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Abstract: The complete lattice dynamics (phonon dispersion curves, Debye temperatures variation, combined 
density of states (CDS) curves, two-phonon Raman and anharmonic elastic properties) of InP with zinc-blende 
structure has been investigated by van der Waal’s three body force shell model (VTSM). This model 
incorporates the effect of van der Waal’s interactions and three-body interactions into the rigid shell model of 
zinc blende structure, where the short range interactions are operative upto the second neighbours. Our results 
are in good agreement with the available measured data. It is concluded that this model VTSM will be equally 
applicable to study above properties of other zinc-blende structure solids as compared to the models of earlier 
workers. 
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I. Introduction 
In recent years, there has been considerable interest in the theoretical and experimental studies of 

inelastic neutron scattering, a huge amount of experimental data has been accumulated for phonon dispersion 
curves of various II-VI and III-V compounds [1-5], crystallizing into the zinc-blende structure (ZBS). This 
particular attention is primarily due to their high symmetry and simplicity of their ionic bonding. These 
semiconductor crystals (InP, InAs and InSb) have remarkable property of transverse acoustic (TA) vibrations. 
The phenomenological models which have been used to calculate the frequencies of ZBS crystals can be 
broadly classified into two categories. (i) Rigid Ion Model (RIM) [6-8] and (ii) Shell Model [9-10]. The Valence 
Force Field Model (VFFM) as used by Price et al. [11] incorporates bond-bending, bond stretching and point 
Coulombic interactions [12]. Later on, the original 14-parameter VFFM was modified on the lines of shell 
model by Vageletos et al. [5] and Feldkamp et al. [13]. In addition to RIM, SNIM (Second Neighbour Ionic 
Model) and VFFM, some other models e.g., the bond charge model (BCM) and deformable dipole model 
(DDM) have also been used for zinc-blende crystals [14-15] and so on. 
  In this communication, we are mainly concerned with the lattice dynamical study of Indium Phosphide 
InP. The experimental data on InP for phonon dispersion curves [3, 4], harmonic and anharmonic elastic 
constants [16], Debye temperatures variation [17] and Raman spectra [18] are available. These workers have 
tried to interpret the phonon dispersion curves (PDCs) but none has succeeded in describing the PDCs and other 
results of InP very well. They have compared their theoretical results with their measured data but with only 
partial success. 
  Furthermore, effect of long range (LR) three body interactions (TBI), short range (SR) interactions and 
van der Waal’s (VDW) attraction are significant, in partially ionic and covalent crystals [19]. Though, van der 
Waal’s interactions have much effective force, but Singh and Singh [20] have used only three body force shell 
model (TSM) formulations for InP, InAs and InSb without inclusion of van der Waal’s interactions (VDWI). So 
far, the calculations on third order elastic constants (TOEC) and pressure derivatives of second order elastic 
constants (SOEC) are concerned, Sharma and Verma [21] have reformulated the expressions derived by         
Garg et. al. [22]. They have derived the correct expressions for TOEC and pressure derivatives of SOEC for 
ZBS crystals. The various coresearchers (Upadhyaya et. al. [23, 24], Tiwari et. al. [25], Srivastava and 
Upadhyaya [26], Mishra and Upadhyaya [27], Dubey et. al. [28, 29]) used their correct expressions for 
calculating the anharmonic elastic properties for NaCl, CsCl and ZBS structure of solids. Therefore, we have 
used expressions of Sharma and Verma [21] as such for our computations. 

The above informations have encouraged us to include (i) the effect of VDWI and (ii) TBI in the 
framework of RSM where short range interactions are effective upto the second neighbours. Our model thus 
developed is known as van der Waal’s three body force shell model (VTSM). It has 14-parameters; four TBI 
parameters b, ߩ, f(r0), r0 f '(r0); six  nearest and the next-nearest neighbour short-range repulsive interaction  
parameters (A12, B12, A11, B11, A22, B22), two distortion polarizabilities of negative and positive ions (d1, d2)and 
two shell charges of the negative and positive ions (Y1, Y2) respectively. They can be deduced with the help of 
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measured values of elastic constants, dielectric constants, electronic polarizabilities and van der Waal’s coupling 
coefficients. This model has been applied to study the lattice dynamics of indium pnictides                              
(InP, InAs, InSb). In this paper, we are reporting the study of phonon dispersion curves, Debye temperatures 
variation, combined density of states (CDS), third order elastic constants and pressure derivatives of SOEC of 
InP only. The formalism of our model has been presented in the next section in detail.  
 

II. Theoretical framework of the present model 
We have developed a model for ZBS structure, which includes the effect of van der Waal’s interactions 

(VDWI) and three body interactions (TBI) in the frame work of rigid shell model (RSM) where short range 
interactions are effective upto the second neighbours and known as van der Waal’s three body force shell model 
(VTSM).  
 
2.1. Secular equations 
  For ZBS crystals, the cohesive energy for a particular lattice separation (r) has been expressed as 
(ݎ)ߔ    = (ݎ)௅ோߔ  (1)                (ݎ)ௌோߔ+
where the first term ߔ௅ோ(ݎ) represents the long-range Coulomb and three body interaction (TBI) energies 
expressed by 

(ݎ)௅ோߔ =  − ෍
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where Zi is the ionic charge parameter of i th ion, rij separation between  i th and j th ion,  f(rik) is the 
three-body force parameter dependent on nearest-neighbour separation rik and is a measure of ion size difference 
Singh [19], αM is Madelung constant (=1.63805 for ZBS). 
The second term in equation (1) is short-range energy contributions from overlap repulsion and van der Waals 
interactions (VDWI) expressed as [30]. 
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where N is the Avogadro's a number, b is the hardness parameters and the first term is the Hafemeister 
and  Flygare (HF) potential Hafemeister and Flygare [31] and used by Singh and coworkers. The second term 
and third term represent the energy due to VDW for c୧୨ dipole-dipole (d - d) and d୧୨  dipole - quadrupole (d - q) 
interactions, respectively. 

Using the crystal energy expression (1), the equations of motion of two cores and two shells can be 
written as; 
 ߱ଶܯ ܷ = ൫ܴ + ܼ௠ ௠൯ܷܼ ′ܥ  + ൫ܶ + ܼ௠ܥ′ ௠ܻ൯ܹ          (4) 
 
ܱ = ൫்ܶ + ௠ܻ ܥ′ ܼ௠൯ܷ+ ൫ܵ ܭ+ + ௠ܻܥ′ ௠ܻ൯ܹ        (5) 

Here ܷ and ܹ are vectors describing the ionic displacements and deformations, respectively. ܼ௠ and 
௠ܻ are diagonal matrices of modified ionic charges and shell charges, respectively;  ܯ is the mass of the core; ܶ 

and ܴ are repulsive Coulombian matrices respectively; ܥ ′  are long-range interaction matrices that include 
Coulombian and TBI; ܵ and ܭ are core-shell and shell-shell repulsive interaction matrices, respectively and ்ܶ  
is the transpose of matrix ܶ. The elements of matrix ܼ௠ consist of the parameter ܼ௠  giving the modified ionic 
charge.  

ܼ௠ = ±ܼට1 + ቀ଼
௓
ቁ  (6)                                  (଴ݎ)݂

The elimination of ܹ from eqns. (4) and (5) leads to the secular determinant; 
(ݍ⃗)ܦ│ −߱ଶܫ ܯ│ = 0                                                                                                                             (7) 
 for the frequency determination. Here D (q) is the (6×6) dynamical matrix given by 
(ݍ⃗)ܦ = ൫ܴ + ܼ௠ܥ′ ܼ௠൯ − ൫ܶ + ܼ௠ܥ′ ௠ܻ൯ × ൫ܵ + ܭ + ௠ܻܥ′ ௠ܻ൯

ିଵ
൫்ܶ + ௠ܻ ܥ′ ܼ௠൯    (8)          

The numbers of adjustable parameters have been largely reduced by considering all the short-range interactions 
to act only through the shells.  
 
2.2.     Vibrational Properties of Zinc-Blende Structure 

By solving the secular equation (4) along [q 0 0] direction and subjecting the short and long-range 
coupling coefficients to the long-wavelength limit ⃗ݍ → 0, two distinct optical vibration frequencies are obtained 
as 
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and 
ߙ = ଵߙ +  ଶ                                                                                                                                          (14)ߙ
And v = 3.08ݎ଴ଷ for ZBS (volume of  unit cell).   
 
2.3.     Debye Temperatures Variation 

The specific heat at constant volume ܥ௩  at temperature T is expressed as  

௩ܥ  = ஻ܭ3ܰ
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                               (15) 

where,  ߭௠ is the maximum frequency, h is the Planck's constant and ܭ஻ is the Boltzmann's constant. 
The equation (15) can be written as a suitable form for a computational purpose as 
௩ܥ  = ஻ܭ3ܰ
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                                  (16) 
where E(x)  is the Einstein function, defined by  
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Also,   
∑ జ߭݀(߭)ܩ  = Total number of frequencies considered. 
  = 6000 for zinc- blende structure. 
Hence, equation (16) can be written for zinc-blende structure type crystals, as  
௩ܥ  = ଷே௄ಳ

଺଴଴଴
∑ జ߭݀(߭)ܩ(ݔ)ܧ                                   (18) 

The contribution of each interval to the specific heat is obtained by multiplying an Einstein function 
corresponding to mid-point of each interval (say 0.1 THz) by its statistical weight. The statistical weight of the 
interval is obtained from the number of frequencies lying in that interval. The contributions of all such intervals, 
when summed up give, ∑ జ߭݀(߭)ܩ(ݔ)ܧ . The Specific heat ܥ௩  is then calculated by expression (18).  
 
2.4.       Second and third order elastic constant 

Proceeding with the use of three body crystal potential given by equation (1), (Sharma and Verma [21]) 
have derived the expressions for the second order elastic constants and used by (Singh and Singh [20]) for    
zinc-blende structure crystals. We are reporting them here as their corrected expressions. 
The expressions for second order elastic constants (SOEC) are- 
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and the expressions for third order elastic constants (TOEC)  are- 
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where Zm is the modified ionic charge defined earlier with L = e2/4a4 and  
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and Pressure derivatives of SOEC 
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and     Ω =  −5.0440ܼ௠ଶ + ଵܣ)  + −(ଶܣ ଵܤ)2 + (ଶܤ + 17.4730ܼ݂ܽ  (଴ݎ)′
The values of Ai, Bi and Ci as defined by Sharma and Verma [21]. 
 

III.  Computations 
The model parameters (b, ρ and f(r0)), have been determined by using the expressions (19-21) and the 

equilibrium condition ቀୢΦ(୰)
ୢ୰

ቁ
୰బୀୟ √యమ

= 0, with the inclusion of the van der  Waal’s interactions (VDWI) 

[equation (3)]. The values of the input data K. Kunc. et al. [32] and P. H. Borcherds et al. [3] and model 
parameters have been shown in Table1. The values of Ai, Bi, Ci  have been calculated from the knowledge of b, 
ρ; the values of various order of derivatives of  f(r0) and van der Waal’s coupling coefficients [21]. The values 
of VDW coefficients used by us in the present study have been determined using the Slatre-Kirkwood Variation 
(SKV) method [33], Lee [34] approach as suggested by Singh and Singh [20] and reported by Sharma and 
Verma [21]. Thus our model parameters are [b, ρ, f(r0), r0f '(r0), A12, A11, A22, B12, B11, B22, d1, d2, Y1 and Y2]. 
The values of the van der Waal’s coefficients (VDW) are shown in Table 2. Our model parameters of VTSM 
have been used to compute the phonon spectra of InP for the allowed 48 non-equivalent wave vectors in the 
first Brillouin zone. The frequencies along the symmetry directions have been plotted against the wave vector 
to obtain the phonon dispersion curves (PDCs). These curves have been compared with those measured by 
means of the coherent inelastic neutron scattering technique [3, 4] in Fig. 1 along with the BBFM calculations 
of Kunc. et al. [32]. Since the neutron scattering experiments provide us only very little data for the symmetry 
directions, we have also computed combined density of states (CDS) and the Debye temperatures variation for 
the complete description of the frequencies for the Brillouin zone. 
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The complete phonon spectra have been used to compute the combined density of states (CDS), 
N(j+j') corresponding to the sum modes (j+j') following procedure of Smart et al. [35]. A histogram  
between N(j+j') and (j+j') has been plotted and smoothed out as shown in Fig. 2. These curves show well 
defined peaks which correspond to two- phonon Raman scattering. These CDS peaks have been compared 
with the assignments calculated and shown in Table 3. The Debye temperatures variation for InP measured 
from by U. Piesbergen [17] and those calculated by us using VTSM has been compared in Fig.3. The calculated 
values of TOEC using equations (22-27) have been compared with calculated values of Sadao Adachi [36] and 
shown in Table 4. The pressure derivatives of SOEC have also been calculated and compared with those 
measured by D. Wolf Gerlich [37] in Table 5.  
 

IV. Results and discussion 
4.1 Phonon Dispersion Curves 
From figure1, our phonon dispersion curves for InP agree well with measured data reported by Borcherds et al. 
[3]. It is evident from PDCs that our predictions using present model (VTSM) are better than those by using 
BBFM [32]. Our model has successfully explained the dispersion of phonons along the three symmetry 
directions. From fig.1 and Table 6, it is clear that: there are deviations of 2.11% along LO(X), 4.43% along 
TO(X), 8.10% along LA(X), 9.76% along TA(X), 0.29% along LA(L) and 2.95% along TA(L) from 
experimental results. From BBFM, deviations are 9.76% along TA(X), 8.10% along LA(L) and 21.21% along 
TA(L) while from VTSM 0.00% along TA(X), 1.00% along LA(L) and 0.00% along TA(L). From table 6 it is 
clear that VTSM has very small deviation from experimental data. Our model VTSM has 21.21% improvement 
over BBFM due to inclusion of three body interactions (TBI) and VDWI coefficients. Therefore, our VTSM 
model has better agreement with experimental data over BBFM [32].  
 
4.2.     Combined Density of States 
The present model is capable to predict the two phonon Raman spectra [18]. The results of these investigations 
for combined density states (CDS) peaks have been presented in Fig. 2. The theoretical peaks are in good 
agreement with observed Raman peaks for InP. The assignments made by the critical point analysis have been 
shown in Table 3. The interpretation of Raman spectra achieved from both CDS approach and critical point 
analysis is quite satisfactory. This explains that there is an excellent agreement between experimental data and 
our theoretical results. There is no any experimental data available for InP of two phonon IR spectra. So we 
could not report comparison of combined density states (CDS) peaks for IR spectra. 
 
4.3. Third Order Elastic Constants (TOEC) and Pressure Derivatives of Second Order Elastic Constants 

(SOEC) 
Our calculations on TOEC of InP have been compared with the theoretical results of Sadao Adachi [36]. 
Further, pressure derivatives of SOEC for InP have also been compared with the measured data of D. 
Gerlich, and  M. Wolf,  [37] as shown in Table 5. The results are in good agreement.  
 
4.4. Debye Temperatures variation 
From Fig. 3, our study shows a better agreement with the measured data of U. Piesbergen [17] and the 
theoretical results of BBFM [32]. We can say that our present model gives a better interpretation of the Debye 
temperatures variation for InP. 
 

V. Conclusion 
The inclusion of van der Waal’s interactions (VDWI) with TBI have influenced both the optical 

branches and the acoustic branches. Another striking feature of present model is noteworthy from the 
excellent reproduction of almost all branches of PDCs, Hence the prediction of phonon dispersion curves 
(PDC) for InP using VTSM may be considered more satisfactory than from other model [32]. The basic aim 
of the study of two phonon Raman spectra is to correlate the neutron scattering and optical measured data of 
InP.  In this paper, we have systematically reported phonon dispersion curves, combined density of states, 
Debye temperatures variation and a part of harmonic and anharmonic properties of InP. On the basis of 
overall discussion, it is concluded that our van der Waal’s three body force shell model (VTSM) is 
adequately capable of describing the crystal dynamics of indium phosphide. This model may also be 
applied equally well to study the crystal dynamics of   other compounds of this group (InAs and InSb). Our 
work gets strong support from paper of Mishra and Upadhyaya [27] and Dubey et. al. [28, 29]. 
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             Figure 1: Phonon dispersion curves for InP 
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Figure 2: Combined density of states curve for InP 

 

 
Figure 3: Debye characteristics temperatures ΘD (ºK) as a function of temperature T for InP 

 
Table 1. Input data and model parameters for InP [Cij and B (in 1011 dyne/cm2), 
 (in THz), r0 (in 10-8 cm),αi (in 10-24 cm3), b (in 10-12 erg), ρ (in 10-8 cm)] 

 
Input Data Model Parameters 

Properties Values Parameters Values 
C11 10.22a b 1.05 
C12 5.76a ρ 0.341 
C44 4.60a f(r0) 0.28 
B 7.25b r0 f '(r0) 0.111 
r0 2.54a A12 3.068 

୐୓(Γ) 10.46* B12 16.209 
୘୓(Γ) 9.20b A11 41.598 
୐୓(L) 10.20b B11 5.3672 
୘୓(L) 9.5b A22 5.722 
୐୅(L) 5.0b B22 3.656 
୘୅(L) 1.65b d1 0.1237 

αଵ  0.221a d2 3.5245 
αଶ

 6.8449a Y1 1.1615 
ε଴  12.40a Y2 1.2626 

*Extrapolated values from [3]. 
a-( K. kunc. et al. [32]); b- (P. H. Borcherds et al. [3]) 

 
Table 2. van der Waal’s Interaction Coefficients for InP (Cij and C in units of 

10-60 erg cm6 and dij and D in units of 10-76 erg cm8) 

Parameters Numerical Values 
C+ - 494 
C+ + 372 
C- - 721 
d+ - 387 
d+ + 189 
d- - 704 
C 2569 
D 1690 
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Table 3.  Assignments for the observed peak positions in Combined Density 

 of States in terms of selected phonon frequencies at Γ, X and L critical points for InP 
CDS 
Peaks 
(cm-1) 

Raman Active 
Observed 

Raman 
Peaks (cm-1) 

[18] 

Present Study 
Values 
(cm-1) 

Assignments 

....... 85 87 LA-TA () 
107 107 110 

110 
2TA(L) 

LA-TA (L) 
133 135 136 2TA (X) 
163 163 170 TO-LA() 
....... 189 190 LO-LA() 
213 214 213 LA-TA() 
227 228 220 LA+TA (L) 
....... 251 257 LO-LA (L) 
268 269 263 LA+TA (X) 
305 304 300 2LA() 
343 346 ....... ….. 
410 412 ....... ….. 
492 490 490 LO+LA() 
513 510 517 LO+LA(X) 
573 573 ....... ....... 
593 596 ....... …… 
....... 620 614 2TO(Γ) 
630 626 634 2LO(L) 
683 684 680 2LO() 

 
 

Table 4. Third Order Elastic Constants (in the unit of 1011dyne/cm2) for InP 
Property Present 

Study 
Experimental  
Results [36] 

C111 9.216 8.60 
C112 2.346 1.85 
C123 5.927 5.1 
C144 7.927 6.5 
C166 +2.16 +1.6 
C456 0.1325 0.042 

 

 

Table 5. Values of pressure derivatives of SOEC (in dimensionless) for InP 
Properties Values 

Present 
Study 

Experimental 
[16] 

Other 
[37] 

dK'/dP 5.2 4.88 4.50 
dS'/dP 0.233 -0.29 -0.89 

dC'44/dP 0.80 0.26 0.79 
 
 

Table 6. Comparison of frequencies from various sources (X and L points) for InP 
Points Branches Expt. 

[3] 
(THz) 

BBFM [32] VTSM (Present Study) % 
Improvement 
Over BBFM         

(a ~ b) 

Value 
(THz) 

(±) 
Deviation 

% (a) Value (±) 
Deviation 

% (b) 

X  
(100) 

LO 9.95 9.74 0.21 2.11 10.0 0.05 0.50 1.61 
TO 9.70 9.22 0.43 4.43 9.65 0.05 0.86 7.24 
LA 5.8 5.33 0.47 8.10 5.85 0.05 0.86 7.24 
TA 2.05 1.85 0.20 9.76 2.05 0.00 0.00 9.76 

L 
(.5.5.5) 

LO 10.2 9.99 0.03 0.29 10.15 0.05 0.49 0.20 
TO 9.5 9.22 0.28 2.95 9.50 0.00 0.00 2.95 
LA 5.0 4.72 0.18 3.60 4.95 0.05 1.00 2.6 
TA 1.65 2.00 0.35 21.21 1.65 0.00 0.00 21.21 

 
 


