Thermodynamic, Microscopic and Surface Properties of Zn-In Liquid Alloy at 700 K

H. K. Limbu¹, K. K. Mishra¹, J. Nirala¹, I.S. Jha¹, B.P. Singh², D. Adhikari¹

¹Department of Physics, Mahendra Morang Aadarsh Multiple Campus, Tribhuvan University, Biratnagar Nepal.
²University Department of Physics, T.M. Bhagalpur University, Bhagalpur, India

Abstract: The alloying behaviour of Zn-In liquid alloys at 700K has been studied by using Flory’s model which is a statistical mechanical model. In this model we assume the role of interchange energy (ω) and size factor ϕ, \(\Phi = \frac{\theta_B}{\theta_A} \), where \(\theta_B > \theta_A \), \(\theta_i \) (i= A, B) represent the atomic volume of the constituent species of the atomic volume of the alloys. The thermodynamic properties and microscopic properties have been computed. Surface property is studied with the help of Butler’s model while viscosity is computed from Kaptay equation, and the Moelwyn-Hughes equation. Both the viscosity and surface tension of the alloy increase with increase in concentration of Zn, and computed viscosity show small negative deviation. In this work, the value of interchange energy(ω) is found to be positive which suggests that there is a tendency of like atoms pairing (Zn-Zn and In-In), as the nearest neighbours indicating the phase separation or segregation in Zn-In liquid alloys. The temperature dependence of interchange energy (ω) has been found during the computation of energy of mixing(\(\Delta G \)) and heat of mixing (\(\Delta H \)).

Keywords: Thermodynamic properties, Structural properties, Surface properties, Transport properties

I. Introduction

To understand the mixing behaviour of two elemental metals forming a binary alloy has always been a subject of considerable interest to physicists, chemists and metallurgists. Usually the merit of formation of an alloy is judged from the observed characteristic thermo-physical functions that deviate from the ideal mixing condition. The Zn-In system is not only a system of great importance from metallurgical point of view, it is also interesting for the study the high temperature lead free solder [1]. Metal physicists [1]–[26] have keen interest in the concentration dependence asymmetry in the properties of mixing of binary liquid alloys and hence to extract additional microscopic information. In metallurgical science, the study of mixing properties of alloys is important because a good knowledge of their mixing properties in the liquid state is necessary for preparation of desired materials. Viscosity of the liquid state is required for many metallurgical processes and heterogeneous chemical reactions. Surface properties are required to understand the surface related phenomena such as corrosion, wetting characteristics of solders and kinetics of phase transformation [2]. The mixing behaviour of binary liquid have been explained by several theoreticians on the basis of several models [4], [8], [22], [27]–[39]. The size effect (i.e. \(\frac{\theta_B}{\theta_A} = 1.68 \)) is more than 1.5 in Zn-In which is noticeable and it is good to exhibit the observed asymmetry; it is therefore expected that concentration dependent asymmetry arises due to size effects. Therefore, we have used Flory’s model[22] to explain anomaly and the mixing behaviour of Zn-In liquid alloy at 700K. In Flory’s model[22] the interaction energy parameter is considered as temperature dependent and is determined by fitting experimental free energy of mixing at different concentrations. The mixing behaviour of binary liquid alloys may be explained in terms of thermodynamic and microscopic properties. Thermodynamic behaviour of the alloy is understood by the knowledge of free energy of mixing (\(\Delta G \)), activity (a), heat of mixing (\(\Delta H \)) and the entropy of mixing (\(\Delta S \)). Structural behaviour is interpreted by the chemical short range order parameters (\(\alpha_i \)), and the concentration fluctuation in long wavelength limit (\(\Delta c(0) \)). Theory of Flory’s model has been presented in section(3), results and discussion is dealt in section-4, and conclusion is provided in section-5.

II. Formalism

(A) Thermodynamic and Structural Properties

The alloying behavior of liquid alloys can be studied with the help of either the electronic theory of mixing [40] or the statistical mechanical theory of mixing. Flory’s model [22] is best applicable for the determination of thermodynamic and microscopic properties whenever there is difference in size of the atomic species in a liquid alloy. Flory’s expression for the free energy of mixing of a binary mixture A-B consists of \(c_A (=c) \) and \(c_B (=1-c) \) respectively, where \(c_A \) and \(c_B \) are the mole fractions of A (=Zn) and B (=In) in the binary
liquid alloy A-B. Thus free energy of mixing of those alloys whose constituent atoms differ widely in size can be expressed as

\[G_M = RT[c \ln c + (1 - c)\ln(1 - c) + G(\text{size}) + c(1 - c)G(\omega)] \]

(1)

where \(G(\text{size}) \) and \(G(\omega) \) are contributions due to the size effect and the interchange energy respectively which can be written from Flory’s model as

\[\beta = 1 - 1/\Phi, \Phi = \vartheta_B/\vartheta_A \]

(2)

\[G_\omega = 1/(1 - \beta) \]

(3)

\[G(\text{size}) = RT[c\ln(1 - \beta) - \ln(1 - \beta\omega)] \]

(4)

where \(\vartheta_A \) and \(\vartheta_B \) are atomic volumes of the pure species A and B respectively; \((\vartheta_B/\vartheta_A) = 1.68\).

Now, heat of mixing can be obtained from equation (1) and (8) from standard thermodynamic and fourth term represent derivative terms of size factor and interchange energy. The necessity for integral entropy of mixing \(S_M = -RG(id) - R\Delta G(\text{size}) - c(1 - c)\eta(c)\frac{\partial c}{\partial T} + RTc(1 - c)\eta(c) \times [(\beta/(1 - \beta) - c\eta(c)\omega/RT)]\beta/\partial T \)

(8)

where,

\[\eta(c) = 1/(1 - \beta\omega) \]

(9)

Here, \(\alpha_A \) and \(\alpha_B \) are the coefficients of thermal expansion of pure species A and B respectively. First term in the right hand side in the equation (8) is due to ideal term and the second term is due to size factor (\(\Phi \)). The third and fourth term represent the temperature derivative terms of size factor and interchange energy. The necessity of taking \(\alpha \) as temperature dependent was noticed in[6].

Now, heat of mixing can be obtained from equation (1) and (8) from standard thermodynamic relation,

\[H_M = \frac{S_M}{RT} + \frac{G_M}{RT} \]

(11)

\[\frac{H_M}{RT} = \frac{\vartheta_B}{(1 - \beta\omega)} \ln c + (1 - c)\ln(1 - c) + c\ln(1 - \beta) - \ln(1 - \beta\omega) + \frac{c(1 - c)\omega}{RT} - \int_{T_1}^{T_2} \frac{\partial c}{\partial T} \]

(12)

where,

\[\alpha(c) = [c\ln c + (1 - c)\ln(1 - c)] \]

and \(\phi(c) = [c\ln(1 - \beta) - \ln(1 - \beta\omega)] \)

To understand the atomic order in binary liquid alloy it is instructive to study the behavior of the long wavelength limit of the concentration-concentration structure factor [\(S_{cc}(0) \)] gives as

\[S_{cc}(0) = \frac{RT}{\Delta c^2} \frac{\partial^2 \Delta S_{AB}}{\partial c^2} \]

(13)

Equation (1) and (13) gives the expression for concentration fluctuation in the long wavelength limit i.e.

\[S_{cc}(0) = \frac{\Delta c^2 AB}{(1 - c)\alpha_A} \int_{T,P,N} \frac{\partial c}{\partial T} \]

(14)

The experimental determination of \(S_{cc}(0) \) poses more difficulty but can be determined from measured activity data and is treated as experimental values given as

\[S_{cc}(0) = (1 - c)\alpha_A \left(\frac{\partial c}{\partial c} \right)^{-1} \]

(15)

where \(\alpha_A \) and \(\alpha_B \) are the activities of the component of A and B respectively.

The Warren-Cowley short range order parameter \(\alpha \) can be estimated from the knowledge of \(S_{cc}(0) \) as

\[\alpha = \frac{s}{z(s-1)} \]

(16)

where, \(Z \) = coordination number. In present calculation we have used \(Z = 8, 9 \) and 10.

(B) Transport properties

Viscosity of liquid alloys helps to understand the mixing behavior of binary liquid alloys at microscopic level. It is one of the important transport properties. In order to examine the atomic transport behavior in Zn-In alloy, we have employed Kapaty equation [41] and the Moelwyn-Hughes equation [42] at 700K. Kapaty equation for the viscosity of the binary alloys at temperature \(T \) is given as

\[\eta = \frac{hN_A}{\Sigma N_C K_E + h_\omega} \exp \left[\frac{E_k c_k(1 - 0.1)}{RT} \right] \]

(17)
where, $h = $ Planck’s constant, N_A is Avogadro’s number, R is the ideal gas constant, Ω_K is the molar volume of component K ($K=A,B$); Ω^E is the excess molar volume upon alloy formation, H_M is enthalpy of mixing of the alloy, C_K (=A,B) represents concentration, G^*_K the Gibb’s energy of activation of the viscous flow in pure component K and Θ is a constant whose value is taken to be 0.155±0.015[16]. G^*_K of component K can be calculated from the expression

$$G^*_K = \frac{RT}{ln\frac{\Omega^E_K}{\Omega^*_K}}$$

(18)

where, Ω^*_K is the viscosity of pure component K and for most liquid metals, it can be calculated from Arrhenius type equation [43] at temperature T as

$$\eta = \eta_0K \exp\left[\frac{E_s}{RT}\right]$$

(19)

where, η_0 is constant (in unit of viscosity) and E_s is the energy of activation of viscous flow for pure metal (in unit of energy per mole).

The Moelwyn-Hughes equation [42] for viscosity of liquid mixture is given as

$$\eta = (c_1\eta_1 + c_2\eta_2)(1 - 2c_1c_2\frac{H_M}{RT})$$

(20)

(C) Surface properties

The surface tension of the initial melt has great influence on the formation of solid alloys by the solidification process. The surface properties help to understand metallurgical modeling, description and prediction of structure development during solidification in the binary alloys. In our work, the Butler’s equation [44] is employed to study its surface tension. Butler’s assumed the existence of surface monolayer at the surface of a liquid as a separate phase that is in thermal equilibrium with the bulk phase and derived an expression

$$\Gamma = \Gamma_1 + \Gamma_2 = \frac{1}{A_1}[G_E^1 - \omega A_1] + \frac{RT}{A_1}[\ln(1 - X_2^b) - \ln(1 - X_2^s)] = \Gamma_2 + \frac{1}{A_2}[G_E^2 - \omega A_2] + \frac{RT}{A_2}[\ln(1 - X_1^s) - \ln(1 - X_1^b)]$$

(21)

where, Γ_1 and Γ_2 are the surface tension of the pure component 1 and 2 respectively. $G_E^{i,s}$ and $G_E^{i,b}$ ($i = 1,2$) are partial excess free energies, X_i^s and X_i^b are mole fraction of component i in the surface and bulk respectively. The molar surface area of the component i can be computed by using the relation

$$A_i = K N_A^{1/3} V_i^{2/3}$$

(22)

where, $K(= 1.091)$ is geometrical factor for the liquid alloy [14]. For binary mixture $X_1^b + X_2^b = X_1^s + X_2^s = 1$.

III. Results and Discussion

(A) Free energy of mixing

For the computation of free energy of mixing G_M/RT of molten Zn-In alloy as a function of concentration at 700K energy parameter and size factor are required. This parameter i.e. interchange energy ω has been determined from equation (1) conjugation with equation (6) with the help of experimental values of $G_M[45]$ in the concentration range of $C_{Zn} = .01$ to 0.9 by the method of successive approximation and the value of size factor ϕ is obtained by equation (3) in the alloying temperature. The best fit parameter ω/RT was found to be 1.428 and the value of size factor (ϕ) is 1.68. The interaction energy ω is positive, showing that Zn and In atoms are repelled to each other. Both the theoretical and experimental values are negative at entire concentrations. The computed values are compared with experimental values [45] at any concentration. The theoretical value shows minimum at $C_{Zn} = 0.3$ and the experimental value shows minimum at $C_{Zn} = 0.4$ as shown in Figure (1). The theoretical minimum value of $G_M = -0.2955RT$ while experimental minimum value $G_M = -0.2941RT$. The computed and experimental values of free energy of mixing are in good agreement in entire concentration range.

(B) Activity

Activity is computed using equation (7) conjugation with equation (10). Measurement of activities within a class of similar system will provide a basis for correlation of the behavior. $ln a_{iA}$ is plotted in Figure (2) and is computed with the experimental value of activity [45]. Good agreement between the computed and experimental value is observed for both the lower and higher concentration of Zn. Some disagreement between the equi-atomic composition noticed in $C_{Zn} > 0.6$ as depicted in Figure 2.
Thermodynamic, Microscopic and Surface Properties of Zn-In Liquid Alloy at 700 K

Fig. 1: Free energy of mixing of Zn-In liquid alloys at 700 K. The solid line represents theoretical values and circle represents experimental values.

Fig. 2: Activities a_{Zn} and a_{In} of Zn-In liquid alloys at 700 K. The solid line represents theoretical values and circle represents experimental values.

(C) Entropy of mixing

To determine the entropy of mixing (S_M) using equation (8) we need temperature derivative of energy parameter. The observed value of entropy of mixing [45] was utilized to obtain the temperature derivative by the successive approximation. The best fit parameter was found to be $\frac{1}{R} \frac{\partial \omega}{\partial T} = -0.39$. It is found that the term containing $\frac{\partial \beta}{\partial T}$ does not contribute much and for all practical purpose it may be neglected. The effect is only due to the ideal term and the term containing size factor which gives positive deviation and the term containing derivative of interchange energy which deviate negatively which almost cancels each other leaving the effect of ideal term for entropy of mixing. This simply suggests the importance temperature dependent term in entropy of mixing.

The theoretical and experimental values of S_M/R against C_{Zn} are plotted in Figure 3. The theoretical and experimental values are in well agreement. The theoretical values shows maximum ($S_M/R=0.8378$) at $C_{Zn}=0.5$.

(D) Heat of mixing

Heat of mixing (H_M) has been calculated from equation (12) using the same interaction parameters $\omega/RT = 1.428$ and $\frac{1}{R} \frac{\partial \omega}{\partial T} = -0.39$ as used in computing G_M and S_M. The plot of H_M/RT versus C_{Zn} at 700K is depicted as shown in Figure 4 which shows that like the experimental values [45], H_M is positive at entire concentrations of Zn. There is a reasonable agreement between theory and experiment. The maximum of H_M/RT is observed around $C_{Zn}=0.6$, which corresponds to stoichiometric concentration or compound formation composition. It is interesting to observe that concentration dependent asymmetry in H_M as observed from the experiment can be explained if one considers the temperature dependence of energy parameters for Zn-In liquid alloys.

DOI: 10.9790/4861-0901015866 www.iosrjournals.org 61 | Page
Thermodynamic, Microscopic and Surface Properties of Zn-In Liquid Alloy at 700 K

Fig. 3: Entropy of mixing of Zn-In liquid alloys at 700 K. The solid line represents theoretical values and circle represents experimental values.

Fig. 4: Heat of mixing of Zn-In liquid alloys at 700 K. The solid line represents theoretical values and circle represents experimental values.

(E) Concentration fluctuation
The concentration fluctuation in long wavelength limit $S_{cc}(0)$ has emerged as a very useful thermodynamic parameter to investigate the atomic order in a binary liquid alloy. The deviation of $S_{cc}(0)$ from the ideal values $S_{cc}^{id}(0) = c(1-c)$ can be used to visualize the nature of atomic order and the stability of the mixture at a given composition. If at a given composition $S_{cc}(0) > S_{cc}^{id}(0)$ there is a tendency of segregation. On the other hand, $S_{cc}(0) < S_{cc}^{id}(0)$ refers to hetero-coordination. The theoretical values of $S_{cc}(0)$ are computed from equation (14) using the same interaction parameter used to calculate G_M. The theoretical and experimental values are depicted in Figure 5. The curve shows maximum at $C_{Zn} = 0.7 (= 2.0855)$ while the experimental curves shows maximum at $C_{Zn} = 0.5 (= 1.11987)$. Our theoretical investigation shows that $S_{cc}(0) > S_{cc}^{id}(0)$ in the entire concentration range i.e. $C_{Zn} = 0.1$ to 0.9 suggesting that Zn-In system is segregating and is quite asymmetric around equi-atomic composition. That is to say that homo-coordination (preferring for like atoms to be paired as nearest neighbours) exists in the molten alloy of Zn-In system.

(F) Short range order parameter
In order to obtain better insight in the nature of arrangement of atoms, we have calculated the Waren-Cowley short range order parameter (α_1) for Zn-In alloy at 700K. Short range order parameter (α_1) can be evaluated theoretically from the knowledge of $S_{cc}(0)$ using equation (16). At equi-atomic one has $-1 \leq \alpha_1 \leq 1$. The minimum value of $\alpha_1 = -1$ which implies complete ordering and $\alpha_1 = +1$ corresponds to segregation leading to the phase separation and $\alpha_1 = 0$ implies a random distribution of atoms. We have found that α_1 is positive at all
the concentrations of Zn for Zn-In alloy which is indicative of segregation or phase separation as evident from Scc(0). In our present work we have computed the value of short range order parameters for different values of coordination numbers (i.e. Z= 8,9,10) as shown in Figure 6. The values of short range order parameter have been found maximum at C_{Zn} = 0.7 in all three coordination number thus the asymmetry in α_1 is distinctly visible. The plot of computed values of α_1 of the alloy is segregating system of like atoms (i.e. Zn-Zn and In-In) as nearest neighbours.

![Figure 5: Concentration fluctuation of Zn-In liquid alloys at 700 K. The solid line represents theoretical values, dotted line represents ideal values and circle represents experimental values.](image)

![Figure 6: Chemical short range parameter (α_1) of Zn-In liquid alloys at 700 K for different coordination number Z= 8, 9 and 10.](image)

(G) Surface tension
The surface tension of the liquid alloys can be computed using equation (21) and (22). The ratio of partial excess Gibbs energy in the bulk and that in the surface can be expressed as

$$\beta = \frac{G_{1s}^{E}}{G_{1b}^{E}}$$

where G_{1s}^{E} and G_{1b}^{E} are the partial excess free energy in the surface and that in the bulk. The value of excess mixing of the pure component are taken from Hultgren et al. [45]. The value of parameter β has been taken as 0.83 as suggested by different researchers[14] to compute surface tension of liquid alloys. We have taken the surface tension of Zn-In and temperature coefficients for pure Zn and In components from the reference [43]. The surface tension of the pure component at temperature of study have been computed by the equation

$$\Gamma(T) = \Gamma_m + \frac{\partial \Gamma}{\partial T}(T - T_m)$$
where, \(\frac{\partial \Gamma}{\partial T} \) (= -0.17mNm\(^{-1}\)K\(^{-1}\) for Zn, and -0.09mNm\(^{-1}\)K\(^{-1}\) for In) and \(T_M = 692.5\text{K for Zn, and 430K for In} \) are coefficient of surface tension and melting temperature respectively. The partial excess free energy of mixing of the pure component are taken from Hultgren et al [45]. It is found form the analysis that computed surface tension for Zn-In system at 700K is less than ideal value (= \(C_1\Gamma_1 + C_2\Gamma_2 \)) at all concentration of Zn i.e. there is negative departure of surface tension from ideality (Figure 7). It is found that surface concentration of Zn in Zn-Sn alloy is found to increase on increasing the bulk concentration of Zn as shown in Figure 8. This is an indication that in the alloy there are more atoms of component with bigger atoms at the surface. Hence, at the surface of Zn-In, In atoms segregate at the surface in preference of Zn atoms throughout the entire composition.

(H) Viscosity

We have used Kaptay equation [34] and Moelwyn-Hughes equation [42] to evaluate viscosity of the alloy and compared the results. To compute viscosity of Zn-In alloy at 700K, the viscosities of pure components Zn and In at 700K are required. To calculate viscosity from Moelwyn–Hughes equation requires heat of mixing \((H_M) \). Heat of mixing is calculated from Flory’s model calculation. And, to calculate the viscosity with Kaptay equation enthalpy of mixing \((H_M) \), the Gibbs free energy of activation of various viscous flow of pure components \((G^*) \) and excess molar volume of the alloy \((\Omega_E) \) are required. For simplicity, \(\Omega_E \) is taken as zero in our calculation. The viscosities of the alloy calculated from different methods are compared along with ideal values (Figures 9 and 10). Both Kaptay equation and Moelwyn-Hughes model show small negative deviation from ideal value.

Fig 7: Surface tension of Zn-In liquid alloy at 700 K. Solid line is calculated surface tension and dotted line is ideal surface tension.

Fig 8: The surface concentration of Zn versus bulk concentration of Zn in molten Zn-In liquid alloy at 700 K.
Thermodynamic, Microscopic and Surface Properties of Zn-In Liquid Alloy at 700 K

Fig 9: Viscosity (η) of Zn-In liquid alloy at 700K versus concentration of Zn using Kaptay equation.

Fig 10: Viscosity (η) of Zn-In liquid alloy at 700K versus concentration of Zn using Kaptay and Moelwyn-Hughes relations.

IV. Conclusion

The Zn-In alloys in molten state is a weakly interacting system. The ordering energy is temperature dependent. The Zn-In liquid alloy is segregating in nature. The ordering energy and size factor play an important role to explain the alloying behavior of the liquid Zn-In alloy. Viscosity and surface tension increase with increase in the concentration of Zn.

References

Thermodynamic, Microscopic and Surface Properties of Zn-In Liquid Alloy at 700 K

