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Abstract:  We study the percolation behavior of in two dimensional Ising model with spontaneous 

magnetization for pure and diluted lattices containing spins. Expression for partition function is calculated for 

pure lattice and is applied to find out the same for diluted lattices. Specific example is taken for nearest 

neighbor interaction in two dimensional square lattices and validity range of the calculation is checked. 

Behavior of partition function is studied at different temperatures and at different number of spins. 
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I. Introduction 
           Percolation phenomenon explains the connectedness and phase transition behavior of a physical system 

[1]. In a site percolation problem, sites of an empty system are occupied randomly and uniformly with 

occupation probability p. When this occupation probability becomes greater than a threshold value, known as 

percolation threshold, probability of percolation increase rapidly until it reaches p=1. Site percolation threshold  

𝑝𝑡  is measured to be 𝑝𝑡 = 0.5926 [1 & 2]. Below percolation threshold isolated microscopic clusters exist. As 

occupation probability is increased these microscopic clusters merge together and grow in size. Above 

percolation threshold macroscopic clusters are formed that span the system. Thus a phase transition in terms of 

connectedness occurs. A similar type of phase transition in magnetization state of a spin system is seen in the 

Ising model, where temperature plays the role of occupation probability. The situation becomes broader when 
site dilution is also incorporated. Here site occupation probability and temperature both play their role in phase 

transition property of the system. 

            In this present work I have studied the phase transition behavior of two dimensional (2D) spin systems 

with and without dilution. I have tried to find an explanation for finite size effect in pure case by finding out 

individual probability for different number of spin flips using partition function obtained using Maxwell 

Boltzmann statistics. I have extended this calculation for partition function to diluted case also. 

 

II. Phase Transition In Undiluted 2D Lattice 
In absence of external field the Hamiltonian of a spin- system can be written as:    

𝐻 =  𝐽𝑖𝑗  𝜎𝑖𝜎𝑗

𝑁

𝑖 ,𝑗
𝑖≠𝑗

 

Here 𝐽𝑖𝑗  represents the interaction strength acting between spins 𝜎𝑖 and 𝜎𝑗 , where N is total no. of spins [3]. 

           We consider a 2D square lattice of spins at absolute zero. Now the temperature (T) is gradually increased 

from absolute zero and at some value of T, the magnetization changes its state from high value to a low value 

i.e. phase transition occurs (See figure. 1). Ideally, below critical temperature 𝑇𝑐  magnetization (M) is ±1, and 

above 𝑇𝑐  it is 0. We assume that out of two kind of spins (1 or -1), the one which is majority, is occupied site. 

Hence at T< 𝑇𝑐  , p=1; and at T> 𝑇𝑐  , p=0.5. So at 𝑇𝑐  , p lies between 1 and 0.5. If we assume that 𝑇𝑐  and 𝑝𝑐  

occurs simultaneously then at 𝑝 = 𝑝𝑐 = 0.5926 , the value of T gives critical temperature. Near critical 
temperature magnetization is poorly defined, so as the occupation probability. So I have performed a number of 

Monte Carlo simulations [4] for 100x100 & 128x128 lattices and plotted average occupation probability vs. 

Temperature (Figure. 1 & 2). This graphical results show 𝑇𝑐 = 2.3712 & 2.3478 for 100x100 & 128x128 

lattices respectively, which are close to theoretical value 2.2603, given by Onsager. This small departure 

(δT=0.1097, 0.0895) in agreement between theoretical and graphical value is arising due to the following facts: 

 Percolation threshold for finite lattices cannot be exactly found at the theoretical value. This is known as 

finite size effect. 

 Critical temperature in Ising model also shows finite size effect. 

 Magnetic percolation occurs earlier to site percolation in a finite sized lattice. 
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           The third point in the above facts may be a good reason for this discrepancy. We cannot eliminate 

problems due to finite size effect completely, because in computer simulation we work with finite lattices. So 

better idea is to calibrate lattice size vs. critical temperature. I have done simulations with various lattice sizes 

(See figure. 3). Here we see that critical temperature curve corresponding to site percolation (Figure3: red curve) 

falls at a greater rate than the magnetic percolation curve (Figure3: green curve). Here I have assumed magnetic 

percolation to occur at M=0.6 i.e. p=.8. Although it could have been taken at any value between p=0.5926 to 

p=1, provided corresponding magnetization lies in the critical temperature line. Green curve in figure.3 gives a 
better approximation of critical temperature from theoretical view point, at T= 2.2618 for 128x128 lattice. Since 

M-T curve for finite lattices is a distorted step like function, Binder gave an intellectual way to find critical 

temperature by calculating standard deviation in fourth power of magnetization vs. temperature at different 

lattice sizes and their intersection is the critical temperature [5]. 

 

2.1 Partition function in 2D Ising model:  

From the theory of Maxwell- Boltzmann statistics (MBS), we know that general form of partition 

function (PF) can be written as,  

                                                 𝑧 =  𝑔 𝑖 exp[−𝐸(𝑖)/𝑘𝑇]𝑎𝑙𝑙  𝑠𝑡𝑎𝑡𝑒𝑠  𝑖    ------   (2.1.1) 

Calculation of PF in Ising model (IM) is very tedious job because in this case one has to deal with 2N possible 

states. Also, at a very large number of spins, degeneracy of every energy state increases very rapidly with total 
number of spins. Let us take an example of 2x2 lattices. Considering periodic boundary condition and nearest 

neighbor interaction (NNI) of ferromagnetic (FM) type, individual states with multiplicity are shown in Table 1. 

Hence the explicit expression of PF becomes, 

                                          Z(2x2)= 2 exp(16/kT) + 2 exp(-16/kT) + 12 exp(0) 

Therefore,  

                                          Z(2x2)= 2 exp(16/kT) + 2 exp(-16/kT) + 12    ----(2.1.2) 

Here we see 3 terms in the expression of PF containing all 16 (2+2+12= 24) states.  Equation 2.1.2 can be 

simplified as,  

                                         Z(2x2)= 4 cosh(16/kT) + 12    

                Explicit expressions for PF even for 3x3 lattices becomes time consuming because it involves 

consideration of 29 states so I have not included these results [6].  
                In the following subsection I have calculated PF for square lattice using some assumption and checked 

its applicability range. 

 

2.1.1 PF in IM:  

I assume that the energy of a system containing N spins where i spins are flipped is E(i) and it is non  

degenerate i.e. energy of the configuration is dependent on the number of up spins and downspins only. 

              Hence PF can be computed in the following way by allocating spins on lattice. Consider at any stage 

the no. of up spins is ‘i’ and rest is down spins. Now the no. of ways in which ‘i’ spins can be allocated in a 

lattice containing N spins, can be written as follows: 

                                                                            𝐺 𝑖 =
𝑁!

𝑖! 𝑁−𝑖 !
     ---(2.1.1.1) 

             Hence the PF is, 

 

                                                                              𝑍 =   𝐺(𝑖)𝑁
𝑖=0 𝑒− 

𝐸(𝑖)

𝑘𝑇       --------- (2.1.1.2) 

 

           Where k= Boltzmann constant, E(i)= Energy of the system of N spins with ‘i’ spins flipped i.e. i spins of 

one kind and rest of other kind. 

 

2.1.2 PF for Square lattice with NNI: 

            Partition function for square lattice can be found using equation -2.2.1, by replacing E(i) with energy of 

the system with i spins flipped considering ferromagnetic n-n interaction. Incorporating periodic boundary 

condition the ground state energy at T=0, is E(0)= -4NJ. 

Energy of the system with i spins flipped is E(i)=-4NJ+8Ji , here I have assumed that the system evolves in such 

a manner that isolated spins are flipped and no cluster forms. 

Substituting this in equation -2.1.1.2 we get, 

                                                                 𝑍 =   𝐺(𝑖)𝑁
𝑖=0 𝑒− 

(−4𝑁𝐽 +8𝐽𝑖 )

𝑘𝑇                 ---(2.2.2) 

= 𝑒
4𝑁𝐽
𝑘𝑇   𝐺(𝑖)

𝑁

𝑖=0

𝑒− 
8𝐽𝑖
𝑘𝑇  

Now the probability of the situation where ‘l’ spins are found in flipped condition is,  
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                                                                       𝑝𝑙 =
1

𝑍
𝑒

4𝑁𝐽

𝑘𝑇  𝐺(𝑙)𝑒− 
8𝐽𝑙

𝑘𝑇                  ---(2.2.3) 

We see that 𝑝𝑙  is a function of N & T both. Condition for extremum for 𝑝𝑙  can be written as follows, 

                                                                     
𝑑𝑝𝑙

𝑑𝑥
= 0                                ---(2.2.4) 

Where x is either N or T.  

Writing 𝑝𝑙 in explicit form and simplifying we get, 

                                                                 𝑝𝑙 =
1

 
 𝑁−𝑙 !𝑙!
 𝑁−𝑖 !𝑖!

𝑁
𝑖=0 𝑒

 
8𝐽 (𝑙−𝑖)

𝑘𝑇

                   ---(2.2.5) 

Total probability                                     𝑝 =  𝑝𝑙
𝑁
𝑙=0 = 1 

Putting equation -2.2.5 on 2.2.4 and simplifying for x=T, we obtain, 

                                                       
(𝑙−𝑖)

 𝑁−𝑖 !𝑖!

𝑁
𝑖=0 𝑒  

8𝐽 (𝑙−𝑖)

𝑘𝑇 = 0               ---(2.2.6) 

 Equation -2.2.6 is very tedious to solve for T. Instead of solving this equation I have plotted 𝑝𝑙  for 

several l and N vs. T (See figure. 4). This way we can discuss certain properties of 𝑝𝑙  as a function of T  & l & 

N. 𝑝𝑙  contains terms that are factorials of N , large exponential terms which limit our computer simulation up to 

N=16 only. For numerical simplification I put (8J/kT) as (1/T). From figures 4 & 5 we see that greater the total 

no. of spins 𝑝𝑙  decreases for any l, more rapidly with increasing temperature. This explains finite size effect. As 
N increases the system get more and more scheme of spin flips keeping total probability equal to 1 and therefore 

individual probability of every possible no. of spin flips decreases, so during phase transition magnetization 

changes its state more discretely and phase transition becomes steeper. Figure 6, shows 𝑝𝑙  vs l for N=4, and 

l=0(black curve), l=1(red curve), l=2(green),l=3(blue), l=4(purple). 

           The probability of all spin in same state is unity at T=0 and falls very quickly as T departs from absolute 

zero. Single spin flipping probability has a prominent maxima at T=0.9. Double, triple and four spin flip has no 

definite maxima. At T close to zero 𝑝𝑙 incerases as l decreases; on the other hand at large T, 𝑝𝑙  increases as l 

increases. Any line parallel to 𝑝𝑙  axis, intersect 𝑝𝑙  vs l curves. Summation of the value of 𝑝𝑙  at those 

intersections gives total probability and is equal to 1. 

Using equation 2.2.6, I shall find out the maxima of 𝑝𝑙  for N=4 at l=1. After few steps of simplification we get, 

𝑒4/𝑇 − 6𝑒2/𝑇 − 8𝑒1/𝑇 − 3 = 0 

Or,                                                               𝑒
1

𝑇 + 1 
3

 𝑒
1

𝑇 − 3 = 0 

Hence, 𝑒1/𝑇 = −1,3; Relevant choice is 𝑒1/𝑇 = 3; from this we get the temperature at which single flip 

probability is extremum, as T=1/ln3 =0.91. This is a maximum as we can see the red curve in figure 6.  

 

2.1.2.1 Calculation of thermodynamic quantities using PF in 2D IM with NNI of FM type: 

Using equation 2.1.1.1 we can write the expression for thermodynamic probability as follows 

                                                        𝑊 =   
𝑁!

𝑖! 𝑁−𝑖 !

𝑁
𝑖=0      ----(2.1.2.1.1) 

Hence, expression for entropy(S) becomes, 

                                                        S= k lnW 

Therefore,                           𝑆 = k ln 𝑁! + 𝑘 ln( 
1

𝑖! 𝑁−𝑖 !

𝑁
𝑖=0 )      ----(2.1.2.1.2) 

Now from equation 2.2.2 we get, 

                                                        k ln 𝑍 = k ln 𝑁! + k ln( 
𝑒
− 

(−4𝑁𝐽 +8𝐽𝑖 )
𝑘𝑇

𝑖 ! 𝑁−𝑖 !

𝑁
𝑖=0 )    

So,                                                  𝑘 ln 𝑍 =  𝑘 ln 𝑁! + 
4𝑁𝐽

𝑇
+ 𝑘  ln( 

𝑒
− 

8𝐽𝑖
𝑘𝑇

𝑖! 𝑁−𝑖 !

𝑁
𝑖=0 )       ---(2.1.2.1.3) 

Using equations 2.1.2.1.2 & 2.1.2.1.3 we get, 

                                                       𝑆 = 𝑘 ln 𝑍 −  
4𝑁𝐽

𝑇
+𝑘 ln( 

1

𝑖! 𝑁−𝑖 !

𝑁
𝑖=0 ) − 𝑘  ln( 

𝑒
− 

8𝐽𝑖
𝑘𝑇

𝑖 ! 𝑁−𝑖 !

𝑁
𝑖=0 )     ---(2.1.2.1.4) 

This is the general expression for entropy. 

Equation 2.1.2.1.4 is difficult to handle. Let us see the form of S in low T and high T limit. 

In low T limit, fourth term in R.H.S. of equation 2.1.2.1.4 can be expanded as, 

                                                       𝑘  ln( 
𝑒
− 

8𝐽𝑖
𝑘𝑇

𝑖! 𝑁−𝑖 !

𝑁
𝑖=0 ) =

𝑘

𝑁!
+  𝑘  ln( 

𝑒
− 

8𝐽𝑖
𝑘𝑇

𝑖! 𝑁−𝑖 !

𝑁
𝑖=1 )  

Now 2nd term in R.H.S. of above equation decays as 𝑒− 
8𝐽𝑖

𝑘𝑇  with i , so at T→ 0, we can neglect them. 
After some simplification, in low T limit entropy can be written as, 

                                                        𝑆 = 𝑘 ln𝑍 −  
4𝑁𝐽

𝑇
+𝑘 ln( 

1

𝑖! 𝑁−𝑖 !

𝑁
𝑖=1 )    ---(2.1.2.1.5) 
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Now, in high T limit 𝑒− 
8𝐽𝑖

𝑘𝑇  →  𝑒− 0 = 1; so we get from equation 2.1.2.1.4, 

                                                       𝑆 = 𝑘 ln 𝑍 −  
4𝑁𝐽

𝑇
                ---(2.1.2.1.6) 

Internal energy (U) can be found out in the following way, 

                                                     𝑈 =
1

𝑍
  𝐺 𝑖 𝑁

𝑖=0 𝐸 𝑖  𝑒− 
𝐸 𝑖 

𝑘𝑇   

                                                         =
1

𝑍
  

𝑁!

𝑖! 𝑁−𝑖 !

𝑁
𝑖=0 (−4𝑁𝐽 + 8𝐽𝑖) 𝑒− 

(−4𝑁𝐽 +8𝐽𝑖 )

𝑘𝑇    

    Hence,                                     𝑈 =  −4𝑁𝐽 + 8𝐽
 

𝑁 !

(𝑖−1)! 𝑁−𝑖 !
𝑁
𝑖=1  𝑒

− 
8𝐽𝑖
𝑘𝑇  

1+ 
𝑁 !

𝑖! 𝑁−𝑖 !
𝑁
𝑖=1  𝑒

− 
8𝐽𝑖
𝑘𝑇

                  ---(2.1.2.1.7) 

On a similar way expression for absolute magnetic moment (M) can be found as, 

                                                   𝑀 = 𝑁 − 2 
 

𝑁 !

(𝑖−1)! 𝑁−𝑖 !
𝑁
𝑖=1  𝑒

− 
8𝐽𝑖
𝑘𝑇  

1+ 
𝑁 !

𝑖! 𝑁−𝑖 !
𝑁
𝑖=1  𝑒

− 
8𝐽𝑖
𝑘𝑇

                         ---(2.1.2.1.8) 

Using equations 2.1.2.1.4 & 2.1.2.1.7 expression for Helmholtz free energy (F) can be found as, 

                                                    F= U –TS  

From equations 2.1.2.1.7 & 2.1.2.1.8 we get, 

                                                   U/M = -4J        ---(2.1.2.1.9) 

 

2.1.2.1.1 Applicability range of PF calculated in 2.1.2.:  

             Present calculation of PF includes specific configurations only. So I need to check for the accuracy of 

this calculation and its applicability range. From the size of equations in previous subsection we see that the best 

way to check validity of our theory is to check the validity of equation 2.1.2.1.9 as a first attempt. In figure 10, I 

have plotted U/M vs T for square lattices considering J=k=1, at N=25x25, 100x100 and 200x200. 

            Here we see that equation 2.1.2.1.9 is well obeyed in the range 0≤ T ≤ 2.26, by all three curves. Above 
T=T0 =2.26 all three curves depart from obeying equation 2.1.2.1.9. We see that above T0, U/M falls at greater 

rate as N is increased. This is because finite size effect is reduced as N increases. Comparing the theoretical 

value of critical temperature we may conclude that T0 = Tc =2.2603. So a better way to find critical temperature 

is found. We see our theory works in the FM phase and works until critical temperature is reached. So critical 

temperature is the highest temperature at which our theory remains valid.  

           Now I explain why our theory fails above Tc. as Tc is reached no isolated minority spins exist. Minority 

spins starts forming clusters and majority clusters break apart. Due to this energy of the configuration does not 

follow  the equation, E(i)= -4NJ+8Ji. Actual energy < E(i). Because at this stage only the boundary spins of 

cluster play the role in increasing energy. So U/M becomes less than -4J.  During phase transition as we move 

up from Tc, initially average cluster size of minority spins increase and the same for majority spins decrease 

until identification of majority and minority is possible. Thereafter cluster size of both spins reduce with 

increase in temperature and in T →∞ limit a configuration with isolated spins in anti FM alignment and  total 
magnetic moment equal to zero is obtained. We can see the recovering nature of U/M in green curve for 

N=200x200 as T departs far from Tc, in figure 10. So the range of validity of our theory lies in the range of 

temperature T< Tc & T→ ∞.  

 

III. Percolation And Phase Transition In Diluted Lattice 
            When a lattice is occupied with uniform random probability, greater than percolation threshold then at 

least one spanning cluster exists and rest of the clusters are small in size, isolated. This spanning cluster 

produces significant contribution to magnetization and other properties of the whole lattice. Magnetization can 

be low or high depending on the number of spanning cluster and their additive contribution. At high value of 
occupancy when only one percolation cluster exists contribution to magnetization is solely given by this cluster. 

Let us represent this mathematically, 

Assume, 

            Magnetization of lattice=𝑀𝐿 

            Magnetization of  j’th spanning cluster = 𝑀𝑠(𝑗) 

            Magnetization of k’th isolated nonspanning cluster = 𝑀𝑖(𝑘). 

Hence, average magnetization of lattice, 

< 𝑀𝐿 > = <  𝑀𝑠 𝑗 + 𝑗  𝑀𝑖 𝑘 > 𝑘       ---(3.1) 

 For large lattices, each isolated nonspanning cluster can be either positive or negative magnetization 

state with equal probability. So on averaging their contribution becomes negligible. 

Hence we get from equation 3.1,  
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< 𝑀𝐿 > = <  𝑀𝑠 𝑗  
𝑗

> 

 We cannot apply similar argument as we applied in nonspanning cluster to neglect their contribution. 

Because however large, the lattice is, the no. of spanning cluster is not very large in number. Some of those 
clusters may cancel each other but some of them add together. So net magnetization reduces but in most cases 

remains nonzero. For square lattice considering n-n interaction if the probability of occupancy is greater than (1-

1/√N), then it is for sure that more than one cluster cannot exist because at this stage one row is not unoccupied, 

creating separated cluster. So there is no opportunity to get low value of magnetization below critical 

temperature. There is one more way to get macroscopic magnetization always, by biasing occupied sites for one 

of the spins either up or down. The amount of biasing depends on the occupation probability. Assuming 

occupation probability for say, up spins in the occupied islands to be 𝑝𝑢  and probability of occupation for 

occupied sites as 𝑝𝑠 , I have plotted 𝑝𝑢   vs 𝑝𝑠  in 100x100 lattice for which ferromagnetic phase does not show 

any low value in magnetization (See figure 8). Using straight line approximation, relation between 𝑝𝑢   & 𝑝𝑠  can 
be written in form of the following equation, 

                                                             10𝑝𝑠  + 6𝑝𝑢 = 13        ---(3.2) 

Equation 3.2 gives asymptotic relation between 𝑝𝑢  & 𝑝𝑠  . 

           Figure 9 also shows linear type dependence between the temperature (T) at which magnetization becomes 

equivalent to that of properly biased with 𝑝𝑢 , vs 𝑝𝑢  at different 𝑝𝑠  for 100x100 lattice. This figure clearly shows 

that as 𝑝𝑠  increases both T & 𝑝𝑢  decreases. So in the figure we see that curves approaches to the origin at 

𝑝𝑢 = 0.5,𝑇 = 0, as 𝑝𝑠  increases towards unity from percolation threshold. 

 

3.1  Approximate partition function in diluted lattice with FM type interaction: 
            Partition function for diluted lattice can be found in a similar way like undiluted case. With a similar 

argument as given in subsection 2.1.2.1.1 it can be said that our calculation of PF remains valid in FM phase in 

percolated phase only. Now, assume that at a certain configuration probability of occupation is p. If total no. of 

sites is N, then no. of occupied sites is approximately Np and the no. of unoccupied sites is (N-Np). The number 

of ways in which Np occupied sites can be accommodated in N sites is,                                             

 

                                              𝐺 𝑁𝑝 =
𝑁 !

𝑁𝑝 ! 𝑁−𝑁𝑝 !
                           ---(3.3) 

Among the ‘Np’ occupied sites, the no. of ways of occupying l flipped spins is, 

                                              𝐺 𝑙 =
𝑁𝑝 !

𝑙! 𝑁𝑝−𝑙 !
                                   ---(3.4) 

Now the no. of ways of distribution of l flipped spins in N lattice points with probability of occupancy p is, 

                                              𝐺 𝑙, 𝑝 = 𝐺 𝑁𝑝 𝐺 𝑙 =
𝑁 !

𝑁𝑝 ! 𝑁−𝑁𝑝 !
∗

𝑁𝑝 !

𝑙! 𝑁𝑝−𝑙 !
 

                                              𝐺 𝑙, 𝑝 =
𝑁!

𝑙! 𝑁−𝑁𝑝 ! 𝑁𝑝−𝑙 !
                    ---(3.5) 

If energy of the system for this configuration is E(p,l), then we get the expression for partition function for 

occupation probability p, as follows, 

                                             𝑍 𝑝 =  𝐺(𝑙,𝑝)
𝑁𝑝
𝑙=0 𝑒− 

𝐸(𝑝 ,𝑙)

𝑘𝑇                           ---(3.6)   

 

3.1.1 Approximate partition function for square lattice with n-n interaction in diluted case: 

            We consider a square lattice occupied with magnetic lattice points with occupation probability p. 

Considering ferromagnetic n-n interaction ground state energy of the system can approximately be written as, 

E(0)=-4NJp. Similarly a state where l spin is flipped can be written as, bearing energy E(l)=-4pJ(N-2l). 

Hence partition function becomes, 

                                             𝑍 𝑝 =  𝐺(𝑙,𝑝)
𝑁𝑝
𝑙=0 𝑒

4𝑝𝐽 (𝑁−2𝑙)

𝑘𝑇                          ---(3.7) 

Writing equation 3.7, in explicit form we get, 

                                            𝑍 𝑝 =  
𝑁!

𝑙 ! 𝑁−𝑁𝑝 ! 𝑁𝑝−𝑙 !

𝑁𝑝
𝑙=0 𝑒  

4𝑝𝐽 (𝑁−2𝑙)

𝑘𝑇   

                                                     =
𝑁!

𝑁𝑝 ! 𝑁−𝑁𝑝 !
 

𝑁𝑝 !

𝑙! 𝑁𝑝−𝑙 !

𝑁𝑝
𝑙=0 𝑒

4𝑝𝐽𝑁 −2𝑝𝐽𝑙

𝑘𝑇  

                                            𝑍(𝑝) =
𝑁!

𝑁𝑝 ! 𝑁−𝑁𝑝 !
𝑧(𝑁𝑝)                                  ---(3.8) 

 

Where,                              𝑧 𝑁𝑝 =  
𝑁𝑝 !

𝑙! 𝑁𝑝−𝑙 !

𝑁𝑝
𝑙=0 𝑒

4𝑝𝐽𝑁 −2𝑝𝐽𝑙

𝑘𝑇    

Taking logarithm of equation 3.8 we obtain, 

                                         ln 𝑍 𝑝 = 𝑙𝑛𝑧 𝑝 + ln𝑁! − ln 𝑁𝑝! − ln 𝑁 − 𝑁𝑝 ! 
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                                         ln(𝑍(𝑝)/𝑧(𝑝)) = 𝑁 ln𝑁 −𝑁 −𝑁𝑝 ln𝑁𝑝 + 𝑁𝑝 − ln 𝑁(1 − 𝑝 )!   
                                                                  =  𝑁 ln𝑁 − 𝑁𝑝 ln𝑁 𝑝 − ln 𝑁(1 − 𝑝) ! −  𝑁(1 − 𝑝) 

Now as p→ 1, the third and fourth terms in above equation can be neglected. Again as logarithmic function of a 

variable varies much slowly in comparison with the variable, we can write Np=N, in the logarithmic expression 

as p→1. Now above equation becomes, 

                                                                ln(𝑍(𝑝)/𝑧(𝑝)) =  𝑁 ln 𝑁 −𝑁𝑝 ln 𝑁 

                                                                ln(𝑍(𝑝)/𝑧(𝑝)) =  𝑁(1 − 𝑝) ln 𝑁 

                                                                                         = ln𝑁𝑁(1−𝑝)  

                                                                    𝑍 𝑝 = 𝑧 𝑝  𝑁𝑁(1−𝑝)            ---(3.9) 

At p close to unity Z(p) can be said to be equivalent to partition function for undiluted system i.e. Z(p=1) and 
z(p) can be said to be partition function where occupation probability p. Hence we get from equation 3.9, 

                                                                 𝑧 𝑝  𝛼 𝑍(𝑝 = 1) 𝑁−𝑁(1−𝑝) 

Hence,                                                          𝑧 𝑝  𝛼 𝑁−𝑁(1−𝑝)                    ---(3.10) 
From equation 3.10 one can study the behavior of partition function with occupation probability and total no. of 

sites where p is close to unity. 

 

IV. Conclusion 
            In this paper phase transition behavior of spin system in Ising model is considered to be equivalent to 

percolation problem. Partition function is calculated for undiluted lattice using Maxwell- Boltzmann statistics. 

Beauty of this partition function is that the calculation does not require shape and dimension information of the 

lattice but it comes with a limitation of applicability range in percolated phase only. In specific cases shape and 

dimension of the lattice appears in the energy term present in the expression for partition function. Using simple 

mathematical tricks, partition function for diluted lattice is calculated. Special effort to find an expression for 

partition function is given because it is the key thing for calculating all the thermodynamic quantities associated 

with the system, such as free energy, entropy etc. Finite size effect and phase transition behavior of spins is 

easily understood from the nature of partition function. A new way to find critical temperature is found in the 
theoretical analysis. Specific examples (like one I have done for square lattice) can be taken to study phase 

transition behavior or measurement of any thermodynamic quantity using partition function. This can be taken 

as a scope for future work. 
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Table 1 

Energy Absolute magnetization Multiplicity 

-16 1 2 

0 0.5 8 

0 0 4 

16 0 2 
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