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Abstract: An approximate model, which is developed previously, is extended to solve the half – space problems 

in the case of extremely anisotropic scattering kernels. The scattering kernel is assumed to be a combination of 

isotropic plus a forward and backward leak. The transport equation is transformed into an equivalent fictitious 

one involving only multiple isotropic scattering, therefore permitting the application of the previously developed 

method for treating isotropic scattering. It has been shown that the method solves the albedo half – space 

problem in a concise manner and leads to fast converging numerical results as shown in the Tables. For pure 

scattering and weakly absorbing medium the computations can be performed by hand with a pocket calculator 
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I. Introduction 
          The study of radiative transfer and neutron transport in anisotropically scattering media usually 

develops the scattering function in a series of Legendre polynomials of the scattering angle [1-6]. This is useful 

when the number of terms needed is small. However, when the scattering has some strongly preferred 

directions, many terms must be used and the method will be cumbersome. There are some scattering functions 

for which a development in Legendre polynomials is not useful because of much stronger anisotropy may exist. 

In an attempt to overcome this problem , that is to estimate the effect of strong anisotropy on the solution ,a 

special scattering model which combines backward scattering and forward scattering with an admixture of 

isotropic scattering in arbitrary proportions has been used [7-13] . In the case of purely forward scattering with 

an isotropic component there are no particular problems in casting the transport equation into a suitable form for 

solution. On the other hand, when backward scattering is included it is necessary to employ a transformation due 

to Inönü [14] to cast the equation into an equation corresponding to isotropic scattering.  
             In the present paper, we wish to generalize a method previously introduce to demonstrate the 

computational merits of it when applied to the anisotropic scattering model mentioned above. This method is a 

semi–analytical approximate method and suitable for obtaining highly accurate solutions for one dimensional 

transport problems. It was introduced by the authors [15-17] for treating multiple isotropic scattering in a 

homogeneous half – space problems.     

 Now let us consider the one – speed, time independent, homogeneous transport equation, 

    

    𝝁 
𝝏

𝝏𝒁
 𝝍 𝐳 ,𝝁  + 𝝍 𝐳 ,𝝁 =  𝝎𝟎   𝚷(𝝁′ →

𝟏

−𝟏
 𝝁 )𝝍 𝐳 ,𝝁′  d𝝁′                      (1)                                         

 

where 𝝍 is the angular intensity, with distance measured in units of mean free path,    is the direction cosine of 

the angle between the positive z-axis and the particle velocity vector, and 𝝎𝟎 is the single scattering albedo 

(mean number of secondaries per collision). Here 𝚷  𝝁′  → 𝝁   represents the scattering law, which we write as 

[7],        

                                    𝚷 𝝁′  ,𝝁  =  𝓵 𝜹 𝝁′ +  𝝁 +  𝒎 𝜹 𝝁′ −  𝝁  +  
𝟏 

𝟐
 𝒏   ,                            (2)                          

 

where 𝓵 and m are real constants in the range 𝟎 ≤ 𝓵,𝒎 ≤ 𝟏 and give the fraction of particles which emerge 

from a  collision in the backward and forward directions, respectively. In addition  𝒏 = 𝟏 − 𝓵−𝒎  and gives 

the fraction of particles which emerge isotropically from a collision. Using equation (2) we can write equation 

(1) as  

 

𝝁  
𝝏

𝝏𝒛
𝝍 𝒛 ,𝝁  +   𝟏 −𝒎 𝝎𝒐  𝝍 𝒛 ,𝝁  = 𝓵 𝝎𝒐𝝍  𝒛 ,− 𝝁  +  

𝟏

𝟐
  𝒏 𝝎𝒐  𝝍( 𝒛 ,𝝁′

𝟏

−𝟏
)𝒅𝝁′       (3)                

 
In terms of the reduced optical variable  
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                             𝛕 =   𝟏 −𝐦 𝛚𝐨 𝐳                                                              (4) 
equation (3) becomes                                 

    

   𝝁
𝝏

𝝏𝝉
 𝝍 𝝉 ,𝝁 +  𝝍 𝝉 ,𝝁  =  𝜶 𝝍 𝝉,− 𝝁 + 

𝟏

𝟐
 𝜷  𝝍(𝝉 ,𝝁′

𝟏

− 𝟏
) 𝒅𝝁′                             (5)                                                                          

 

where we have defined   

 

                𝛂 =  
𝓵 𝛚𝟎

𝟏−𝐦𝛚𝐨
                                                                                (6)                                                                                                                

and 

                𝜷 = 
𝒏 𝝎𝟎

𝟏−𝒎 𝝎𝟎
                                                                                    (7) 

                                                                                                                                     
Equation (5) shows that forward scattering(𝓵 = 𝟎) does not introduce any analytical complications since the 

form of the resulting equation of transport is no different from the usual equation. However, backward scattering 

does lead to an equation of transport considerably different from the usual one, because the arguments  ±𝝁 

cause it to be a type of integro-differential functional equation. 

 
II. The Albedo Problem 

      The albedo problem is the problem of obtaining the angular radiation or neutron density everywhere in 

a source free half – space , if  a prescribed angular density is incident on the surface z=o. Now, we seek 
solutions of the homogeneous transport equation (5) subject to the boundary conditions  

                                       

                  𝝍((0,μ) = F(μ)   ,             μ > 0  ,                                                               (8a)                                                     
 
 and that 
                               

             𝝍  𝝉 ,𝝁 → 𝟎     as     τ →  ∞                                                                  (8b)                                                                                                
 

As discussed by Inönü, [14], we can transform the problem for anisotropic scattering into an equivalent equation 
with an isotropic scattering. Equation (5) reduces to the form valid for the purely isotropic scattering,  

                  

         μ
𝛛

𝛛x
Ψ(x , μ) +Ψ(x , μ) = 

𝛚

2
 𝚿(x , 𝛍′)d𝛍′
𝟏

−𝟏
                                                  (9)                                   

where  

            
         x = τ 𝟏 −  𝜶𝟐                                                                                        (10)                                                             

                             

                                    ω =  𝜷 (1- α)                                                                                (11)                                             
 

The relation between angular distributions of (5) and (9) is               

           

𝝍 𝝉 ,𝝁 =
𝑩+𝟏

𝟐
𝚿(x , μ) – 

𝑩−𝟏

𝟐
 𝚿(x , - μ) ,                                                                                                    (12)                                                             

 
   with       

   B =   𝟏 −  𝜶  𝟏 +  𝜶   𝟏 𝟐                                                                    (13) 

 
Now , if 𝚿(x , μ)  is a solution of (9) with 𝝎 given by (11) , then 𝝍(τ ,μ) , represented by (12) and (13) , is a 

solution of (5) . It is now straightforward to translate the boundary condition (8a) on 𝝍 into equivalent one 

on 𝚿. We find  

      

    𝚿 𝟎 ,𝝁 =  𝟏 − 𝑹 𝑭 𝝁 +  𝑹 𝚿 𝟎 ,−𝝁                         𝝁 > 0 ,                                    (14)              
 



A high accuracy approximation for half - space problems with anisotropic scattering 

www.iosrjournals.org                                                             39 | Page 

where R is given by  

          
   𝑹 =   𝑩 − 𝟏  𝐁 + 𝟏                                                                              (15)                      

 The problem is thus reduced to that of solving (9) complemented by the reflected boundary condition (14) at 

the surface x = 0 of the half – space. 

. 

III.  Analysis And Method Of Solution 
       We now want to transform (9) into an integral equation suitable for numerical treatment. For this 

purpose we introduce the total intensity 𝚽(x) associated with the angular intensity 𝚿(x ,μ ) appearing in (9). 

Now equations (9) and (14) can be formally solved, 𝝁 > 0 , to give,  

 

Ψ(x , μ) = 
ω

2μ
  e

−
𝟏

𝝁
(x-y)x

0
Φ(y) dy + 

ωR

2μ
  e

− 
𝟏

𝝁
(x+y) 

Φ(y)dy
∞

0
+(1-R)F(μ)e

− 
x

𝝁    ,                             (16)                                                   

   

  Ψ(x , - μ) = 
ω

2μ
  e

− 
𝟏

𝝁 
(y-x)∞

x
Φ(y) dy                                                                    (17) 

 

Integrating (16) and (17) over    to obtain the following inhomogeneous integral equation for𝚽(x),           

 
Φ (x) =  S(x) + 

𝝎

𝟐
  𝑯 x ,y 𝚽 y dy,

∞

𝟎
                                                               (18) 

 

where           
 

    H(x , y) = 𝑬𝟏  x-y  +  𝑹𝑬𝟏 x +𝒚  ,                                                                    (19) 

 

with 𝑬𝒏(x) denoting the exponential integral function of order n and the inhomogeneous term S(x) is defined by   

  

 S (x) =  1 - R   𝑭 𝝁  e− x μ   𝒅𝝁
𝟏

𝟎
                                                                        (20)    

     
To completely determine the angular distributions 𝚿(x, ± μ) as given by (16) and (17) we must solve Eq. (18) 

for. 𝚽(x).  For this purpose, we introduce an appropriate parameters approximate expansion for .Φ(x)  A proper 

choice for the parametric expansion is of the form 
 

    𝚽(x) = Ae− 𝒙 𝝂   + 𝑨𝒏
𝑵
𝒏=𝟎 𝑬𝒏+𝟐 (x)                                                         (21a)                                                                                             

 

where  A and An  are expansion coefficients to be determined and   is the positive root of 

                            

   1 = 
𝝎 𝝂 

𝟐
 𝐥𝐧  

𝟏+ 𝝂

𝟏− 𝝂
                                                                                                                                (21b)                                                                                

Using this expansion, the angular distributions everywhere in the half –space can be calculated from, 0 ,  

              Ψ(x , μ) = (1 – R)  F(μ) e- x μ  + 
ω ν

2
  

e- x ν  -  e- x 𝝁 

ν – μ
 +R

e- x 𝝁 

ν + μ
  𝑨 +                      

 

                                
ω

𝟐 𝝁
  e- x 𝝁    η𝒏+𝟐(x , μ) + R η𝒏+𝟐(∞ , - μ) N

𝒏=𝟎   𝑨𝒏                              (22)                                         

and 

           Ψ(x , - μ) = 
ω ν

2
  

e− x 𝝂 

ν + μ
𝑨 + 

ω

2μ
e x 𝝁    η𝒏+𝟐(∞ , - μ) -  η𝒏+𝟐(x , - μ) N

𝒏=𝟎   𝑨𝒏               (23)                          

 

The functions 𝛈
𝐧

(x, μ ) are defined by  

 

            𝜼𝒏(x , μ) =  ey μ x

𝟎
 E𝒏(y) dy                                                                  (24)    
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and explicitly are given in [15 ] . Specializing (23) to get  
        

   Ψ(0 , - 𝝁) =  
ων

2
 

A

𝝂+ 𝝁
+  

ω  

2μ
  𝜼n + 2

N
n = 0 (∞ ,- μ) A𝒏                                                       (25)               

 

and from (12), the exit angular distribution of the original problem  is given by 

 

𝝍 𝟎 ,− 𝝁 =  −𝑹 𝑭 𝝁 +  (𝟏 + 𝑹)𝚿(𝟎 ,− 𝝁)                                                  (26) 
 

Another quantity, of physical interest, relevant to the present problem is the albedo which is defined by  

               A∗ =  
 𝝁 𝝍 𝟎 ,− 𝝁 𝒅𝝁
𝟏
𝟎

 𝝁 𝑭 𝝁 𝒅𝝁
𝟏
𝟎

                       (27) 

 

Using Eq. (26) , A*  can be expressed as  

 

A∗ = −𝑹 +
𝝎  

𝟐
  𝟏 + 𝑹   𝝁 𝑭 𝝁 𝒅𝝁

𝟏

𝟎
 
− 𝟏

  𝝂 − 𝝂𝟐  𝐥𝐧  𝟏 + 
𝟏

𝝂
  𝑨 +  J𝟐,𝒏+𝟐

𝑵
𝒏=𝟎  𝑨𝒏  ,                   (28)                    

 

 
where the constants Jn, m are integrals evaluated to yield 

 𝐧 +  𝐦 –  𝟏  𝐉𝐧 ,𝐦 =   − 𝟏 𝐧+𝟏  𝐥𝐧𝟐 +   − 𝟏 𝐤 𝐤 𝐧−𝟏
𝐤=𝟏  +   − 𝟏 𝐦+𝟏  𝐥𝐧𝟐 +   − 𝟏 𝐤 𝐤 𝐦−𝟏

𝐤=𝟏               (29)                                                                                                                

 

IV.  The EXPANSION COEFFICIENTS 
          To solve for the expansion coefficients A and An  we substitute (21a) into (18) then, operate on the 

resulting expression first with the operator   e− 
x

𝝂
∞

𝟎
… .𝒅x, and second with   𝑬m+2(x) …….dx where 

∞

𝟎
m = 

0,1,2,…,N.  As a result of these two operations, one obtains (N+2) linear algebraic equations for (N+2) 

unknown expansion coefficients which are written as  

             

               T(ν) A +  T𝒏(ν) An = d (ν)N
n = 0                                                                               (30)                                                     

     
and         

   Tm (ν) A +  Dmn
N
n = 0  A𝒏 = d𝒎                                                                                               (31)  

 

The analytic expressions for the integrals of  T , Tn and  Dmn are evaluated to give  
  

   

𝑻 𝝂 =  

𝛎

𝟐
 𝟏 −  𝛚 𝛎 𝟏 + 𝐑 𝐥𝐧  

𝛎+𝟏

𝛎
 +  𝛚𝐑

𝛎

𝛎+𝟏
    ,                𝟎 <  𝛚 < 1    

𝟏

𝟒
 𝟏 − 𝐑  ,                                                                  𝛚 = 𝟏     

                                     (𝟑𝟐)                                      

 

 

  T𝒏 𝝂 =   

𝝎 𝝂

𝟐
  𝒀𝒏+𝟐

−  𝝂 +  𝑹𝒀𝒏+𝟐
+  𝝂 −   𝟏 + 𝑹 J𝟏,𝒏+𝟐 ,           𝟎 < 𝝎 < 1

𝟏

𝟐
  𝟏 − 𝑹 J𝟐,𝒏+𝟐  ,                                                             𝝎 = 𝟏

                                    (𝟑𝟑)                                    

 
and for Dmn  one has  

  Dmn= J𝒎+𝟐,𝒏+𝟐 −  
𝝎

𝟐
 Hm+2,n+2                                                                                                 (34)            

 
where  

 - 1 m + n Hmn =  R +  -1 n+1 +  -1 m+1 𝝍 𝒎+𝒏+𝟏 +  𝑹 +  −𝟏 𝒎+𝟏  
 −𝟏 𝒊

𝒊

𝒏−𝟏

𝒊=𝟏

𝝍𝒎+𝒏+𝟏−𝒊 + 

  𝐑 +  −𝟏 𝐧+𝟏  
 −𝟏 𝒊

𝒊

𝒎−𝟏
𝒊=𝟏 𝝍𝒎+𝒏+𝟏−𝒊 +  𝑹  𝒎−𝟏

𝒊=𝟏   −𝟏 𝒊+j𝒏−𝟏
𝒋=𝟏

𝟏

𝒊j ( m+ n – i – j )
                     (35)  
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In (33) the numerical values of 


mY   can be calculated from the recurrence relation 

 

Y𝒎
± 𝝂 =  ±𝝂  Y𝒎−𝟏

±  𝝂 + 
𝟏

𝒎−𝟏
 𝐥𝐧  𝟏 ±  

𝟏

𝝂
 − J𝟏,𝒎−𝟏    ,      𝐦 > 1                                            (36)         

Where the values corresponding to m = 1 are given by :  

 

𝐘𝟏
+

=  𝛎  
𝟏

𝟐
 𝐥𝐧

𝟐
  𝟏 +  

𝟏

𝛎
 +  

𝛑
𝟐

𝟏𝟐
+   

 −𝟏 𝐧

𝐧𝟐
  

𝛎−𝟏

𝛎+𝟏
 
𝐧

∞
𝐧=𝟏    ,                                                            (37) 

 

and 

 

Y𝟏
− 𝛎 =  Y𝟏

+ 𝛎 −  𝛎 𝐥𝐧 𝟏 + 
𝟏

𝛎
 𝐥𝐧  𝟏 −  

𝟏

𝛎
   .                                                                             (38)                         

 

In equation (35) n1 -n 1,n
~ and J     are calculated from the expression  

 

ψ n+1= 
2

n
ln22 + 

2 ln 2

n  n  - 1 
+ 

2  -1 
n

n n-1 
  ln2 +  

 -1 
i

i

n-2

i=1
 - 

n-1

n
ψ n       ,   n >1                                           (39)                                

starting from 
                 

   𝝍 2=2 ln2 2+ 
π2

6
                                                                                            (40) 

 

V. Numerical Results  
           In order to illustrate the application of the foregoing analysis , we considered two cases for 𝑭(𝝁) .In 

the first case 𝑭 𝝁 = 𝟏 whereas in the second 𝑭 𝝁 =  𝜹(𝝁 − 𝝁𝟎). In these two cases the expressions of 𝒅(𝝂) 

and dm , in the algebraic system of equations , respectively, are ,  

                        𝒅 𝝂 =   
𝝂  𝟏 − 𝑹  𝟏 −  𝝂 𝐥𝐧(𝟏 + 𝟏 𝝂       ,   𝝎 < 𝟏,

𝟏

𝟐
  𝟏 − 𝑹 ,                                                    𝝎 = 𝟏       

                                   (41) 

   

                        𝒅𝒎 =  𝟏 − 𝑹 J𝟐,𝒎+𝟐  ,                                                                                              (42)    

                     and 

                        𝒅 𝝂 = (𝟏 − 𝑹)
𝝂 𝝁𝟎

𝝂+ 𝝁𝟎
                                                                                               (43) 

                        

                       𝒅𝒎  𝝂 =  𝟏 − 𝑹 𝜼𝒎+𝟐(𝟎 ,− 𝝁𝟎)                                                                             (44) 
 

The physical aspects of the above cases are well documented, so we focus our attention on showing the 

convergence of the proposed method of solution. Some quantities of physical interest are calculated and 

compared with other available results. The calculated quantities are the medium albedo and the exist angular 

intensity at x = 0 for various combinations of scattering parameters 𝓵 ,𝒎 ,𝒏  and single scattering albedo 𝝎𝟎. 
We keep all parameters except one fixed , and let the free parameter vary among the set of values under 

consideration. The numerical results are presented in Tables 1–6. From these calculations, it is seen that the 

numerical results obtained by the present method are converging even in the lowest order approximations. As 

physically expected, we observe a decrease of A* if the strength of the forward scattering increases. Similarly the 

value of A* increases if we enlarge the backward scattering part. 

 

 

 

 

 
 

 

 

 



A high accuracy approximation for half - space problems with anisotropic scattering 

www.iosrjournals.org                                                             42 | Page 

 

 

Table 1.The albedo A*  as calculated using   the  zero  order   approximation  when F(µ) = 1 

             (a) present results                                           (b) results of [7] 

 

 

 

Table 2. Shows the convergence of A* for various values of  0  when F(µ) = 1 

 
)n,m,(  

 

                                           0  = 0.5 

N 0 1 2 4 6 [7] 

)
3

1
,

3

2
,0(

  0.059846 0.059848 0.059848 0.059848 0.059848 0.05985 

)
3

2
,

3

1
,0(

 
 0.107333 0.107335 0.107335 0.107335 0.107335 0.10733 

)1,0,0(
 

 0.146544 0.146544 0.146544 0.146544 0.146544 0.14654 

)
3

1
,

3

1
,

3

1
(

 
 0.159882 0.159884 0.159884 0.159884 0.159884 0.15988 

)
3

2
,0,

3

1
(

 
 0.189504 0.189506 0.189506 0.189506 0.189506 0.18951 

)
3

1
,0,

3

2
(

 
 0.229037 0.229039 0.229039 0.229039 0.229039 0.22904 

  0  = 0.7 

          

)
3

1
,

3

2
,0(

 
 0.121183 0.121184 0.121184 0.121184 0.121184 0.12118 

0  = 0.9     0  = 0.7  0  = 0.5 )n,m,(    

b a  b  a  b  a 

0.29528 0.29528  0.12118 0.12118  0.05985 0.05985 )
3

1
,

3

2
,0(

 

0.40983 0.40982  0.19945 0.19946  0.10733 0.10733 )
3

2
,

3

1
,0(

 

0.47802 0.47802  0.25656 0.25656  0.14654 0.14654 )1,0,0(  

0.48759 0.48759  0.27183 0.27183  0.15988 0.15988 )
3

1
,

3

1
,

3

1
(

 

0.52966 0.52966  0.31029 0.31029  0.18951 0.18950 )
3

2
,0,

3

1
(

 

0.57177 0.57177  0.35795 0.35794  0.22904 0.22904 )
3

1
,0,

3

2
(

 

0  = 0.999  0 = 0.99  0  = 0.95  

0.88164 0.88164  0.67380 0.67379  0.41896 0.41896 )
3

1
,

3

2
,0(

 

0.91466 0.91466  0.75508 0.75507  0.53391 0.53391 )
3

2
,

3

1
,0(

 

0.92971 0.92971  0.79456 0.79456  0.59667 0.59666 )1,0,0(  

0.92978 0.92978  0.79558 0.79558  0.60212 0.60212 )
3

1
,

3

1
,

3

1
(

 

0.93884 0.93884  0.81959 0.81959  0.64047 0.64047 )
3

2
,0,

3

1
(

 

0.94514 0.94514  0.83751 0.83751  0.67440 0.67440 )
3

1
,0,

3

2
(
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)
3

2
,

3

1
,0(

 
 0.199459 0.199459 0.199459 0.199459 0.199459 0.19945 

)1,0,0(
 

 0.256555 0.256557 0.256557 0.256557 0.256557 0.25656 

)
3

1
,

3

1
,

3

1
(

 
 0.271827 0.271828 0.271828 0.271828 0.271828 0.27183 

)
3

2
,0,

3

1
(

 
 0.310287 0.310287 0.310287 0.310287 0.310287 0.31029 

)
3

1
,0,

3

2
(

 
 0.357944 0.357945 0.357946 0.357946 0.357946 0.35795 

   0  = 0.9      

)
3

1
,

3

2
,0(

 
 0.295277 0.295279 0.295279 0.295279 0.295279 0.29528 

)
3

1
,

3

2
,0(

 
 0.409820 0.409826 0.409826 0.409826 0.409820 0.40983 

)1,0,0(
 

 0.478019 0.478024 0.478024 0.478024 0.478024 0.47802 

)
3

1
,

3

1
,

3

1
(

 
 0.487592 0.487593 0.487593 0.487593 0.487593 0.48759 

)
3

2
,0,

3

1
(

 
 0.529658 0.529662 0.529662 0.529662 0.529662 0.52966 

)
3

1
,0,

3

2
(

 
 0.571773 0.571774 0.571774 0.571774 0.571774 0.57177 

 

Table 3. The albedo A* as calculated using the zero order approximation when F(µ) = ).1(    

                    (a) present results                                               (b) results of [2] 

 

 

)n,m,(  
            5.00                              7.00                             9.00   

 a b  a b  a b 

)
3

1
,

3

2
,0(

  0.04578 0.04578  0.09454 0.09453  0.024296 0.024299 

)
3

2
,

3

1
,0(

 
 0.08337 0.08336  0.15943 0.15943  0.34878 0.34883 

)1,0,0(

 
 0.11524 0.11523  0.20866 0.20868  0.41489 0.41495 

)
3

1
,

3

1
,

3

1
(

 
 0.14605   0.24636   0.44126  

)
3

2
,0,

3

1
(

 
 0.16594   0.27181   0.47381  

)
3

1
,0,

3

2
(

 
 0.21554   0.33374   0.52975  

95.00                              99.00                             999.00   

)
3

1
,

3

2
,0(

 
 0.35750 0.35756  0.61773 0.61778  0.85476  

)
3

2
,

3

1
,0(

 
 0.47081 0.49087  0.70772 0.70777  0.89451  

)1,0,0(

 
 0.53548 0.53554  0.75269 0.75384  0.91283  

)
3

1
,

3

1
,

3

1
(

 
 0.55010   0.75163   0.90977  

)
3

2
,0,

3

1
(

 
 0.58421   0.77905   0.92204  

)
3

1
,0,

3

2
(

 
 0.62818   0.79959   0.92818  
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Table 4. Shows the convergence of A* for various value of 0   when )1()(F   
 

 

 

)n,m,(                

                      N 

5.00   

    0 1 2 4 6 [2] 

      )
3

1
,

3

2
,0(  

0.045779 0.045776 0.045776 0.045776 0.045776 0.045776 

 )
3

2
,

3

1
,0(  

0.083367 0.083358 0.083357 0.083357 0.083357 0.083358 

)1,0,0(  0.115236 0.115227 0.115226 0.115226 0.115226 0.115226 

)
3

1
,

3

1
,

3

1
(  

0.146052 0.146048 0.146048 0.146048 0.146048  

)
3

2
,0,

3

1
(  

0.165942 0.165933 0.165932 0.165932 0.165932  

)
3

1
,0,

3

2
(  

0.215539 0.215535 0.215535 0.215535 0.215535  

7.00   

     )
3

1
,

3

2
,0(  

0.094538 0.094528 0.094527 0.094527 0.094527 0.094527 

        )
3

2
,

3

1
,0(  

0.159432 0.159434 0.159433 0.159433 0.159433 0.159433 

        )1,0,0(    0.208661 0.208680 0.208680 0.208680 0.208680 0.208681 

       )
3

1
,

3

1
,

3

1
(   

0.246360 0.246350 0.246349 0.246349 0.246349  

    )
3

1
,

3

2
,0(  

0.271811 0.271811 0.271810 0.271810 0.271810  

    )
3

1
,0,

3

2
(  

0.333736 0.333725 0.333725 0.333725 0.333725  

9.00   

       )
3

1
,

3

2
,0(  

0.242961 0.242992 0.242992 0.242992 0.242992 0.242993 

 )
3

2
,

3

1
,0(  

0.348777 0.348833 0.348832 0.348832 0.348832 0.348832 

)1,0,0(  0.414887 0.414948 0.414947 0.414947 0.414947 0.414948 

)
3

1
,

3

1
,

3

1
(  

0.441257 0.441279 0.441279 0.441279 0.441279  

       )
3

2
,0,

3

1
(  

0.473809 0.473853 0.473853 0.473853 0.473853  

       )
3

1
,0,

3

2
(  

0.529747 0.529764 0.529764 0.529764 0.529764  

Table 5.  Shows the convergence of  ),0(   at 9.00   when 1)(F   

 

)n,m,(  

N 

     µ 0 1 2 4 6 

  0.2 0.397786 0.397916 0.397913 0.397912 0.397912 

)
3

1
,

3

2
,0(

  0.4 0.341136 0.341076 0.341075 0.341076 0.341076 

 0.6 0.300077 0.300028 0.300028 0.300029 0.300029 

  0.8 0.268369 0.268360 0.268361 0.268361 0.268361 
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  1.0 0.242961 0.242992 0.242992 0.242992 0.242992 

 

  0.2 0.522974 0.523205 0.523204 0.523203 0.523203 

)
3

2
,

3

1
,0(  

 

 0.4 0.462896 0.462801 0.462801 0.462801 0.462801 

 0.6 0.416760 0.416677 0.416678 0.416678 0.416678 

  0.8 0.379582 0.379569 0.379569 0.379569 0.379569 

  1.0 0.348777 0.348832 0.348832 0.348832 0.348832 

 

   0.2 0.578206 0.578297 0.578296 0.578295 0.578295 

   )
3

1
,

3

1
,

3

1
(  

 

 

 0.4 0.528208 0.528165 0.528165 0.528165 0.528165 

 

 

0.6 0.491882 0.491847 0.491847 0.491847 0.491847 

 0.8 0.463789 0.463783 0.463783 0.463783 0.463783 

   1.0 0.441257 0.441279 0.441279 0.441279 0.441279 

   0.2 0.633006 0.633192 0.633192 0.633191 0.633191 

)
3

2
,0,

3

1
(  

  0.4 0.578216 0.578137 0.578137 0.578137 0.578137 

 0.6 0.536047 0.535979 0.535979 0.535979 0.555825  

    0.8 0.502023 0.502012 0.502012 0.502012 0.502012 

   1.0 0.473809 0.473853 0.473853 0.473854 0.473854 

   0.2 0.653884 0.653956 0.653956 0.653955 0.653955 

   )
3

1
,0,

3

2
(  

0.4 0.608612 0.608577 0.608577 0.608577 0.608577 

    0.6 0.575680 0.575652 0.575652 0.575652 0.575652 

   0.8 0.550196 0.550191 0.550191 0.550191 0.550191 

   1.0 0.529747 0.529764 0.529764 0.529764 0.529764 

 
Table 6. Shows the convergence of   9.0at),0( 0    when    ).1()(F   

 

 

)n,m,(  

N 

     µ 0 1 2 4 6 

  0.2 0.566118 0.569132 0.569796 0.569731 0.569732 

)
3

1
,

3

2
,0(  

 0.4 0.535748 0.534280 0.534425 0.534440 0.534440 

 0.6 0.498014 0.496818 0.496762 0.496766 0.496766 

  0.8 0.461789 0.461593 0.461551 0.461547 0.461547 

  1.0 0.428975 0.429737 0.429792 0.429796 0.429796 

 

  0.2 0.771046 0.775664 0.776272 0.776186 0.776188 

)
3

2
,

3

1
,0(  

 

 0.4 0.751259 0.749362 0.749566 0.749586 0.749585 

 0.6 0.713912 0.712266 0.712196 0.712201 0.712201 
  0.8 0.673679 0.673404 0.673346 0.673341 0.673341 

  1.0 0.634845 0.635949 0.636024 0.636029 0.636029 

 

    0.2 0.497888 0.500854 0.501316 0.501254 0.501254 

)
3

1
,

3

1
,

3

1
(        0.4 0.474896 0.473489 0.473627 0.473642 0.473642 

     0.6 0.443241 0.442101 0.442048 0.442051 0.442051 

      0.8 0.412040 0.411848 0.411808 0.411804 0.411804 

     1.0 0.608577 0.609291 0.609342 0.609346 0.609346 
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    0.2 0.700792 0.705223 0.705819 0.705735 0.705736 

  )
3

2
,0,

3

1
(    0.4 0.687634 0.685766 0.685965 0.685984 0.685984 

 0.6 0.655842 0.654229 0.654160 0.654165 0.654165 

    0.8 0.620298 0.620021 0.619965 0.619960 0.619960 

   1.0 0.739000 0.740066 0.740139 0.740143 0.740143 

   0.2 0.450062 0.452813 0.453246 0.453188 0.453188 

   )
3

1
,0,

3

2
(   0.4 0.430906 0.429582 0.429712 0.429726 0.429726 

     0.6 0.402962 0.401892 0.401842 0.401845 0.401845 

    0.8 0.357046 0.374864 0.374826 0.374823 0.374823 

   1.0 0.682625 0.683290 0.683338 0.683341 0.683341 

 
VI.  Conclusion 

        An efficient analytical approximation is proposed to solve radiative heat transfer or neutron transport 

problems in plane parallel semi – infinite media in the presence of multiple synthetic scattering kernel.The 

unknown function in the integral form of the transport equation is approximated by a set of trial functions with 

unknown coefficients. The unknown coefficients in the trial functions are found to be solutions for a system of 
linear, inhomogeneous algebraic equations. These coefficients are used to get numerical results of the exit 

distribution 𝝍(𝟎 ,− 𝝁) and the albedo A* from equations (26) and (28). As is seen from the Tables, the present 

numerical results are found to be in excellent agreement with the available results reported in the literatures 
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