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Abstract:We apply the asymptotic iteration method(AIM) to solve for the eigenvalues of the 

Gol’dmanKrivchenko potential and quatricanharmonicpotential and verify the results using Matlab codes.  
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I. Introduction: 

Second order homogeneous linear differential equations occur in many fields of mathematical physics. 

In literature mention is made of many techniques to solve them viz. supersymmetry(SUSY)[1],the Nikiforov-

Uvarov method[2],the Pekeris approximation[3],asymptotic iteration method(AIM)[4]. We shall however take 

recourse to the asymptotic iteration method to solve second order homogeneous linear differential equations of 

the Schrodinger type though other equations can as well be solved by this technique. Our work is divided into 

five sections. Section 2 gives a brief introduction to the asymptotic iteration method.  Section 3 deals with the 

underlying numerical analysis part – finite difference method to solve for the eigenvalues of the Schrodinger 

equation employed in our Matlab solution for the eigenvalues of the Schrodinger equation. Section 4 consists of 

solving for the eigenvalues of the Schrodinger equation with a) Gol’dmanKrivchenko potential 

[5]b)quatricanharmonic potential along with the  Matlab codes to solve for the eigenvalues of the Schrodinger 

equation based on the aforesaid finite difference method.. In Section 5 we draw the conclusion from our work. 

 

II. Asymptotic Iteration Method: 
The solution of the Schrodinger equation by the asymptotic iteration method consists of two parts viz.i) 

finding the eigenvalues of the problem and ii) finding the wavefunctions. In our case we will discuss only the 

case of finding the eigenvalues of the problem since finding the wavefunctions is not our goal here though it can 

be done quite easily. 

Consider the second order homogeneous linear differential equation, 

𝑦ˊˊ= 𝜆0(𝑥)𝑦ˊ+𝑠0 𝑥 𝑦                (1)  

where𝜆0(𝑥) and𝑠0(𝑥) are functions in 𝐶∞(𝑎, 𝑏). This has a solution if for some  

n>0,
𝑠𝑛

𝜆𝑛
=

𝑠𝑛−1

𝜆𝑛−1
= 𝛼                 (2)  

where𝜆𝑘 = 𝜆ˊ𝑘−1 + 𝑠𝑘−1 + 𝜆0𝜆𝑘−1 and 𝑠𝑘 = 𝑠ˊ𝑘−1 + 𝑠0𝜆𝑘−1         (3) 

for k=1,2,3,….,n. 

We however do not go into the solution of (1) for y.One can look up [4]. As claimed before our task is to find 

the eigenvalues for the two cases we consider and verify the eigenvalues by a use of the Matlab codes we 

present. 

 

III. Numerical Solution Using Finite Difference Matrix Method 
In natural units the Schrodinger equation reads 

−
1

2

𝑑2𝜓

𝑑𝑥2 + 𝑉 𝑥 𝜓 = 𝐸𝜓            (4) 

Using the finite difference approximation this can be written as 

−
1

2

𝜓𝑖+1 − 2𝜓𝑖 + 𝜓𝑖−1

(Δ𝑥)2
+ 𝑉𝑖𝜓𝑖 ≈ 𝐸𝜓𝑖  

 
1

(∆𝑥)2 − 𝑉𝑖 − 𝐸 𝜓𝑖 −
1

2 ∆𝑥 2 𝜓𝑖−1 −
1

2 ∆𝑥 2 𝜓𝑖+1 = 0             (5) 

In the matrix form, 
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1

 ∆𝑥 2 − 𝑉2 − 𝐸 −
1

2 ∆𝑥 2 0 0

−
1

2 ∆𝑥 2

1

 ∆𝑥 2 − 𝑉3 − 𝐸 −
1

2 ∆𝑥 2 0

0 −
1

2 ∆𝑥 2

1

 ∆𝑥 2 − 𝑉4 − 𝐸 −
1

2 ∆𝑥 2

0 0 −
1

2 ∆𝑥 2

1

 ∆𝑥 2 − 𝑉5 − 𝐸 

 
 
 
 

 

𝜓1

𝜓2

𝜓3

𝜓4

 = 

0
0
0
0

 (6) 

 

IV. Analyticaland Matlabsolution Of The Eigenvalues By AIM: 
4.1Gol’dman and Krivchenko potential: 

The Gol’dman and Krivchenko potential is a generalization of the 3-dimensional harmonic oscillator. 

The Schrodinger equation in this case takes the form 
1

2
 −

𝑑2

𝑑𝑟2 + 𝑟2 +
𝛾(𝛾+1)

𝑟2  𝜓 = 𝐸𝜓   (7),in natural units, where 𝜓 = 𝐿2(0,∞) and satisfies the condition 𝜓 = 0  as 

the Dirichlet boundary condition. The generalization stems from the parameter 𝛾 ranging over (0,∞) instead of 

the angular momentum quantum number l=0,1,2…..For large r,the solution of (4) behaves like the exact 

solutions of the harmonic oscillator. Hence it is reasonable to assume the unnormalised 𝜓 as  

𝜓 𝑟 = 𝑟𝛾+1𝑒−𝑟
2

2 𝑓 𝑟 (8)  

where f(r) can be determined from the above mentioned iteration procedure. Substituting (5) in (4) we get, 
𝑑2𝑓

𝑑𝑟2 = 2  𝑟 −
𝛾+1

𝑟
 
𝑑𝑓

𝑑𝑟
+  2𝛾 + 3 − 2𝐸 𝑓 = 0        (9).  

This equation is however slightly different from its counterpart in eqn. (3.13) in [4]. This is because in eqn (4) 

we have taken the exact Hamiltonian of the Harmonic oscillator whereas in eqn. (3.11) of [4] the authors have 

taken a slightly modified Hamiltonian.  

In our case 𝜆0 𝑟 = 2  𝑟 −
𝛾+1

𝑟
  and 𝑠0 𝑟 = 2𝛾 + 3 − 2𝐸          (10). 

The AIM condition (2) has to be satisfied here. Here 
𝑠0

𝜆0
=

2𝛾+3−2𝐸

2 𝑟−
𝛾+1

𝑟
 
(11.1) 

𝑠1

𝜆1
=

(2𝛾+3−2𝐸)4 𝑟−
𝛾+1

𝑟
 

2𝛾+3−2𝐸+2 1+
𝛾+1

𝑟2  +4 𝑟−
𝛾+1

𝑟
 

2(11.2) 

Since here 𝜆𝑛+1𝑠𝑛 − 𝑠𝑛+1𝜆𝑛depend on r and is not a constant we have to force certain conditions on (8.1) and 

(8.2). We start by setting 𝑠0 = 0in (11.1) which give us the first eigenvalue E1 =
1

2
 2𝛾 + 3 (12). Again putting 

𝑠1 = 0in (11.2) we arrive at the result 𝑟2 = 𝛾 + 1(13) since the other factor in the numerator of the RHS of 

(11.2) i.e. 2𝛾 + 3 − 𝐸2cannot be zero because of (12). 

Inspecting equations (11.1) and (11.2) we find that for the AIM condition (2) to hold 

2𝛾 + 3 − 2𝐸2 + 2  1 +
𝛾+1

𝑟2  =0       (14) 

Using (10) in (11) we immediately obtain the second eigenvalue i.e. 

𝐸2 =
1

2
 2𝛾 + 7 (15) 

In this way we can also find 𝐸3 =
1

2
 2𝛾 + 11 (16) 

Generalising, 𝐸𝑛=
1

2
 2𝛾 + 3 + 4𝑛 (17) 

where n=0,1,2,3………  Equation (17) was an outcome of certain ad hoc forcing of conditions. Next we 

compute the eigenvalues of this problem by Matlab. 

 

Matlab code for determination of the eigenvalues for Goldman Krivchenko potential in 1D 

 

V = inline('x*x+(0.5*1.5)*(1.0/(x*x))'); % the potential  

n = 2000;       % number of parts  

xL= 0.001;% left  end where psi(xL)=0  

xR= 10;     % right end where psi(xR)=0  

dx= (xR-xL)/n;  

x = xL; 

A = zeros(n-1); % matrix elements  

%B=1.5; 

for i=1:n-1  

for j=1:n-1  

if (i==j+1 || i==j-1)  

A(i,j) = -1.0*((1.0)/(dx^2));  
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end 

end 

   x = x + dx; 

A(i,i) = (2.0)/(dx^2) + V(x);  

end 

 

[wfn E] = eig(A); % get eigenvalues and eigenvectors  

 

x = xL+dx:dx:xR-dx; 

fprintf('*** Energy eigenvalues for bound states ***\n',n);  

for i=1:5  

energy(i) = E(i,i);  

fprintf('n=%2d --> E=%15.4f\n',i,energy(i));  

end 

 

 

Output 

*** Energy eigenvalues for bound states *** 

n= 1 --> E=         2.0000 

n= 2 --> E=         4.0000 

n= 3 --> E=         5.9999 

n= 4 --> E=         7.9999 

n= 5 --> E=         9.9998 

 

Putting the values of n and 𝛾 = 0.5 in (17) gives values of Enwhich agrees with this Matlab result and this in 

turn vindicates our AIM result. One comment is in order here. The value of E0 as obtained from (17) agrees with 

the E1 result obtained in above by Matlab. This is because Matlab treats any variable as a matrix and the (0,0) 

element of a matrix does not exist. 

 

4.2 Quatricanharmonic potential 

Next we treat the case of anharmonicquatric potential by the AIM.The 

Schrodinger equation in this case in one dimension is, 

 −
1

2

𝑑2

𝑑𝑥2 +
1

2
𝑥2 + 𝐴𝑥4 𝜓 = 𝐸𝜓       (18).  

The unnormalised 𝜓 is, 𝜓 𝑥 = 𝑒−
𝑥2

2 𝑓(𝑥)      (19).  

Substituting (19) in (18) we obtain, 
𝑑2𝑓

𝑑𝑥2 = 2𝑥
𝑑𝑓

𝑑𝑥
+  1 − 𝐸 + 𝐴𝑥4 𝑓…………(20).  

Using 𝜆0 𝑥 = 2𝑥 and𝑠0 𝑥 =  1 − 𝐸 + 𝐴𝑥4      (21)  

 

and the termination condition 𝛿 = 𝜆𝑛+1𝑠𝑛 − 𝜆𝑛𝑠𝑛+1      (22) we get the solutions for the eigenvalues in two 

possible ways as before. We first present the Matlab solution and since this problem has no exact solution and 

derive the eigenvalues by the AIM in harmony with the Matlab eigenvalues. 

 

Matlab code for determination of the eigenvalues for quatricanharmonic  potential 

V = inline('0.5*x*x+0.5*0.1*x*x*x*x'); % the potential  

L = 1.0;       % width  

n = 2000;       % number of parts  

xL= -10*L;     % left  end where psi(xL)=0  

xR= 10*L;     % right end where psi(xR)=0  

dx= (xR-xL)/n;  

x = xL;  

A = zeros(n-1); % matrix elements  

 

for i=1:n-1  

for j=1:n-1  

if (i==j+1 || i==j-1)  

A(i,j) = -1.0/dx^2;  

end 
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end 

   x = x + dx;  

A(i,i) = 2.0/dx^2 + V(x);  

end 

 

[wfn E] = eig(A); % get eigenvalues and eigenvectors  

 

x = xL+dx:dx:xR-dx;  

fprintf('*** Energy eigenvalues for bound states ***\n',n);  

for i=1:5  

energy(i) = E(i,i);  

fprintf('n=%2d --> E=%15.4f\n',i,energy(i));     

end 

Output 

*** Energy eigenvalues for bound states *** 

n= 1 --> E=         0.5326 

n= 2 --> E=         1.6534 

n= 3 --> E=         2.8739 

n= 4 --> E=         4.1762 

n= 5 --> E=         5.5491 

 

Putting different n , forcing 𝛿 = 0 in (22) and using (21) we get by AIM the following values of the eigenvalues 

for A=0.1 as depicted in Table . 1 

 
n EA Corresponding Value of x EM 

0 0.5326 ±1.2433 1.065286 

1 1.6534 ±2.93548 3.306872 

2 2.8739 ±3.14410 5.747959 

3 4.1762 ±3.31265 8.352678 

4 5.5491 ±3.45726 11.09860 

 

Table.1 E
A
 are the eigenvalues obtained by us whereas E

M
are the eigenvalues obtained by direct numerical 

integration of Schrodinger equation [6]. Due to our choice of the form of the Schrodinger equation E
A
 is exactly 

half of E
M

. 

 

V. Conclusions 

We conclude that asymptotic iteration method is a powerful to solve allsecond order homogeneous 

linear differential equations. Since these differential equations have widespread applications in Physics the 

scope of the application of AIM is numerous. 
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