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Abstract: A numerical calculation of the one photon vacuum polarization corrections in 1s, 2s, 2p, 3s, 3p and 

3d energy levels of hydrogen atom is presented using Schrödinger solutions taking the Uehling potential as a 

correction. The relativistic effect on 1s, 2s, 2𝑝 1 2   and 2𝑝 3 2   levels are calculated by using Dirac wave 

functions in the presence of Coulomb potential. The contribution of this correction decreases with the increase 

in principle quantum number 𝑛 and orbital quantum number 𝑙.   
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I. Introduction 
The calculation of corrections in energy levels in atoms needs many additional corrections including 

those due to quantum electro-dynamic (QED) effects. The largest QED effect in hydrogen is the self energy [1-

2]. The second largest effect is the vacuum polarization [3-7] which is observed when a charged nucleus is 

placed in the Dirac Sea. This is because a virtual electron-positron pair is created in the Coulomb field of the 

nucleus. The electrons attract to the nucleus and the positrons escape from the nucleus. As a result the net charge 

observed at finite distances is smaller than the bare charge of the nucleus. The correction in this observed charge 

confined in the nucleus is called the vacuum polarization.   

 

II. Vacuum Polarization 
To find the influence of the creation of a virtual electron-positron pair on the propagation of the photon, 

one investigates how the unperturbed photon propagator 

                                                                               𝑖𝐷𝑓𝜇𝜈  𝑞 = −
4𝜋𝑖

𝑞2 + 𝑖𝜖
𝑔𝜇𝜈                                                                        (1) 

Is modified by the correction of order e2 
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By using the regularization method [8] 

Πμν(q) → Π μν(q) 

 

The gauge invariant polarization operator is obtained 
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Where 
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As it is known that the scattering cross section of two electrons or other charged particles will be influenced. 

The binding energy of an electron in an atom is affected. One can understand this effect if one considers the 

Coulomb potential of an external static source of a charge 𝑍𝑒 

𝐴𝑜 𝑥 = −
𝑍𝑒

 𝑥 
        ,        𝐴  𝑥 = 0 

The modified potential in momentum space 

  

                                                                        𝐴 𝑜 𝑞 = 𝐴𝑜 𝑞 + ΠR −q2 𝐴𝑜 𝑞                                                                (6) 

For low momentum transfer 𝑞 
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                                                                     𝑒∆𝐴𝑜 𝑞 = −𝑍𝛼2
4

15𝑚2
𝛿3 𝑥                                                                          (7) 

 
The energy shift due to vacuum polarization in the first order perturbation theory is given by 

 

                                                                 𝛥𝐸𝑛𝑙
𝑉𝑃 =< 𝜓𝑛𝑙  𝑟  𝑒Δ𝐴𝑜  𝜓𝑛𝑙  𝑟 >                                                                      (8) 

From equation 7 

                                                                      𝛥𝐸𝑛𝑙
𝑉𝑃 =

4𝑚

14 𝜋 𝑛3
𝛼 𝑍𝛼 4𝛿𝑙0                                                                              (9) 

 

In this paper we calculated this correction using 𝜓1𝑠 , 𝜓2𝑠 , 𝜓2𝑝 , 𝜓3𝑠and 𝜓3𝑑  Schrodinger solutions of the 

hydrogen atom and the Uehling potential   
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One may take the external electric field of the nucleus in the form of spherically symmetric potential [9] 
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Where the nucleus radius R is given as 

𝑅 = 1.2𝐴1 3  
 

Where A is the mass number of the nucleus. To calculate the relativistic effect the energy shift has the form 
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2 𝑒Δ𝐴𝑜 𝑟                                                                        (12) 

 

Where 𝜙𝑛𝑙  𝑟  is the Dirac wave function for hydrogen in the presence of Coulomb field [1]. This can be written 

as  
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Where,  
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Where f1and f2 are the radial wave functions as defined in [1]. 

 

III. Results and discussion 
 

Figure 1 shows the spherically symmetric potential of the nucleus described by equation (11). Figure 2 

shows the Uehling potential, equation (14), by introducing the spherically symmetric Coulomb potential which 
is shown in figure 1.    
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In this calculations we take m = ℏ = c = 1 and R = 0.85 Fm for the proton radius. From equation (8), 𝛥𝐸𝑛𝑙

𝑉𝑃   is 

proportional to  𝜓𝑛𝑙  𝑟  
2 and since the Uelhing potential in figure 2 contributes large around the center of the 

nucleus, one expects that the states which have large density distribution near the center of the nucleus give 

large values for 𝛥𝐸𝑛𝑙
𝑉𝑃 .  
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Figure 1. The Spherical symmetric potential of the nucleus as a function of r, equation (11). 
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Figure 2 The Uehling potential as a function of r, equation (14). 

 

From figures 3 and 4 the density distribution of the states decreases with the increase in the principle quantum 

number n at the center of the nucleus, this indicates that 𝛥𝐸𝑛𝑙
𝑉𝑃  decrease with the increase in n as shown in table 

1. From figure 4 the density distribution is very small at the center of the nucleus and we find 

 

 ΔEnl
VP 

2p
> ΔEnl

VP 
3p

> ΔEnl
VP 

3d
 

 

in case of symmetric Coulomb potential as shown in table 2. Table 3 shows the relativistic values of 𝛥𝐸𝑛𝑙
𝑉𝑃  

calculated from equation (12). From this table it is clear that 

 

 𝛥𝐸𝑛𝑙
𝑉𝑃 1𝑠 >  𝛥𝐸𝑛𝑙

𝑉𝑃 2𝑠 >  𝛥𝐸𝑛𝑙
𝑉𝑃 2𝑝1/2

>  𝛥𝐸𝑛𝑙
𝑉𝑃 2𝑝3/2

 

 

From these results it is clear that the vacuum polarization appears largely at the center of the nucleus.  
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Figure 3 Density of 1s, 2s, 3s states in hydrogen atom. 
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Figure 4. Density of 2p, 3p, 3d states in hydrogen atom. 
 

From table 1, 𝛥𝐸𝑛𝑙
𝑉𝑃(𝑒𝑉) decreases with the increase in the principle quantum number n. The difference between 

the two columns decreases with the increase in principle quantum number. Table 2 shows that 𝛥𝐸𝑛𝑙
𝑉𝑃(𝑒𝑉) 

decreases with the increase in principle quantum number. The difference between the two columns decreases 

with the increase in principle quantum number. The correction of the same state calculated with Coulomb 1/r is 
larger than that calculated with symmetric potential. Table 3 shows Dirac corrections are larger than the 

Schrödinger corrections. The difference between 𝛥𝐸𝑛𝑙
𝑉𝑃(𝑒𝑉) in case of Dirac solutions and 𝛥𝐸𝑛𝑙

𝑉𝑃(𝑒𝑉) in case of 

Schrodinger solutions decreases with the increase in the principle quantum number. From table 3, we conclude 

that the relativistic effect in case of hydrogen atom is small, because Z = 1. 
 

Table 1. Comparison between values of ΔEnl
VP  calculated with Schrödinger solutions One uses Uehling potential as a delta 

function and the second with an exact integral. 
 

 𝛥𝐸𝑛𝑙
𝑉𝑃(𝑒𝑉)  

State eΔAo (equation 7) e∆Ao  (equation 10) Difference 

1s −1.75 × 10−6 −1.741 × 10−6 −9 × 10−9 

2s −2.196 × 10−7 −2.176 × 10−7 −2 × 10−9 

3s −6.5066 × 10−8 −6.448 × 10−8 −5.86 × 10−10 

 
Table 2. Comparison between values of 𝛥𝐸𝑛𝑙

𝑉𝑃  calculated with Schrödinger solution using Coulomb (= 1/r) and symmetric 

Coulomb potential equation 11. 

 ΔEnl
VP (eV)  

State Coulomb V = 1/r Symmetric Coulomb equation 11 Difference 

1s −1.741 × 10−6 −1.18 × 10−6 −5.61 × 10−7 

2s −2.176 × 10−7 −1.475 × 10−7 −7.01 × 10−8 

3s −6.448 × 10−8 −4.371 × 10−8 −2.077 × 10−8 

2p −6.196 × 10−13 −5.957 × 10−13 −2.39 × 10−14 

3p −2.179 × 10−13 −2.092 × 10−13 −8.7 × 10−15 

3d −1.906 × 10−19 −1.901 × 10−19 −5 × 10−22 

 

Table 3. Comparison between values of 𝛥𝐸𝑛𝑙
𝑉𝑃  for different states calculated with Uehling Potential using Schrödinger solutions 

and Dirac solutions taking Coulomb 1/r. 
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