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Abstract:- A mathematical model is presented with an aim to assist the design engineers for the making of 

different structure used in space technology and others relative fields, many structural devices have to operate 

under elevated temperatures. This paper describes thermal vibrations of square plates of uniform thickness. 

Frobenius method has been employed to obtain the frequency of vibrations for first four modes of vibration 

using the functions based plates. The frequency parameter of the plate with elastically restrained edge 

conditions are presented for various values of damping and temperature parameters.  A comparison of the 

results with those available in the literature obtained by power series solution method and coordinate functions 

shows an excellent agreement.  
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I. Introduction 
In engineering, we cannot move without considering the vibration  effect because almost all 

mechanical structures experiences vibrations.  Vibrations almost affect the structure design. For healthy 

performance of  the structure, the design engineers and scientist, it has always been a necessity to optimize or 

control of  vibrations .The different material plates play a significant role in design the  structural device. The 

reasons for it is because of engineering applications are working under high temperatures. Square plates 

have many engineering applications i.e.  Vehicles, spacecrafts, missiles, ships, aircrafts, bridges etc.  The 

vibrating  plate type structures made up of composite materials have a significant role in various industrial 

mechanical structures, aerospace industries and other engineering applications The Present work is a full-fleshed 

endeavor to assist the designers. 

Tomotika has observed the axisymmetric vibrations of a square plate clamped at all the four edges [1].  

Tomar   has studied the flexural vibrations of an isotropic, thin, square plate with different boundary conditions 

[2-3].   Roy has analyzed the large deflection of a square plate of non-homogeneous material subjected to 

normal pressure and temperature [4]. Kumar and Ramaieh   have determined the vibrations of clamped square 

plates by Raleigh Ritz method with asymptotic solution [5].  Sabir and   Davies have observed a lowest natural 

frequency of square plates containing circular holes is investigated using the finite element method for simply 

supported or clamped plates [6].   Sakiyama has analyzing the free vibration problem of orthotropic square plate 

with a square hole with non-uniform thickness by Green function method [7].  Metin and Taner have observed 

the vibration frequencies of antisymmetric angle ply laminated thin square composite plates having deferent 

boundary conditions    by Ritz method [8]. Shuaand others have apply the two-dimensional least-square-based 

finite difference (LSFD) method for solving free vibration problems with simply supported and clamped edges 

[9].  Nesterov has analyzing square homogeneous plate clamped along its contour by resonance method [10].  

Khanna and Sharma have studied the effect of linear thickness variation on vibration of visco-

elastic square plate having clamped boundary condition on all the four edges with 2D temp. Fields by 

using Rayleigh Ritz technique [11-12].  Khanna and others have analyzing linear thermal effects on frequency 

of free vibrations of a visco-elastic square plate of parabolically varying thickness by Rayleigh Ritz method 

[13]. Sharma and others have studied the vibration of visco-elastic isotropic square plate with thermal effect on 

two direction varying thickness parabolically by using Rayleigh-Ritz technique with a twoterm deflection 

function. [14].   Khanna and sharma have studied the effect of thermal gradient on vibration of square plate of 

bi-parabolic varying thickness by Rayleigh Ritz technique. [15]. Khanna and others have analyzing  study the 

2D thermal effect on the vibration of non-homogeneous square plate of exponentially (in x direction) varying  

thickness having clamped boundary by Rayleigh Ritz technique[16] .   Sharma and others have studied the 

effect of thermal gradient on vibration of non-homogenous square plate with varying thickness in x and y 

http://proceedings.asmedigitalcollection.asme.org/solr/searchresults.aspx?author=G.+T.+Davies&q=G.+T.+Davies
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directions by Rayleigh-Ritz technique. Meera and others have studied the large amplitude free vibration 

behavior of uniform moderately thick square plates with axially immovable edges [18]  

  In the recent years, thermal effect on solid bodies has highly increased because of rapid developments 

in space technology and high speed flights. In these problems, the thermal dependence of frequency of plates of 

different shapes is of great importance and designing many scientific devices.  The equation of motion is solved 

by Frobenius method and frequency parameters for first four modes of vibration at clamped and simply-

supported edges have been computed. The numerical results are shown in graphical form.  The present 

investigations are helpful in designing many scientific devices where uniform structure are exposed to high 

intensity heat fluxes due to which the material properties undergo significant change in vibrations.  

 

II. Analysis 
 It is assumed that the rectangular plate material is subjected to a linear temperature distribution along 

the length i.e. in X-direction.  

 XTT  10            (1) 

where T is the temperature excess above the reference temperature at any point X and T0 is the 

temperature excess above the reference temperature at the end X=0. The temperature dependence of modulus of 

elasticity generally for large number of materials [19, 20, and 21] is given by 

   TETE  10          (2) 

Where 0E  is the modulus of elasticity of the material at the reference temperature and   is a constant. 

Now considering the temperature at the end of the plate i.e. at X=1, as the reference temperature, the modulus 

variation becomes.  

  XEXE  11)( 0                      (3) 

 

Where,  =  T0, (0 <  < 1) is called the thermal gradient and  is an arbitrary constant.  

The governing equation of motion in non-dimensional variables is given by  
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Using equation (3), equation (4) reduces to  
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Respectively, Where, 
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Hence, Dk is damping parameter; P is circular frequency and  is frequency parameter.  

A is the width of the plate and a prime denotes the derivative with respect to X. 

 

III. Solution And  Its Convergence 

Let the solution for W  is assured in the series from as:  
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Where C is the exponent of singularity, 
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Using equation (6) & (5) one obtains 
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Respectively, where  
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For the series expression (6) to be solution, the coefficients of the powers of X in the equation (7) must 

be identically zero. Hence equating to zero the coefficient of the lowest power of X, the indicial roots C=0, 1, 2, 

3 are obtained. For higher power of X, the constants a1, a2, a3 are indeterminate for C=0 and these can be taken 

as along with a0, similarly the constants a (=4) are obtained in terms of a0, a1, a2 and a3. The remaining 

unknown constant a (=5, 6, 7, 8 .....) are determined from the recurrence relation:  
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The solution forW , corresponding to C = 0, is 
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It is evident that no new solution will arise corresponding to C=1, 2, 3. The solution corresponding to 

these values of C are already contained in the solution (9). The technique used by Lamb [23] has been applied 
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for convergence of solution (9). If  one finds that equation (9) is uniformly convergent for 
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IV. Boundary Conditions And Frequency Equation 
The following combinations of boundary conditions at the edge X = 0 and X = 1 have been considered 

while the other two edges Y =0 and Y=1 are simply supported in all the cases.  

(1) Clamped at both the edges X=0 and X=1 (C-SS-C-SS) (2). Clamped at X=0 and simply supported at X=1 

(C-SS-SS-SS) and (3) simply supported at both the edges X=0 and X=1 (SS-SS-SS-SS). The boundary 

conditions for different edge conditions are:  

For clamped edge: 00 





x

w
andw          (11) 

For simply supported edge: w=0 and M8 =0        (12)  

 

4.1 [C-SS-C-SS] – Plates :  

Using equation (9) , (10) and  (11) , then obtain governing frequency equation is below as:  
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where a prime denotes the derivative with respect to x. 

 

4.2 |C-SS-SS-SS| - Plates: 

Again using equation (9), (12), (10) and (13), the frequency equation for this plate is given below as 
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4.3 |SS-SS-SS-SS| - Plates: 

Similarly using equation (9) on (12) ,  (10) and (13), the frequency equation for this plate after 

eliminating a0, a1, a2 and a3 at this edges, is 
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V. Results And Discussion 
 Numerical results for an isotropic, elastic, non-homogeneous, square plate of uniform thickness have 

been computed from the equations (13), (14) and (15) when the temperature fields varies as linearly, using latest 

computer technology for various combinations of thermal gradients , damping parameter Dk and length to 

breadth ratio (a/b=1). In all the cases considered, the Poisson's ratio (0.3) and thickness (0.1) of the plate has 

been assumed to remain constant. Terms of the series upto an accuracy of 10
-8

 in their absolute values have been 

retained. The variation of frequency parameters  corresponding to the first four modes of vibration have been 

computed for (C-SS-C-SS), (C-SS-SS-SS) and (SS-SS-SS-SS) plates for different values of  and Dk. However 

the results of first two modes have been plotted and shown in the figures (1 to 4). Also the results for frequency 

parameters  with =0=Dk have been compared with Soni [22]. The results, plotted in figures from 1 to 4 

depicts the effect of damping parameter Dk on the frequency parameter   of square plates of uniform thickness 

corresponding to the first four modes of vibration for various combinations of  thermal gradient  with (C-SS-C-

SS), (C-SS-SS-SS) and (SS-SS-SS-SS) boundary condition. For all the boundary conditions considered here, it 

is observed that the frequency parameters  decreases with the increasing value of damping parameters Dk for 

heated aswell as unheated (=0) plates. One can also noted that the for higher values of   Dk  the fall in 

frequency parameters   is very sharp specially for (SS-SS-SS-SS) boundary conditions when the  is higher. 

The frequencies for (C-SS-C-SS) plate is higher than the corresponding to (C-SS-SS-SS) and (SS-SS-SS-SS) 

plates for all the four modes. The variation of  with thermal gradient  for different values of damping 

parameter Dk is plotted in figures from 5 to 8 for all the three edge conditions for first four modes of vibrations. 

It is noted that the  decreases with the increasing value of thermal gradient  for all the three edge conditions 

for first four modes of vibrations considered here. Hence it is clearly noted that the for first four modes of non 
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homogeneous square plate, as the value of' and Dk increases the frequency parameter  also decrease for all 

the three cases of boundary conditions considered here.  

 

VI. Conclusion 
Mechanical  engineers and technocrats are advised to study and get the practical importance of the present paper 

and to provide much  better structure and machines with more safety and economy. 
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 Figure 1:  Frequencies of a Square Plate  with DK For First  Mode of  Vibration Under the Thermal 

Gradient 'η' [ Legend : H=0.1, ν=0.3, m=1.0,C = Clamped and SS = Simply Supported ] 

   
Figure 2:  Frequencies of a Square Plate  with DK For Second 

0

0.8

1.6

2.4

3.2

0 0.005 0.01 0.015 0.02 0.025

DK

C-SS-C-SS
C-SS-SS-SS
SS-SS-SS-SS
C-SS-C-SS
C-SS-SS-SS
SS-SS-SS-SS
C-SS-C-SS
C-SS-SS-SS
SS-SS-SS-SS

Ω 

η=0.0 

 

η=0.1 

 

η=0.3 



The Effect of Damping on Thermal Vibrations of  Isotropic Elastic Square Plate 

DOI: 10.9790/4861-0906043138                                     www.iosrjournals.org                                        36 | Page 

 Mode of  Vibration Under the Thermal Gradient 'η'  

[ Legend : H=0.1, ν=0.3, m=1.0,C = Clamped and SS = Simply Supported ] 

   
Figure 3:  Frequencies of a Square Plate  with DK For Third 

 Mode of  Vibration Under the Thermal Gradient 'η'  

[ Legend : H=0.1, ν=0.3, m=1.0,C = Clamped and SS = Simply Supported ] 

 

 

   
Figure 4:  Frequencies of a Square Plate  with DK For Fourth 

 Mode of  Vibration Under the Thermal Gradient 'η'  

[ Legend : H=0.1, ν=0.3, m=1.0,C = Clamped and SS = Simply Supported ] 

   

 
Figure 5:  Frequencies of a Square Plate  with η For First 

 Mode of  Vibration Under the Damping Parameter DK  

[ Legend : H=0.1, ν=0.3, m=1.0,C = Clamped and SS = Simply Supported ] 
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Figure 6:  Frequencies of a Square Plate  with η For Second 

 Mode of  Vibration Under the Damping Parameter DK  

[ Legend : H=0.1, ν=0.3, m=1.0,C = Clamped and SS = Simply Supported ] 

 

  
 

 

Figure 7:  Frequencies of a Square Plate  with η For Third 

 Mode of  Vibration Under the Damping Parameter DK  

[ Legend : H=0.1, ν=0.3, m=1.0,C = Clamped and SS = Simply Supported ] 

 

  
Figure 8:  Frequencies of a Square Plate  with η For Fourth 

 Mode of  Vibration Under the Damping Parameter DK  

[ Legend : H=0.1, ν=0.3, m=1.0,C = Clamped and SS = Simply Supported ] 
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