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Abstract: A numerical study has been carried out on the momentum and heat transfer characteristics of an 

incompressible magnetohydrodynamic boundary layer slip flow over a flat plate with both viscous and ohmic 

dissipations.  Momentum boundary layer equation takes care of the magnetic field while the ohmic and viscous 

dissipations are accounted for by the thermal boundary layer equation. The governing equations constitute 

highly non-linear momentum and thermal boundary layer equations. Both are converted into similarity 

equations before being solved by the Runge-Kutta-Fehlberg technique with shooting. The results are analyzed 

for both isothermal and non-isothermal boundary conditions for various combinations of flow and heat transfer 

parameters. Some of the important findings show that in the absence of both the magnetic and velocity slip 

parameters, the flow profiles are identical to those of Bhattacharyya et al. [1]. The combined effect of 

increasing both the magnetic and the slip velocity parameters significantly affects the velocity and the shear 

stress profiles.  An increase of slip parameter results in a decrease in skin friction, whereas an increase in 

Eckart number enhances viscous dissipation and a consequential temperature rise especially at the boundary. 

Sometimes this may escalate to a level where a Dirichlet temperature specification is exceeded. Furthermore, 

the temperature gradient is highly sensitive to prescribed values of Prandtl number and heat generation 

parameter.  

Keywords:  Magnetohydrodynamic fluid, boundary layer flow, viscous and ohmic dissipations, nonlinear, slips 

velocity parameter, magnetic parameter 

 

I. Introduction 
Magnetohydrodynamic flow is a key aspect of computational fluid dynamics. It influences many 

industrial and flow processes such as crude oil purification, glass manufacturing, generator pumps, metal 

bearing in contact with fluids,  plasma studies ,geothermal energy extractions and MHD power generators. This 

is mainly because the interaction between an electrically conducting fluid and a magnetic field significantly 

affects the flow field and impacts on the shape of the boundary layer. Some of the early studies in this field 

include those of   Pavlov [2], Anderson[3], Na[4]. MHD flow over a semi infinite flat plate  for an 

incompressible electrically conducting fluid  can be found in  Alim et al. [5], El-Amin. [6], Mahapatra and 

Gupta [7]. Ibrahim and Makinde [8] looked at MHD stagnation point flow and heat transfer of Casson nanofluid 

past a stretching sheet with slip and convective boundary condition. Their results indicate that the skin friction 

coefficient increased with  an increase in Casson parameter and decreased with an increase in velocity ratio 

parameter. Hayat et al. [9],  Hayat et al. [10] carried out similar studies for  flow of an electrically conducting 

fluid over a vertical plate but did not consider nanofluids. Related studies were also carried out by Ishak et al. 

[11], Watanabe and Pop [11]. Fang and Zang [12] rigorously derived closed form closed-form exact solutions of 

MHD viscous flows over a shrinking sheet . This work was further extended to include flows over exponential 

stretching sheet as well as slip effects.  (Khan and Sanjayanand[13], Nadeem et al. [14]).  

For most of the investigations mentioned above, the conventional no-slip boundary condition is 

assumed. However  this condition is not always admissible.  Anderson[15], Aziz [16] studied the effects of slip 

boundary condition on Newtonian fluids past a stretching sheet. A similar study involving flow over a 

permeable wall was carried out by Beavers and Joseph [17]. Abas et al. [18] studied the slip effects and heat 

transfer characteristics  for a viscous fluid over an  oscillatory stretching surface. Extensive work involving slip 

effects and temperature dependent viscosity for the diffusion of chemically reactive species  on a vertical 

permeable stretching sheet is reported in Bhattacharyya [19-21]. 

Of more relevance to the work presented herein are those of Abel et al.[22] who looked into 

momentum and heat transfer characteristics  of an incompressible electrically conducting  viscoelastic boundary 

layer flow over a linear stretching sheet  taking into account the effects of transverse magnetic and electric fields 

as well as ohmic dissipation.  And Bhattacharyya et al.  [23] who looked into partial slip effects for boundary 

layer mixed convective flow adjacent to a vertical permeable stretching sheet in a porous medium. From their 

work, they came to the conclusion that enhancement of buoyancy or mixed convection parameter, increases the 
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velocity and decreases the temperature. On the other hand an increase in the slip parameter resulted in an 

increase in boundary layer thickness.  The present work focuses on  a detailed numerical investigation of flow 

and heat transfer characteristics of an MHD flow in an electrically conducting fluid considering the effects of 

slip, Prandtl and Eckert numbers, as well as heat generation/absorption and viscous dissipation effects. Highly 

non linear momentum and heat transfer equations are solved numerically adopting Runge-Kutta-Fehlberg 

method with shooting. Related issues concerning the effects of ignoring viscous thermal dissipation and ohmic 

heating  were also considered. It was observed that relatively high values of the  Eckert number,  generates more 

heat due to viscous thermal dissipation. This  creates a noticeable influence on the temperature field. As a result 

viscous dissipation should be accounted for in realistic heat transfer computations especially those involving 

convective heat transfer. 

 

II. Mathematical Formulation 
We consider a steady two-dimensional flow of an incompressible laminar boundary layer flow  over a 

semi-infinite flat plate  with magnetohydrodynamic effect. It is assumed that the magnetic field is of uniform 

strength and applied transversely in the flow direction. With regards to the magnetic Reynold number 

assumption, the  induced magnetic field is neglected as well as the electric field due to  the polarization of 

charges. In addition the fluid  properties  are constants because of the Boussinesq-boundary layer  

approximations. The cartesian coordinate system is chosen so that  x=0, coincides with the leading edge . The 

plate is parallel to the x-axis and infinitely long downstream with the y-axis normal to it. 

In order to fully address the purposes of the work reported herein,  we consider two boundary layer 

equations namely where the flow and  energy equations are influenced by the magnetohydrodynamic (MHD), 

slip and dissipation effects and where none of these  are put into consideration. For the latter, the governing 

equations are written in the usual notation as: 
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 The boundary conditions with partial slip for the velocity are given as: 
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Here  u and v  are the velocity components in the x and y directions, T is the fluid temperature, k is the thermal 

conductivity of the fluid, Q is the heat source or sink, B is the magnetic field in the y direction and is given by 

    1/2

0B x B x   , , ,U T     are the velocity and temperature at infinity,  the fluid density and the 

constant electrical conductivity respectively,   is the coefficient of fluid viscosity, pc  is the specific capacity 

at constant temperature of the fluid ,  
1 2

1 0 Rex   is the velocity slip factor with 0  being the initial 

velocity slip factor.  Rex U x   is the local Reynold’s number,      is the fluid kinematic 

viscosity,  and wT  is the wall temperature. We now introduce similarity variables  represented by the stream 

function  ,x y  as 

,u y v x      . This automatically satisfies the continuity equation and  the momentum equation 

becomes: 
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with boundary conditions represented by 
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 We introduce the following dimensionless variables for the heat  and flow equations 
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where  the similarity variable is defined as   
1/2

Rexy x   . The governing differential equations together 

with their accompanying boundary conditions are then reduced to non-dimensional forms as follows: 
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 In the absence of heat dissipation/absorption effect, the heat equation take s the following form: 
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Introducing a dimensionless temperature difference defined as 
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where Pr pc k  is the Prandtl number. Other  parameters of interest considered in the work reported herein 

include the heat transfer at the wall computed from Fourier’s law;  
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 in transformed 

variables, this is represented as    ' 0wq k T T a v    , where a v  is the characteristic length. 

Both the constant  a and the temperature gradient at the plate  ' 0  (Nusselt number) are each respectively 

proportional to the  free stream velocity far away from the surface of the flat plate, as well as the  rate of heat 

transfer.  Another parameter of interest is the skin-friction coefficient  '' 0f .   Overall we  have boundary-

value problems consisting of second-order highly nonlinear simultaneous ordinary differential equations, whose 

coefficients contain the functions 
' ', ,f f and   .  In order to solve thee equations numerically we deploy a 

numerical shooting technique with fifth order Runge-Kutta-Fehlberg (RKF) integration scheme. It is important 

to choose appropriate representative value for infinity. To implement this, we assume an initial guess value of 

   and solve the problem with particular set of parameters to obtain the dependent variables. The solution 

process is repeated iteratively for  another large value of   until two successive values of a given dependent 

variable differ only by an insignificant value. This guarantees that all numerical solutions approached the 

asymptotic values correctly. The second and a very important step is to select appropriate initial approximations 

for the dependent variables. Then the system these initial conditions together with system of first order ordinary 

differential equations are solved with the RKF integration scheme until the criterion for convergence is 

achieved. For this work, the step size and the convergence criteria are chosen to be .01 and 
510

. 

 

III. Results And Discussion 
A comprehensive numerical calculation is executed for various physical  formulation of the flow 

equation and heat equations and the various impacts of the non-dimensional parameters on the solution profiles  

In the absence of magnetic field and slip at the boundary (M=0, S=0), the velocity and shear stress profiles of 

Fig. 1 were found to be identical with those of Bhattacharyya et al. [1].  Fig.2 and Fig. 3 show the contrasting 
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influences of the velocity slip parameter on the velocity and shear stress profiles for a fixed value of the 

magnetic parameter . It is  observed that increasing values of the slip velocity parameter causes  the velocity 

profiles to increase monotonically while causing the reverse effect on the shear stress profiles. This is primarily 

because for the slip condition at the plate, the fluid in contact with the plate, has no longer a zero value. This is 

reflected in the magnitudes of the velocity profiles as the velocity slip parameter increases. This  effect contrasts 

with the shear stress profiles which decrease with increase in S. In this case, more fluid slide past the plate and 

the shear stress decreases as the slip parameter increases.  This activity is more pronounced in regions very close 

to the plate, but tends to decrease significantly  away from the plate.  A close  look  at regions near the  

boundary of the Fig. 3 at 0   shows that the skin friction coefficient  '' 0f decreases as the values of the 

slip  velocity increases.  Next we study the effect of various values of magnetic parameter on the velocity and 

shear stress profiles  for a fixed value of the slip velocity parameter. Fig. 4  and Fig 5 demonstrate  the variations 

in the velocity and shear stress  fields for several values of the magnetic parameter M  for both slip and no slip 

cases.   There is an increase in  magnitude for both cases as M increases. The magnetic force enhances fluid 

motion in the boundary layer especially for the regions close to the plate.  As long as  the computed velocity 

does not exceed that of the free stream,  the change in velocity always remains positive   0U u  . This 

enhances the positivity of the momentum equation (equation 2) because the coefficients of this term are also 

positive and increase with increasing values of  the magnetic field.  This observation is in agreement  with that 

of Bhattacharyya et al. [1]. 

 Fig. 6 shows the influence of  Prandtl number variation for  a fixed values of Eckart number (Ec=0.5), heat 

generation parameter (B=0.1), magnetic and slip parameters (M=0.5 , S=1.0). The thickness of the thermal 

boundary layer decreases as the Prandtl number increases. This leads to a decrease in the magnitude of 

temperature profiles. An increase in Prandtl number  tesults in a decrease in thermal diffusivity and the fluid 

energy transfer ability.  It also implies an increase in the fluid viscosity which results in a decrease in the flow 

velocity. 

Fig.7 illustrates the temperature flux for the above set of conditions. It confirms the previous 

observation for the temperature field.  In order to dramatize these effects, a flux boundary condition was 

imposed on the left end of the plate.    Fig. 8 shows an easily observable difference in the temperature profiles  

and further illustrates that a decrease in the thickness of the thermal boundary layer results in an increase  in 

Prandtl number values. For Fig. 9, a high temperature gradient at the wall reflects the effect of  the flux 

boundary condition specified at 0  . It  undergoes a uniform drop for all the profiles irrespective of Prandtl 

number specification until 1  .  After this,  it  decouples to display different flux values corresponding to  

specified values of Prandtl numbers.   

The Eckert number or the viscous, thermal  dissipation parameter expresses the ratio of the flow’s 

kinetic energy  to the boundary layer enthalpy difference and is very useful in heat transfer analysis. Fluid flows 

with relatively high values of Eckart number (Ec) usually generate a lot of heat. Fig. 10a  shows the temperature 

profiles obtained with variations of Ec  for different values of heat and flow parameters ( Pr=0.7, heat generation 

parameter B=0.1 and  Ec= 0.2, 0.5, 1.0, 1.5). A rise in viscous dissipation results in an increase in energy and a 

consequential rise in  fluid temperature. It can be observed that the highest  temperature occurs close to the plate 

and asymptotically advances to zero towards the free stream area. This is primarily due to the fact that  viscous 

dissipation  is felt very close to the wall. Further increase in the values of Eckart number results in high 

gradients of the temperature field at the  boundary. Fig. 10 b shows that temperatures of this portion of the 

boundary layer are of such a magnitude that they overshoot the specified boundary temperature due to viscous 

thermal dissipation. This phenomenon is further enhanced by increasing  the Prandtl number.  

The effects of various dimensionless parameters  on the dimensionless local Nusselt number  ' 0  are 

investigated and presented graphically. Fig. 11 is a plot of  '    against the dimensionless space coordinate 

   for different values of Prandtl number ( Pr= [10,15,20,30] ) and the following values of dimensionless 

quantities :  Ec=[0.5],  S =[0.5],  heat generaion/absorption B=[0.5], and magnetic parameter M=[ 0.5] . It is 

observed that   ' 0  increases  with a decrease in Prandtl number in order words the rate of heat transfer at 

the surface increases with decreasing values of Prandtl number. The negative values of the rate of heat transfer   

indicate that heat is transferred from the plate to the fluid.  

Fig. 12 shows the effect of  Eckart number Ec on the heat transfer rate. Pr is kept at a value of 0.5  

together with all the dimensionless variables mentioned above .  Ec  is given the values of  [10, 15,20, 30]. As 

mentioned earlier, an increase in Ec results in  an increase in temperature distribution. This agrees with the fact 

that energy is stored  in the fluid region as a result of  dissipation arising from viscosity and elastic deformation.  
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Next, we consider  the effects of heat  generation and absorption parameter B on the heat transfer rate.  In this 

context, we keep all the other dimensionless quantities constant at 0.5 and assign values of  [-0.5,  -1.0,  -2,  - 

5.0]  to B.  Fig. 13 displays the values of the local Nusselt numbers for the different values of Ec numbers. The 

highest heat transfer rate is recorded for the highest magnitude of  the  heat generation parameter.  We mention 

in passing that  the negative signs in the values of the heat generation parameter indicate the direction of heat 

flow from the plate to the fluid for the given value of Eckart number Positive values of B are given to reverse 

the direction of heat generation for the same of values of dimensionless parameters given in  the previous 

example. .Heat absorption takes place in this case and corresponding values of Nusselt numbers  are given in 

Fig. 14.  The magnitude and direction of the heat transfer rate  agree with the physics. 

 

IV. Conclusions 

Magnetohydrodynamic boundary layer slip flow  and heat transfer over a flat plate with heat generation 

or absorption  and viscous dissipation has been studied. The highly nonlinear governing equations were 

transformed into self-similar form and numerically solved with a shooting technique of a fourth-order Runge-

Kutta-Fehlberg integration scheme.  Numerical results obtained herein showed that an increase in the velocity 

slip parameter results in a decrease in  the skin friction and an increase in the fluid velocity. As the velocity slip 

parameter increases,  allowing more fluid to slide  through  the plate,  the magnitude of the velocity profiles 

close to the plate increases. Various values of the magnetic parameter brought about an increase in the velocity 

field along the plate and a decrease in the boundary layer thickness. An increase in Prandtl number results in a  

decrease in both the momentum  and thermal boundary layers. On the other hand, an increase in Eckert number 

enhances the thermal boundary layer. Certain values of Eckart number result in temperatures so high that they 

overshoot the specified boundary condition as a result of viscous thermal dissipation. Increasing the Newtonian 

heating parameter facilitates an increase in the rate of heat transfer. 
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