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Abstract: The Milne problem is studied for the case of one speed, time independent, plane symmetric transport 

equation. The scattering law is assumed isotropic plus a backward and forward leak. First of all, the solution 

for the angular intensity relevant to the assumed scattering law is expressed in terms of the solution of the 

transport equation with isotropic scattering. The integral version of the isotropic like transport equation is then 

solved using a suitable set of trial functions. The unknown expansion coefficients in the trial functions are 

shown to be solutions of a system of linear algebraic equations. Numerical results are listed and compared with 

the existing results.  
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I. Introduction 
Various scattering models have been currently used in a series of papers to solve problems in finite and 

semi-infinite media with different techniques [1-15]. Here, our aim is to determine the particle distribution 

everywhere in an infinite source-free half-space with zero incident flux for which the scattering law is isotropic 

scattering plus a backward and forward leak. Also, we wish here to extend a method previously introduced [16-

18] to demonstrate the computational merits of the method when applied to the anisotropic scattering kernel 

mentioned above. A scattering law of this kind was used by Inönü [2] which led him to prove a theorem such 

that the Boltzmann equation with synthetic scattering kernel is connected to the one with isotropic scattering. 

This connection is made by anisotropy parameters  , backward leak parameter, and m, forward leak parameter, 

for which the new eigenvalues, eigen-functions and the number of secondaries are described in terms of the old 

ones [1]. 

 Let us consider one-speed, time independent homogeneous transport equation:  

                          μd)μ'(z,ψμ)Π(μ'
1

10
ωμ),(zψμ)ψ(z,

z
μ 







                                           (1) 

where is the angular density, with distance measured in units of mean free path,   is the direction cosine of 

the angle between the positive z-axis and the particle velocity vector, and 0  is the mean number of 

secondaries per collision. Here )'(    represents the scattering law, which we write as [4] 
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where  and m are real constants in the range 1,0  m  and give the fraction of particles which emerge 

from a collision in the backward and forward directions, respectively. In addition 

 n =1- m  and gives the fraction of particles which emerge isotropically from a collision. Using equation (2) 

we can write equation (1) as 
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In terms of the reduced optical variable 
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equation (3) becomes 
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where  



A Semi-Analytical Solution to Milne Problem in the Case of Multiple Synthetic Scattering 

www.iosrjournals.org                                                    12 | Page 

                                          

0

0

mω1

ω
α





                                                                                          (6) 

and  
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Equation (5) shows that forward scattering does not introduce any analytical complications since the 

form of the resulting equation of transport is no different from the usual equation. However, backward scattering 

does lead to an equation of transport considerably different from the usual one. In the following section the 

Milne problem will be considered, which is the problem to obtain the angular intensity everywhere in the half-

space 0  with zero incident intensity where particles are diffusing from a source at  . In the 

region 0    there is a vacuum.  

 

II. The Milne Problem 
For this problem, as mentioned previously, we seek solutions of the homogeneous transport equation, 

Eq. (5), subject to the boundary condition at z = 0, 

                                         0μ      ,0μ)(0,ψ                                                                (8) 

As discussed by Inönü [2], we can reduce the problem defined by Eqs. (5) and (8) to the one for isotropic 

scattering by writing  
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and μ)(x,Ψ is a solution to  
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together with the definition 
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Using the boundary condition in Eq. (8), we see that Eq. (9) at 0 x  assumes the form  

                                   0  ),,0(),0(   R                                                                (14) 

which expresses the new boundary condition at 0x , where  
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III. Analysis and Method of Solution 
The objective of the Milne problem is to determine the particle density everywhere in the medium and 

the angular distribution of the emergent intensity at the boundary x = 0, where the scattering law is described by 

Eq. (2). In a previous work [16-18] we introduced an efficient and accurate method for solving a class of half-

space problems with isotropic scattering. In the present work the method is used to solve the Milne problem 
with synthetic scattering law. For this purpose equation (12) can be formally solved, subject to the boundary 

condition (14), to give 
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and  
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Integrating Eqs. (16) and (17) over   to obtain the following integral equation for )(x  
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with 

                                               y),(xRE)yx(Ey)H(x, 11                                                (19) 

Where En (x) denoting the exponential integral function of order n. Now, isolate the growing component of 

)(x  to rewrite Eq. (18) in the form  
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and the inhomogeneous term S(x) is defined by  
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for , 1  whereas for 1  one has  
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To completely determine the angular distributions ),(  x  as given by Eqs. (16) and (17) we must 

solve Eq. (20) for f(x) and hence (x)  . For this purpose, we introduce an appropriate parameters approximate 

expansion for f(x) and then determining the unknown expansion coefficients. A proper choice for the parametric 

expansion is of the form 
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where A and An are expansion coefficients to be determined. Using this expansion, the angular distributions 

everywhere in the half-space can be calculated from, 0 , 
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and  
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where the functions Fn (x,  ) are as defined and explicitly given in Ref. [16]. Specializing equation (25) at x = 

0 to get  
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and from equation (9) the emergent angular  takes the form 
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Another quantity, of physical interest, relevant to the Milne problem is the extrapolation length, z0, 

which is the distance beyond the absorbing boundary at which the asymptotic part of the total flux extrapolates 

to zero. For example, in case of conservative scattering it is easy to show that 
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where Jnm are as defined and given in Ref. [16]. 

 

IV. The Expansion Coefficients 
To solve for the expansion coefficients A and An, we substitute Eq. (23) into Eq. (20), then operate on 

the resulting expression first with the operator ,...../

0 dxe vx  and second with ,).....(20 dxxE m

  where 

m = 0, 1, 2, … , N. As a result of these two operations, one obtains (N+2) linear algebraic equations for (N+2) 

unknown expansion coefficients which are written as  
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The analytic expressions for the integrals of T, Tn and Dmn are evaluated to give 
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and for Dmn one has  
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 In equations (33-35) 

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~

 and m  are as given in Ref. (16). The inhomogeneous terms d 

and dm, in the algebraic system of equations, are calculated to give 
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and  
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V. Numerical Results 
To test the present method, numerical results are given and compared with the available data. In Table 

1 the convergence of the normalized emerging angular distribution, usually called law of darkening, for 

isotropic scattering at 5.00   are listed and compared with those obtained by Chandrasekhar’s method 

[19].  

In Table 2 the extrapolation length of the Milne problem are listed and compared. Finally the law of 

darkening for 9.00   and different values of  , m and n are tabulated in Table 3. it is shown that the 

analytical expressions which we have obtained can be solved easily and our numerical results are in good 

agreement with other data. 
 

Table 1. Convergence of the normalized exist angular intensity for isotropic scattering at 5.00   

   N 

  

0 1 2 3 4 Ref. 

(19) 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0296634 

0.344311 

0.401196 

0.473207 

0.569615 

0.707564 

0.923807 

1.315000 

2.245330 

7.360700 

0.296484 

0.344292 

0.401219 

0.473244 

0.569656 

0.707608 

0.923855 

1.315060 

2.245424 

7.361006 

0.296480 

0.344299 

0.401225 

0.473247 

0.569659 

0.707611 

0.923859 

1.315066 

2.245436 

7.361046 

0.296480 

0.344299 

0.401225 

0.473248 

0.569659 

0.707611 

0.923859 

1.315066 

2.245436 

7.361046 

0.296480 

0.344299 

0.401225 

0.473248 

0.569659 

0.707611 

0.923859 

1.315067 

2.245436 

7.361046 

0.296480 

0.344299 

0.401225 

0.473248 

0.569659 

0.707611 

0.923859 

1.315067 

2.245436 

7.361046 

 

Table 2. Convergence of the product 00 z  in the case of isotropic scattering at two values of  0  

0  

N 

0.5 0.8 

This work Ref. [10] This work Ref. [10] 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

0.72042464 

0.72042496 

0.72042497 

0.72042497 

0.72042497 

0.72037813 

0.72038065 

0.72039667 

0.72041055 

0.72041835 

0.72042223 

0.72042396 

0.72042468 

0.72042502 

0.72042496 

0.71123671 

0.71124365 

0.71124368 

0.71124368 

0.71124368 

0.71121121 

0.71123343 

0.71124205 

0.71124363 

0.71124371 

0.71124369 

0.71124368 

0.71124368 

0.71124368 

0.71124368 

 

Table 3. The exit angular intensity ),0(   , as calculated using the first order approximation, N=1, for 

9.00   and different indices ),,( nm . 

     
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3

1
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3

1
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3
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3
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3

2
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3

1
,0(  )

3

1
,

3

2
,0(  

)1,0,0(
 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0.131545 

0.167864 

0.207041 

0.251505 

0.304185 

0.369349 

0.453932 

0.570369 

0.743714 

1.033502 

0.174768 

0.215765 

0.260146 

0.310769 

0.371036 

0.445899 

0.543413 

0.678019 

0.878830 

1.215034 

0.194556 

0.235668 

0.278235 

0.324240 

0.375508 

0.434211 

0.503258 

0.586832 

0.691329 

0.827172 

0.276978 

0.323347 

0.371526 

0.423911 

0.482662 

0.550338 

0.630363 

0.727668 

0.849797 

1.009051 

0.256443 

0.299117 

0.342363 

0.388011 

0.437464 

0.492176 

0.553891 

0.624858 

0.708136 

0.808076 

0.290988 

0.339962 

0.393636 

0.455718 

0.530567 

0.624539 

0.747991 

0.919532 

1.176704 

1.608779  
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VI. Conclusion 

A method of solution based on using a suitable set of trial functions is presented for Milne problem in 

the case of extremely anisotropic scattering. The integro-differential equation is transformed into an equivalent 

fictitious one involving only isotropic scattering. The integral form is then solved based on trial functions. The 

results show that the convergence is rabid and lower order approximations are of sufficient accuracy for many 

situations. In fact, for pure scattering and weakly absorbing media, the zeros (or first) order approximation gives 

very good agreement with the available results.  
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