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Abstract: Radiative heat transfer in one dimension is studied in a plane – parallel geometry for an absorbing 

and isotropically scattering medium subjected to azimuthally symmetric incident radiation at boundaries. The 

integral form of the transport equation, which is weakly singular Fredholm integral equation of the second kind, 

is used .The unknown function in the integral form is expanded in terms of truncated Chebyshev polynomials in 

the optical variable. The collocation method is applied to obtain a system of linear algebraic equations for the 

expansion coefficients. Numerical calculations are done for the transmissivctivity, and exit angular distributions 

of slabs with various values of single scattering albedo. Comparisons between the present and available results 

in references indicate that our results are accurate, as shown in the tables.    
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I.   Introduction 

The transfer of heat which is due to thermal radiation is referred to as radiative transfer and is an 

important heat transfer process for high temperature applications such as energy conversion systems , nuclear 

reactors , many industrial processes and solar energy conversion devices . Radiation has complicated transfer 

mechanisms that are difficult to model even in a simple system. Early investigations predicted one dimensional 

radiative transfer and neutron transport in planar media using various solution techniques [1- 19]. Among these 

various techniques, the so called expansion technique in which suitable expansion of the radiation intensity in 

the angular variable is used to solve the integro – differential form of the transport equation [20 –29]. Other 
methods [30- 33] have been developed in the context of an integral formulation of the transport equation where 

Fredholm integral equations of the second kind are produced in terms of the Legendre moments of the total 

intensity. Power series expansions in the optical variable have been used often in this context [30, 31]. Legendre 

and Chebyshev polynomials both of the first kind were used as basis functions in developing a Galerkin solution 

of radiative transport in slab geometry [32, 34–36]. Also, Fourier transforms [36,37] and eigenfunctions 

expansions [38, 39] have been implemented. It has been observed that an expansion in the optical variable 

produces fast convergence.   

In this study the integro-differential equation of transport in a homogeneous, absorbing and scattering 

finite slab subjected to prescribed boundary conditions is converted into integral form. The integral version is 

then solved by expanding the total flux in terms of Chebyshev polynomials in the space variable. To determine 

the expansion coefficients, the collocation method [33-34] is used to reduce the integral equation into a system 
of linear algebraic equations to be solved for the expansion coefficients. The knowledge of the expansion 

coefficients completely determines the total flux, the angular flux and all the physical quantities relevant to the 

problem. 

 

II.    Formulation of the Problem 
We consider the radiative energy transfer in a plane parallel absorbing, isotropically scattering and non- 

emitting slab of optical thickness a2 . The governing equation is,  
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Here, ) , ( I  is the radiative angular intensity,   is the optical variable,   is the single scattering albedo 

and   is the direction cosine of propagation of the intensity.  The boundary conditions associated with Eq. (1), 

which describe known externally incident distributions on the slab boundaries, are   
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    At optical depth   inside the slab the forward and backward angular intensities are,  0 , 
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The exit angular intensities are 
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Other quantities of physical interest are the slab reflectivity and transmissivity defined, respectively, by    

 

  (6)                                                         a)- ( q    )(  )(   
2

1
  -

1
1        

0   

21











  


dFFR                                   

and                                                           

  (7)                                                      (a) q    )(  )(   
2

1
 

1
1        

0   

21













  


dFFT

  
Where q-  and q+ are the partial heat fluxes at the slab  boundaries . In the above equations, the unknown 

)(I  is a solution of the inhomogeneous integral equation,  
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and )(xEn  denotes the exponential integral function of order n. 

 

III.   Method of Solution 

         To solve Eq. (8) we approximate  )(I  by the form  
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where )(xT j are Chebyshev polynomials and 
 \

means that the last coefficient in the expansion must  be 

halved. Now, insert Eq. (10) into the right hand side of Eq. (8) to get the more accurate approximation                               
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According to the point collocation method, the expansion coefficients in Eq. (10) are solution to the system of 
algebraic equations   
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where ix , Ni ,, 2 , 1 , 0  , are the extreme points of )(xT j [41]. 

      Once the coefficients 0A  and jA  are determined the angular intensity inside the medium at optical depth   

in the positive and negative directions are given respectively by, , 0
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where we have defined   
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For ),( aI  and ),( aI  one has  
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By integrating Eqs. (19) and (20) over ]1 , 0[   , the partial total intensities )a(I  and )a(I 
 are 
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~  is given by 
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Finally to determine the reflectivity and transmissivity of the slab, q- and q+ should be obtained. This can be 

done by multiplying equations (19) and (20) by µ followed by an integration , 
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IV.      Numerical Results and Discussion 
In this section, we present the numerical results for the proposed method of solution in the study of the 

transport properties of a semitransparent planar slab with isotropic scattering. For the sake of numerical 

comparison the externally incident radiation at the right boundary 0)(2 F . At the inlet, a , isotropic 

and normal incidence , each of unit strength , are assumed. To obtain the final solutions, we need to evaluate the 
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expansion coefficients. They are determined by solving a linear system of algebraic equations. Thus, the 

intensity of radiation and the net flux can be known everywhere in the medium. However, for the purpose of 

comparison, numerical calculations are done for the transmissivity and reflectivity of slabs with various values 

of  , which is the single scattering albedo. The obtained results are tabulated in Tables 1 to 4 for the cases of 

isotropic and normal incidence. The results for the case of isotropic incidence are compared with the values of 

the discrete ordinate method [18] and the exact values of Lii, [42] for 1 , and Busbridge[43] for 1 . The 

results for the case of normal incidence are compared with the approximate values calculated with Pomraning-

Eddington variational method and Case,s eigenvalue method reported in [44] and with those of discrete ordinate 

method [18] . From Tables 1 to 4, it can be seen that the results calculated by the proposed method agree very 

well with the exact and discrete ordinate results.  

Numerical results are also performed for the transmitted and reflected angular intensities at the 

boundary of a slab with different optical thickness and selected values of  . In all the calculations the largest 

approximation order is N=10. In Tables 5 and 6, we list numerical values for the transmitted and reflected 

angular intensities of a slab with three values of the optical thickness at selected values of  in the case of 

isotropic incidence, and the results are compared with those which are obtained by the method of Ref. [45]  

where the Legendre polynomial expansion is used, up to the same approximation order N=10. In Tables 7 and 8, 

the listed values are same like those of Tables 5 and 6 with the exception that the case of normal incidence is 

considered for two values of the optical thickness. For normal incidence, our results of the transmitted and 

reflected intensities are compared with the results obtained by Chandrasekhar X- and Y- functions method [1] . 

In general, comparison of our results with the available data shows good agreement.  

  

Table 1. The transmissivity of slabs at various values of ω in case of isotropic incidence 
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Table 2.  The reflectivity of slabs at various values of ω in case of isotropic incidence 

 
 

Table 3. The transmissivity of slabs at various values of ω in case of normal incidence 
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Table 4. The reflectivity of slabs at various values of ω in case of normal incidence 
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Table 5. The reflected angular intensity in case of isotropic incidence 

(i) Present results                   (ii) Method of Ref. [45] 
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Table 6. The transmitted angular intensity in case of isotropic incidence 

(i) Present results                (ii) Method of Ref. [45] 

 
 

Table 7. The reflected angular intensity in case of normal incidence 
(i) Present results                  (ii) Chandrasekhar method [1] 
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Table 8. The transmitted angular intensity in case of normal incidence 

(i) Present results                 (ii) Chandrasekhar method [1] 
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V. Conclusion 
A spatial Chebyshev polynomial expansion, in connection with collocation method, is applied to the 

radiative transfer problem in one-dimensional absorbing, scattering and non-emitting planar slab subjected to 

prescribed externally incident radiation. The integral form of the considered problem is formulated and the total 

intensity is expanded in a series of Chebyshev polynomials of the first kind. The expansion coefficients are 

solutions to a linear, inhomogeneous system of algebraic equations. Once the expansion coefficients are 

determined all the physical quantities relevant to the problem could be calculated. The accuracy of the proposed 

method is validated by performing numerical results for the reflectivity, transmissivity, and angular intensity of 

a semitransparent planar slab, with isotropic scattering, subjected to isotropic and normal incidence.  
 

References 
[1] S. Chandrasekhar, Radiative transfer ( New York : Dover, 1960 ). 

[2] K.M. Case, and  P.F. Zweifel,  Linear transport theory ( Reading , MA :  Addison- Wesley, 1967 ).  

[3] M.N. Özisik, Radiative transfer and interactions with conduction and convection, ( New York : Wiley,  1973 ). 
[4] M.A. Atalay,The critical slab problem for reflecting boundary conditions  in one-speed neutron transport theory, Ann. Nucl. 

Energy,  23(3), 1996, 183-193 .      

[5] M.A. Atalay, Milne problem for linearly anisotropic scattering and a specularly  reflecting boundary, Ann. Nucl. Energy, 27(16), 

2000,  1483- 1504,                 
[6] P. Benoist and A. kavenoky, A new method of approximation of the Boltzmann equation,  Nucl.  Sci.  Eng., 32(2),1968, 225-232.      
[7] A. Kavenoky, The CN method of solving the transport equation : application to plane geometry, Nucl. Sci. Eng., 65(2), 1978,  209-    

225. 
[8] A. Kavenoky, The CN method of solving the transport equation   application to cylindrical geometry, Nucl.  Sci.  Eng., 65(3), 1978,  

514- 531. 
[9] P.  Kharchaf ,. Benoist and R. Sanchez,  Multigroup CN method-II . Albedo and transmission for a slab,  Ann. Nucl.  Eng., 23(3), 

1996,  1049-1059.  
[10] H. Sitlia, P. Benoist, and A. Kharchaf,  The CN method of solving the transport equation in a half-space for pure scattering or very 

weakly absorbing medium, In : PHYTRAI Conference, 2007, GMTR,  Marrakech 

[11] H. Sitlia and P. Benoist, The CN method applied to the stationary problem of particle reflection by a purely scattering or weakly 

absorbing half-space : extension to the asymptotic time – dependent case,  Ann.  Nucl.  Energy, 35(3), 2008,  404-413.        

[12] C. E.  Siewert and P. Benoist,  The FN method in neutron transport theory, Part I : theory and applications,  Nucl.  Sci.  Eng.,  69(2), 

1979, 156 – 160.   

[13] R.D.M. Garcia and C.E . Siewert ,  Radiative transfer in finite inhomogeneous  plane-parallel atmospheres , J. Quant. Spectrosc. 

Radiat. Transfer,  27(2), 1982,  141-148 . 

[14] A. Kaskas , M.C. Gülecyüz  and C . Tezcan , The slab  albedo problem using  singular eigenfunctions and the third form of the 

transport equation , Ann.  Nucl.  Energy,  23(17), 1996, 1371-1379 . 

[15] A. Yildiz, Varation of the albedo and the transmission factor with forward  and backward scattering in neutron transport  theory- the  

FN method,  Ann.  Nucl.  Energy,  27(9), 2000,  831-840 . 
[16] L.H. Liu , H. P. Tan and  Q. Z. Yu,  Inverse radiation problem of  boundary incident radiation heat flux in semi- transparent planar 

slab with  semi-transparent  boundaries , J.  Therm.  Sci., 7(2), 1998, 131-138. 
[17] L.H. Liu, H. P. Tan and Q. Z.Yu, Inverse radiation problem in one-dimensional semitransparent plane-parallel media with opaque 

and specularly  reflecting boundaries,  J. Quant. Spectrosc. Radiat.Transfer,  64(4), 2000, 395-407. 
[18] L.H. Liu and  L.M.  Ruan,  Numerical approach for reflections and transmittance  of finite plane-parallel absorbing and scattering 

medium subjected to   normal and diffuse incidence, J.Quant.Spectrosc. Radiat. Transfer,  75(5),  2002,  637-646.  
[19] B.D. Ganapol,  Radiative transfer with internal reflection via the   converged  discrete ordinate method,  J. Quant. Spectrosc. 

Radiat.Transfer , 112(4), 2011, 693-713.  

[20] M. N. Özisik and C.E. Siewert, On the normal mode expansion technique for   radiative transfer in a scattering, absorbing and 

emitting slab with specularly reflecting boundaries, Int. J. Heat Mass Transfer,  12(5), 1969,  611-620.  

[21] M.F. Modest,  Radiative transfer ( New York : McGraw-Hill , 1993) . 
[22] C. Yildiz , Variation of the critical slab thickness with the degree of  strongly anisotropic scattering in one speed neutron transport 

theory,  Ann.  Nucl.  Energy 1998 ; 25(8),1998,  524-540.               
[23] M. A. Atalay,  PN solutions of  radiative heat transfer in a slab  with   reflective boundaries,  J. Quant. Spectrosc. Radiat.Transfer, 

101(1), 2006,  100-108. 

[24] F. Yasa , F. Anli and S. Güngör,  Eigenvalue spectrum with   Chebyshev polynomial approximation of the transport equation in slab   

geometry, J. Quant. Spectrosc. Radiat. Transfer,  97(1), 2oo6, 51-57. 
[25] F. Anli , F. Yasa  , S . Güngör  and  H. Öztürk ,  TN approximation  to neutron transport equation and application to critical slab 

problem, J. Quant.Spectrosc. Radiat.Transfer, 101(1), 2006, 129-134.             
[26] F. Anli , F. Yasa , S. Güngör and H. Öztürk ,  TN approximation to  reflected slab and computation of the critical half thickness, 

J.Quant.Spectrosc.Radiat.Transfer,  101(1), 2006, 135-140. 

[27] H. Öztürk , F. Anli and S . Güngör , TN method for the critical  thickness of  one-speed neutrons in a slab with forward and   
backward scattering , J. Quant. Spectrosc. Radiat. Transfer, 105(2), 2007, 211-216 . 

[28] A. Yilmazer , Solution of one-speed neutron transport equation for strongly anisotropic scattering by TN approximation: slab   
criticality problem, Ann.  Nucl.  Energy,  34(9),  2007,  743-751. 



A Simple yet Elegant Expansion Method to Solve Radiative Transport Problems in Finite Media   

www.iosrjournals.org                                                    28 | Page 

[29] H.  Öztürk  and S. Güngör , TN approximation on the critical size of time-dependent , one-speed and one-dimensional neutron 

transport problem with anisotropic scattering, Ann. Nucl. Energy, 36(5), 2009,  575-582.             
[30] M. N. Özisik  and Y. Yener;  The Galerkin method for solving radiation transfer in plane – parallel participating media , J. Heat  

Transfer , 104 (2) , 1982, 351 – 354 .  
[31] Y. A. Cengel,  M. N. Özisik and Y. Yener , Determination of angular distribution of radiation in an isotropically  scattering slab ,  J. 

Heat Transfer , 106 (1) , 1984 , 248 – 252 . 

[32] Y. A. Cengel and M. N. Ozisik,  Radiation transfer in an anisotropically scattering slab with    directional  dependent reflectivities, 

ASME paper 86-HT – 28 , 1986. 

[33] M .S .Abdel Krim , Radiation transfer , Radiation transfer for linearly anisotropic phase functions , Astrophys. Space Sci.             
1990, 69 – 77. 

[34] J. I. Frankel,  Several symbolic augmented Chebyshev expansions for solving the equation of      radiative transfer, J. comput.        
 Phys., 117 (2), 1995, 350 – 363.   

[35] T. Laclair  and  J. I. Frankel, Chebyshev series solution for radiative transport in a medium with a linearly anisotropic scattering    
phase function, Int. J. Num. Meth. Heat Fluid flow, 5(8), 1995, 685 – 704.  

[36] H. Machali  and  M. A. Madkour, Radiative transfer in a participating slab with anisotropic scattering and general   boundary   
conditions , J. Quant. Spectrosc. Radiat. Transfer, 54 (5), 1995, 803 – 813.  

[37] W. H. Sutton  and M. N. Özisik , A Fourier transform solution for radiative transfer in a slab      with   isotropic scattering and       
boundary reflection , J. Quant. Spectrosc. Radiat. Transfer,  22, (1), 1979, 55 – 64. 

[38] S. T. Thynell and M. N. Ozisik, Use of eigenfunctions for solving radiation transfer in anisotropically scattering plane-parallel     
media, J. Appl. Phys., 60(2), 1986, 541-551.                                     

[39] S. Bulut  and  M .C. Gulecyuz ,The Hn method for slab albedo problem for linearly anisotropic scattering, Kerntechnik,                
70(5&6),  2005, 1-8. 

[40] J. P.  Boyd,  Chebyshev and Fourier spectral methods ( Dover Pub. Inc ., New York, 2000). 

[41] J. C. Mason  and D. C. Handscomb,  Chebyshev polynomials (Chapman   & Hall , CRC , New York ,2003).  
[42] C. C. Lii  and  M. N. Özisik, Hemispherical reflectivity and transmissivity of an absorbing ,  slab with   isotropically scattering a 

reflecting boundary, Int. J. Heat Mass Transfer, 16(3), 1973,  685- 690.          
[43] I. W. Busbridg ,and S. E. Orchard,  Reflection and transmission of light by a thick atmosphere according to a phase function   P (µ) 

= 1+bµ,  Astrophys.  J., 149, 1967,  655-664. 

[44] A. R. Degheidy, M. H. Haggag  and A.  El-Depsy , Albedo problem   for finite  plane-parallel medium. J. Quant. Spectrosc.  Radiat. 

Transfer , 72(4),  2002, 449-465.   
[45] M. H. Haggag , Transport calculations in finite slab geometry,  Astrophys. Space  Sci., 115  ,  1985, 155-161.  


