioxidant activity etc. The post harvested infection reduces the useful content of the vegetables due to significant biochemical changes and ultimately renders them unfit for human consumption and reduces their market value therefore vegetables should be free from post harvested infection and should be free from microbes.

References

[27] Ahmad MouhieddineFakhoury, Inhibiting the alpha-amylase from Aspergillusflavus A novel approach to reduce aflatoxin contamination in corn. Purdue University, 2001.