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Abstract: The approximate analytical solution of Schrodinger equation for Scarf potential plus 

trigonometricPoschl-Teller potential is investigated using Nikiforov-Uvarov method. The bound state energy 

eigenvalues are given in the close form and the corresponding radial and angular eigenfunctions are formulated 

in the form of the generalized Jacobi Polynomials. The trigonometric Poschl-Teller potential causes the energy 

of Scarf potensial decreases as the orbital quantum number increases. The energy spectrum and the radial wave 

function of Scarf potential are produced by the absent of Poschl-Teller potential.  
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I. Introduction 
The exact analytical solution of Schrodinger equations for a class of trigonometric shape invariant 

potentials are only possible if the angular momentum l=0 . However, for ≠ 0 , the Schrodinger equation can 

only be solved approximately for different suitable approximation scheme. One of the suitable approximation 

scheme is conventionally proposed by Greene and Aldrich.[1-2] The approximate bound state solutions of 

Schrodinger equation with exponential- line potential such as Eckart potential, Hulthen potential, and Rosen 

Morse potential have been intensively investigated by some authors.[3-6] It is well known that these solutions 
play an essential role in the relativistic and non-relativistic quantum mechanics for some physical potentials of 

interest. 

Recently, conciderably efforts have been paid to obtain the exact solution of non-central potentials. 

There are only a few potentials for which the Schrodinger equation can be solved exactly. In general, one has to 

resort to numerical techniques or approximation schemes. For many quantum mechanical systems, most 

approximation methods used are shifted 1/N expansion, WKB method, perturbation method, supersymmetric 

quantum mechanics and idea of shape invariance, etc. Although some methods produce eigenvalues easily but 

give complicated eigenfunctions. 

In recent years, numerous studies have been made in analyzing the bound state of charged particle 

moving in a vector potential and a non-central scalar potential, such as an electron moving in a Coulomb field 

with simultaneously precence of Aharonov-Bohm field[7,8], or/and magnetic monopole[9], Makarov potential 
[10]or ring-shaped-oscillator potential [11-15], etc. In most of these studies, the eigenvalues and eigenfunctions 

are obtained using separation variables in spherical coordinate system. Very recently, supersymmetric quantum 

mechanics with the idea of shape invariance [16-18], factorization method [14-19], and Nikiforov-Uvarov 

method [20-21] are widely used to derive the energy spectrum and the wave function of a charge particle 

moving in non-central potential 

In this paper we will attempt to solve the Schrodinger equation for trigonometric Scarf potential plus 

trigonometric Poschl-Teller non-central potential using Nikiforov-Uvarov (NU) method.[20] The trigonometric 

Scarf potential is also called as generalized Poschl-Teller  potential[22]. The NU method, that was developed by 

Nikiforov-Uvarov [20], was used and applied by reducing the second order differential equations to the 

hypergeometric type equation by a suitable change of variable.The trigonometric Scarf potential and 

trigonometric Poschl-Teller play the essential roles in electrodynamics interatomic and intermolecular forces 

and can be used to describe molecular vibrations. Some of these trigonometric potential are exactly solvable or 
quasi – exactly solvable and their bound state solutions have been reported.[23-26] 

 This paper is organized as follows. In section 2, we review the Nikiforov-Uvarov method 

briefly. In section 3, we find the bound state energy solution and radial wave function from the 

solution of the radial Schrodinger equation, and the angular wave functions are derived in section 4. A 
brief conclusion is presented in section 5. 
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II. Review Of Nikiforov-Uvarov Method 
The one-dimensional Schrodinger equation of any shape invariant potential can be reduced into 

hypergeometric or confluent hypergeometric type differential equation by suitable variable transformation 
[3,4,15,17].

 The hypergeometric type differential equation, which can be solved using Nikiforov-Uvarovmethod is 

presented as  

𝜕2𝜓(𝑠)

𝜕𝑠2 +
𝜏 (𝑠)

𝜍(𝑠)

𝜕𝜓 (𝑠)

𝜕𝑠
+

𝜍 (𝑠)

𝜍2 𝜓(𝑠) = 0 ,         (1) 

 

where𝜍 𝑠   and  𝜍 (𝑠)  are polynomials at most in the second order, and 𝜏 (𝑠)  is first order polynomial. 

Equation (1) can be solved using separation of variable method which is expressed as         

𝜓 = 𝜙 𝑠 𝑦(𝑠),                       (2)   

By inserting equation (2) into equation (1) we get hypergeometric type equation as 

𝜍
𝜕2𝑦 (𝑠)

𝜕𝑠2 + 𝜏
𝜕𝑦 (𝑠)

𝜕𝑠
+ 𝜆𝑦(𝑠) = 0        (3) 

and𝜙 𝑠  is a logarithmic derivative whose solution is obtained from  condition  
𝜙 ′

𝜙
=

𝜋

𝜍
            (4) 

where the function  𝜋(𝑠) and the parameter  𝜆 are defined as 

𝜋 =  
𝜍 ′−𝜏 

2
 ±  (

𝜍 ′−𝜏 

2
)2 − 𝜍 + 𝑘𝜍          (5) 

𝜆 = 𝑘 + 𝜋′           (6) 

The value of k in equation (5) can be found from the condition that under the square root of equation (5) have to 

be square of polynomial which is mostly first degree polynomial and therefore the discriminate of the quadratic 

expression is zero. A new eigenvalue of equation (3) is 

𝜆 = 𝜆𝑛 = −𝑛𝜏 ′ −
𝑛(𝑛−1)

2
𝜍′′  , n = 0, 1, 2,       (7) 

where𝜏 = 𝜏 + 2𝜋 ,          (8) 

The new energy eigenvalue is obtained using equation (6) and (7). 

To generate the energy eigenvalues and the corresponding eigenfunction, the condition that 𝜏 ′ < 0  is required.  

The solution of the second part of the wave function, yn(s), is connected to Rodrigues relation [15] which is given 
as 

𝑦𝑛 𝑠 =
𝐶𝑛

𝜌 𝑠 

𝑑𝑛

𝑑𝑠𝑛
 𝜍𝑛(𝑠)𝜌(𝑠)           (9) 

whereCn is normalization constant, and the weight function 𝜌(𝑠) satisfies the condition 
𝜕(𝜍𝜌 )

𝜕𝑠
= 𝜏 𝑠 𝜌(𝑠)          (10) 

The wave function of the system is therefore obtained from equation (4) and (9). 
 

III. Solution Of Schrodinger Equation For Trigonometric Scarf Potential Combined With  

Trigonometric Poschl-Teller Potential Using Nu Method 
The non-central potential which is combination of trigonometric Scarf potential and trigonometric 

Poschl-Teller non-cental potential given as                      

𝑉 𝑟, 𝜃 =
ℏ2𝛼2

2𝑀
 
𝑏2+𝑎 𝑎−1 

𝑠𝑖𝑛 2𝛼𝑟
−

2𝑏(𝑎−
1

2
)cos 𝛼𝑟

𝑠𝑖𝑛 2𝛼𝑟
 +

ℏ2

2𝑀𝑟2
 
𝜅 𝜅−1 

𝑠𝑖𝑛 2𝜃
+

𝜂(𝜂−1)

𝑐𝑜𝑠 2𝜃
                (11)                                                                        

where 𝑏2 + 𝑎 𝑎 − 1 > 0, 2𝑏  𝑎 −
1

2
 > 0, 𝛼 is related to range of the trigonometric Scarf potential with the 

unit of the inverse of length, 0 < 𝛼𝑟 < 𝜋, 𝜅 > 1 ,𝜂 > 1 and  0 ≤ 𝜃 ≤ 𝜋. Trigonometric Scarf potential is 

potential model that used to describe the behavior quark-gluon dynamics. [25] 

    The three dimensional time-independent Schrodinger equation for trigonometric Scarf  
potential[11,14] combined with trigonometric Poschl-Teller non-central potential is 

−
ℏ2

2𝑀
 

1

𝑟2

𝜕

𝜕𝑟
 𝑟2 𝜕

𝜕𝑟
 +

1

𝑟2𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
 𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
 +

1

𝑟2𝑠𝑖𝑛2𝜃

𝜕2

𝜕𝜑2
 𝜓 𝑟,𝜃,𝜑 +  

ℏ
2
𝛼2

2𝑀
 
𝑏

2
+𝑎 𝑎−1 

𝑠𝑖𝑛2𝛼𝑟
−

2𝑏(𝑎−1
2

)cos𝛼𝑟

𝑠𝑖𝑛2𝛼𝑟
 +

ℏ22𝑀𝑟2𝜅𝜅−1𝑠𝑖𝑛2𝜃+𝜂(𝜂−1)𝑐𝑜𝑠2𝜃𝜓𝑟,𝜃,𝜑=𝐸𝜓𝑟,𝜃,𝜑      (12) 

The three dimensional Schrodinger equation expressed in equation (12) is solved using variable separation 

method by setting  𝜓 𝑟, 𝜃,𝜑 = 𝑅 𝑟 𝑃 𝜃 𝜙(𝜑) so we get 
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1

𝑅

𝜕

𝜕𝑟
 𝑟2 𝜕

𝜕𝑟
 − 𝑟2𝛼2  

𝑏2+𝑎 𝑎−1 

𝑠𝑖𝑛 2𝛼𝑟
−

2𝑏(𝑎−
1

2
)cos 𝛼𝑟

𝑠𝑖𝑛 2𝛼𝑟
 +

2𝑀𝑟2

ℏ2 𝐸 = −
1

𝑃𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
 𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
 −

1

𝜙𝑠𝑖 𝑛2𝜃

𝜕2

𝜕𝜑2 +  
𝜅 𝜅−1 

𝑠𝑖𝑛 2𝜃
+

𝜂(𝜂−1)

𝑐𝑜𝑠 2𝜃
 = 𝜆 = 𝑙(𝑙 + 1)      (13) 

From equation (13) we get three differential equations with single variable as following: 

1

𝑅

𝜕

𝜕𝑟
 𝑟2 𝜕

𝜕𝑟
 − 𝑟2𝛼2  

𝑏2+𝑎 𝑎−1 

𝑠𝑖𝑛 2𝛼𝑟
−

2𝑏(𝑎−
1

2
)cos 𝛼𝑟

𝑠𝑖𝑛 2𝛼𝑟
 +

2𝑀𝑟2

ℏ2 𝐸 = 𝜆 = 𝑙(𝑙 + 1)  (14a) 

−
1

𝑃𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
 𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
 −

1

𝜙𝑠𝑖 𝑛2𝜃

𝜕2

𝜕𝜑2 +  
𝜅 𝜅−1 

𝑠𝑖𝑛 2𝜃
+

𝜂(𝜂−1)

𝑐𝑜𝑠 2𝜃
 = 𝜆 = 𝑙(𝑙 + 1)  (14b) 

1

𝜙

𝜕2

𝜕𝜑2 = −𝑚2           (14c) 

The solution of  equation (14c) is 

𝜙 = 𝐴𝑚𝑒
𝑖𝑚𝜑            (15) 

which is the azimuthal part of wave function.  

 

3.1 The Solution Of Radial Wave Function 

By setting the new wave function  𝑅 =
𝜓(𝑟)

𝑟
 into equation (14a) we get 

𝑑2𝜓

𝑑𝑟2 − 𝛼
2  

𝑏2 +𝑎 𝑎−1 

𝑠𝑖𝑛 2𝛼𝑟
−

2𝑏(𝑎−
1

2
)cos 𝛼𝑟

𝑠𝑖𝑛 2𝛼𝑟
 𝜓 +

2𝑀

ℏ2 𝐸𝜓 −
𝑙 𝑙+1 

𝑟2 𝜓 = 0     (16)                      

The conventional approximation for centrifugal term[1] obtained for 𝛼𝑟<<<1 is 
1

𝑟2 ≅ 𝛼2  𝑑0 +
1

𝑠𝑖𝑛 2𝛼𝑟
           (17)                                                                                                            

where 𝑑0 =
1

12
 . By substituting equation (17) into equation (16) we obtain 

𝑑2𝜓

𝑑𝑟2 − 𝛼
2  

𝑏2 +𝑎 𝑎−1 +𝑙 𝑙+1 

𝑠𝑖𝑛 2𝛼𝑟
−

2𝑏(𝑎−
1

2
)cos 𝛼𝑟

𝑠𝑖𝑛 2𝛼𝑟
− 𝑙 𝑙 + 1 𝑑0 −

𝜖2

𝛼2
 𝜓 = 0     (18) 

where
2𝑀

ℏ2 𝐸 = −𝜖2    (19) 

By making a coordinate transformation, cos𝛼𝑟 = 𝑠, in equation (18), which is inspired by variable 
transformation in SUSY WKB[14], then equation (18) becomes 

 1 − 𝑠2 
𝑑2𝜓(𝑠)

𝑑𝑠2 − 𝑠
𝑑𝜓 (𝑠)

𝑑𝑠
–  

𝑏2+𝑎 𝑎−1 +𝑙 𝑙+1 

1−𝑠2 −
2𝑏 𝑎−

1

2
 𝑠

1−𝑠2 − 𝑙 𝑙 + 1 𝑑0 −
𝜖2

𝛼2
 𝜓(𝑠) = 0          (20) 

where for 𝛼𝑟 = 0 gives𝑠 = 1 and  𝛼𝑟 = 𝜋gives𝑠 = −1 

By comparing equation (20) with equation (1) we get 

𝜏 = −𝑠, 𝜍 = 1− 𝑠2, 𝜍 = − 𝑏2 + 𝑎 𝑎 − 1 + 𝑙(𝑙 + 1)− 2𝑏  𝑎 −
1

2
 𝑠 −

(1−𝑠2) 𝛼2𝑙 𝑙+1 𝑑0+𝜖2 

𝛼2
  (21)          

Inserting equation (21) into equation (5) we have   

𝜋 = −
𝑠

2
± 𝑏2 + 𝑎 𝑎 − 1 + 𝑙 𝑙 + 1 −

𝛼2𝑙 𝑙+1 𝑑0+𝜖2

𝛼2 + 𝑘 − 2𝑏  𝑎 −
1

2
 𝑠 + (

𝛼2𝑙 𝑙+1 𝑑0+𝜖2

𝛼2 − 𝑘+
1

4
)𝑠2         (22) 

Since the expression under the square root in equation (22) is quadratic expression with variable s and it has to 

be square of first degree polynomial, then it can be rewritten as 

𝜋 = −
𝑠

2
± 

𝛼2𝑙 𝑙+1 𝑑0+𝜖2

𝛼2 − 𝑘 +
1

4
   (𝑠 −

2𝑏 𝑎−
1

2
 

2(
𝛼2𝑙 𝑙+1 𝑑0+𝜖2

𝛼2 −𝑘+
1

4
)
)      (23)                                                                       

and 

 2𝑏  𝑎 −
1

2
  

2

− 4  
𝛼2𝑙 𝑙+1 𝑑0+𝜖2

𝛼2 − 𝑘 +
1

4
  𝑏2 + 𝑎 𝑎 − 1 + 𝑙 𝑙 + 1 −

𝛼2𝑙 𝑙+1 𝑑0+𝜖2

𝛼2 + 𝑘 = 0 (24)                               

which is the discriminate of the quadratic expression under the square root. The value of k can be obtained from 

the solution of equation (24). By setting  

𝑝2 =
𝛼2𝑙 𝑙+1 𝑑0+𝜖2

𝛼2 − 𝑘 +
1

4
         (25) 

equations (23) and (24) become 

𝜋 = −
𝑠

2
± 𝑝  𝑠 −

2𝑏 𝑎−
1

2
 

2𝑝2
         (26) 

and 2𝑏  𝑎 −
1

2
  

2

− 4𝑝2  𝑏2 +  𝑎 −
1

2
 

2

+ 𝑙 𝑙 + 1 − 𝑝2 = 0    (27)         

 To fulfill the requirement that 𝜏′ < 0 where 𝜏 = 𝜏 + 2𝜋 lead us to make a choice of  𝜋 in equation (26) as 
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𝜋 = −𝑠  𝑝+
1

2
 +  

𝑏 𝑎−
1

2
 

𝑝
         (28) 

From equation (27) we obtain the values of p2 as  

𝑝1
2 =

𝑏2+ 𝑎−
1

2
 

2
+𝑙 𝑙+1 +  𝑏2+ 𝑎−

1

2
 

2
+𝑙 𝑙+1  

2

−4 𝑏 𝑎−
1

2
  

2

2
      (29a) 

and𝑝2
2 =

𝑏2 + 𝑎−
1

2
 

2
+𝑙 𝑙+1 −  𝑏2 + 𝑎−

1

2
 

2
+𝑙 𝑙+1  

2

−4 𝑏 𝑎−
1

2
  

2

2
      

             (29b) 

To be physically meaning the value of p that satisfies the bound state solution is  𝑝2
2 expressed in equation (29b). 

By inserting the value of 𝑝2
2 in equation (29b) into equation (23) we obtain the  

𝑘 =
𝛼2 𝑙 𝑙+1 𝑑0+𝜖2

𝛼2 − 𝑝2
2 +

1

4
          (30) 

By using 𝜏 = 𝜏 + 2𝜋 together with the values of 𝜋(s) and 𝜏  we obtain  

𝜏2 = −𝑠 + 2  −𝑠  𝑝2 +
1

2
 +  

𝑏 𝑎−
1

2
 

𝑝2
 = −𝑠 2𝑝2 + 2 +  

2𝑏 𝑎−
1

2
 

𝑝2
     (31) 

Now by using the values of 𝜋(s), 𝜏 , k, 𝜍(𝑠) and 𝜏(𝑠) we get, 

𝜆 =
𝛼2𝑙 𝑙+1 𝑑0+𝜖2

𝛼2 +
1

4
− 𝑝2

2 − 𝑝2 −
1

2
        (32)                                                                                                 

And𝜆 = 𝜆𝑛 = −𝑛 −2𝑝 − 2 −
𝑛 𝑛−1 

2
 −2 = 2𝑝𝑛 + 𝑛 + 𝑛2  (33) 

From equations (32) with (33) we have 

Or𝜖2 = 𝛼2(𝑝2 + 𝑛 +
1

2
)2−𝛼2𝑙 𝑙 + 1 𝑑0        (34) 

For bound state solution the value of p2 which is chosen from equations (29b) that satisfies equation (34) is  

𝑝 = 𝑝2 =
 𝑏2+ 𝑎−

1

2
 

2
+𝑙 𝑙+1 −  𝑏2+ 𝑎−

1

2
 

2
+𝑙 𝑙+1  

2

−4 𝑏 𝑎−
1

2
  

2

2
      (35) 

By inserting equations (16) and (35) into equation (34) we get the energy spectra of Scarf  potential plus 

trigonometric Poschl-Teller potential given as 

𝐸𝑛 =
ℏ𝟐

𝟐𝑴
𝛼2

 
 
 

 
 

 

  
   𝑏2+ 𝑎−

1

2
 

2
+𝑙 𝑙+1  −  𝑏2+ 𝑎−

1

2
 

2
+𝑙 𝑙+1  

2

−4 𝑏 𝑎−
1

2
  

2

2
+ 𝑛 +

1

2

 

  
 

2

− 𝑙 𝑙 + 1 𝑑0

 
 
 

 
 

          (36)                          

For special case, 𝑙 = 0, the value of p is 

𝑝 =   𝑎 −
1

2
 

2

=  𝑎 −
1

2
           (37) 

and so we get the usual energy spectra of trigonometric Scarf potential given as 

𝐸𝑛 =
ℏ𝟐

𝟐𝑴
𝛼2(𝑎 + 𝑛)2          (38) 

The energy spectrum of the trigonometric Scarf potential for l = 0 is in agreement with the result derived using 

Supersymmetric QM.[26,27] 

The energy eigenfunctions are obtained using equations (4), (9), and (10). By inserting equations (21) and (31) 

into equation (10) we obtain the weight function 𝜌(𝑠) 

 −2𝑠 𝜌 + (1 − 𝑠2)𝜌′ =  𝑠 −2𝑝 − 2 +  
2𝑏  𝑎 −

1

2
 

𝑝
 𝜌 

and after integrate it we get 

𝜌 = (1− 𝑠)
−𝑏 𝑎−

1
2 

+𝑝2

𝑝  (1 + 𝑠)
𝑏 𝑎−

1
2 

+𝑝2

𝑝 = (1 − 𝑐𝑜𝑠 𝛼𝑟)
−𝑏 𝑎−

1
2 

+𝑝2

𝑝  (1 + 𝑐𝑜𝑠 𝛼𝑟)
𝑏 𝑎−

1
2 

+𝑝2

𝑝         (39)    

The first part of the energy eigenfunction obtained by inserting equations (21) and (28) into equation (4) is 

𝜙 𝑠 = (1− 𝑠)
 
−𝑏 𝑎−

1
2 

+𝑝2

2𝑝
+

1

4
 

 1 + 𝑠 
 
𝑏 𝑎−

1
2 

+𝑝2

2𝑝
+

1

4
 

= (1 − 𝑠)
 
𝜁

2
+

1

4
  1 + 𝑠 

 
𝛿

2
+

1

4
 
 

= (1− 𝑐𝑜𝑠 𝛼𝑟)
 
𝜁

2
+

1

4
 
(1 + 𝑐𝑜𝑠 𝛼𝑟)

 
𝛿

2
+

1

4
 
        (40)       

where𝜁 =
−𝑏 𝑎−

1

2
 +𝑝2

𝑝
= −𝑞 + 𝑝 ,   𝛿 =

𝑏 𝑎−
1

2
 +𝑝2

𝑝
= 𝑞 + 𝑝   (41)  
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From equations (32) and (41) we get 

 

      𝜁 = −
  𝑏

2+ 𝑎−
1

2
 

2
+𝑙 𝑙+1  +  𝑏2+ 𝑎−

1

2
 

2
+𝑙 𝑙+1  

2

−4 𝑏 𝑎−
1

2
  

2

2
+
  𝑏

2+ 𝑎−
1

2
 

2
+𝑙 𝑙+1  −  𝑏2+ 𝑎−

1

2
 

2
+𝑙 𝑙+1  

2

−4 𝑏 𝑎−
1

2
  

2

2
 (42a) 

𝛿 =
  𝑏2+ 𝑎−

1

2
 

2
+𝑙 𝑙+1  +  𝑏2+ 𝑎−

1

2
 

2
+𝑙 𝑙+1  

2

−4 𝑏 𝑎−
1

2
  

2

2
+
  𝑏2+ 𝑎−

1

2
 

2
+𝑙 𝑙+1  −  𝑏2+ 𝑎−

1

2
 

2
+𝑙 𝑙+1  

2

−4 𝑏 𝑎−
1

2
  

2

2
      

(42b) 

 

and 

𝑝 =
  𝑏2+ 𝑎−

1

2
 

2
+𝑙 𝑙+1  −  𝑏2+ 𝑎−

1

2
 

2
+𝑙 𝑙+1  

2

−4 𝑏 𝑎−
1

2
  

2

2
=

𝜁+𝛿

2
    (42c) 

The second part of the wave function is obtained using Rodrigues relation expressed in equations (9). By 

substituting equations (21) and (39) into equation (9) we get 

𝑦𝑛  𝑠 =
𝐶𝑛

(1−𝑠)

−𝑏 𝑎−
1
2 

+𝑝2

𝑝  (1+𝑠)

𝑏 𝑎−
1
2 

+𝑝2

𝑝

𝑑𝑛

𝑑𝑠𝑛
 (1− 𝑠)

−𝑏 𝑎−
1
2 

+𝑝2

𝑝
+𝑛

 (1 + 𝑠)
𝑏 𝑎−

1
2 

+𝑝2

𝑝
+𝑛
   (43a)  

𝑦𝑛  𝑠 =
𝐶𝑛

(1−𝑠)𝜁  (1+𝑠)𝛿

𝑑𝑛

𝑑𝑠𝑛
 (1 − 𝑠)𝜁+𝑛  (1 + 𝑠)𝛿+𝑛       (43b) ` 

𝑦𝑛𝑟 𝑠 = 𝐶𝑛𝑟 −1 𝑛𝑟2𝑛𝑟𝑛𝑟 !𝑃𝑛𝑟
(𝜁 ,𝛿)

(𝑠)(43c) 

and𝑃𝑛
(𝜁 ,𝛿) 𝑐𝑜𝑠ℎ 𝛼𝑟 = 𝑃𝑛𝑟

(𝜁 ,𝛿)
(𝑠) is the Jacobi polynomial and 𝑦𝑛  𝑟  is normalized.  

From equation (43a) we get the first four of second part of radial wave function or Jacobi polynomials as 

follows: 

𝑦0 𝑠 = 𝐶0  

𝑦1 𝑠 = 𝐶1 − 𝜁 + 𝛿 + 2 𝑠 +  𝛿 − 𝜁         (44a) 

𝑦2 𝑠 = 𝐶2  𝜁 + 𝛿 + 4  𝜁 + 𝛿 + 3 𝑠2 − 2 𝛿 − 𝜁  𝜁 + 𝛿 + 3 𝑠 +  𝛿 − 𝜁 2 −  𝜁 + 𝛿 + 4    (44b) 
The radial wave function reduce to  
Finally the complete radial wave function obtained by using equation (2), (40), (41) and (42a) is given as 

𝜓𝑛𝑟 𝑟 = 𝜓𝑛𝑟 𝑠 = 𝐶𝑛𝑟 −1 𝑛𝑟2𝑛𝑟𝑛𝑟 ! (1− 𝑠)
 
𝜁

2
+

1

4
  1 + 𝑠 

 
𝛿

2
+

1

4
 
𝑃𝑛𝑟

(𝜁 ,𝛿)
(𝑠) 

= 𝐵𝑛𝑟(1− 𝑠)
 
𝜁

2
+

1

4
  1 + 𝑠 

 
𝛿

2
+

1

4
 
𝑃𝑛

(𝜁 ,𝛿)
(𝑠)       (45) 

where𝐵𝑛  is the new normalisation factor of the radial wave function and it is determined by normalization 

condition 

 𝜓𝑛𝑟(𝑟)𝜓𝑚 (𝑟)
𝛼𝑟=𝜋

𝛼𝑟=0
𝑑𝑟 =  𝜓𝑛𝑟(𝑠)𝜓𝑚 (𝑠)

𝑠=1

𝑠=−1

𝑑𝑠

𝛼 1−𝑠2
= 𝛿𝑛𝑟𝑚       (46) 

Inserting equation (43) into equation (41) we get 

 𝐵𝑛𝑟 (1− 𝑠)
 
𝜁

2
+

1

4
  1 + 𝑠 

 
𝛿

2
+

1

4
 
𝑃𝑛

(𝜁 ,𝛿)
(𝑠)𝐵𝑚 (1− 𝑠)

 
𝜁

2
+

1

4
  1 + 𝑠 

 
𝛿

2
+

1

4
 
𝑃𝑚

(𝜁 ,𝛿)
(𝑠)

−1

1

𝑑𝑠

−𝛼  1−𝑠 (𝑠+1)
= 𝛿𝑛𝑟𝑚   

 𝐵𝑛𝑟  
2

𝛼
 (1− 𝑠)𝜁 1 + 𝑠 𝛿𝑃𝑛

(𝜁 ,𝛿)
(𝑠)𝑃𝑛

(𝜁 ,𝛿)
(𝑠)

1

−1
𝑑𝑠 = 1        (47) 

Since  (1 − 𝑠)𝜁 1 + 𝑠 𝛿𝑃𝑛
(𝜁 ,𝛿)

(𝑠)𝑃𝑛
(𝜁 ,𝛿)

(𝑠)
1

−1
𝑑𝑠 =

2𝜁+𝛿+1Γ 𝑛𝑟+𝜁+1 Γ(𝑛𝑟+𝛿+1)

 2𝑛𝑟+𝜁+𝛿+1 Γ(𝑛𝑟+𝜁+𝛿+1)
    (48) 

then from equation (42) we obtain the normalization constant of the wave function as 

𝐵𝑛 =  
𝛼 2𝑛𝑟+𝜁+𝛿+1 Γ(𝑛𝑟+𝜁+𝛿+1)

2𝜁+𝛿+1Γ 𝑛𝑟+𝜁+1 Γ(𝑛𝑟+𝛿+1)
         (49) 

For l = 0, equations (42a) and (42b) become  

𝜁 = 𝑎 −
1

2
− 𝑏and𝛿 = 𝑎 −

1

2
+ 𝑏          (50) 

By inserting equation (50) into equation (45) and setting  𝑛𝑟 = 0 then equation (45) becomes 

𝜓0 𝑟 = 𝐵0 (1− 𝑠)
 
𝑎−𝑏

2
  1 + 𝑠 

 
𝑎+𝑏

2
 

= 𝐵0 (𝑠𝑖𝑛
𝛼𝑟

2
) 𝑎−𝑏 (𝑐𝑜𝑠

𝛼𝑟

2
) 𝑎+𝑏      (51) 

Equation (51) is ground state wave function of trigonometric Scarf potential which is in agreement with the 

result obtained using SUSY quantum mechanics.  

The energy eigenvalue expressed in equation (36) is rewritten as  
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𝐸𝑛 =
ℏ𝟐

𝟐𝑴
𝛼2   

𝜁+𝛿

2
+ 𝑛+

1

2
 

2

− 𝑙 𝑙 + 1 𝑑0          (52) 

with𝑙 =    𝜅 𝜅 − 1 + 𝑚2 + 𝜂 + 2𝑛𝑙  which is obtained from the solution of angular Schrodinger equation. 

The nergy spectrum calculated using equation (52) are listed in Table 2. 

The energy eigenvalues in equation (52) and the complete radial wave function expressed in equation (45) both 

as a function of 𝜁and𝛿 parameters and in turn the 𝜁and𝛿 parameter depend on the value of potential parameters, 

a and b, and also orbital momentum number l therefore both the energy spectrum and the radial wave functions 

are function s of potential’s parameters and orbital quantum number. The radial wave functions reduce to the 

wave function for Scarf potential plus centrifugal term by the absent of Poschl-Teller potential. The Jacobi 

polynomials and the radial wave functions with/without the presence of Poschl-Teller potential are listed in 

Table 1.  

 

Table 1. The Jacobi Polynomials and Unnormalized Radial Wave Functions for Scarf plus Poschl-Teller Non 

Central Potential 

nl m 𝜅 𝜂 l a b 𝑛𝑟  𝜁 +  𝛿

2
 
𝛿 − 𝜁

2
 

𝑦𝑛𝑟 𝑠  𝑅𝑛𝑟 𝑟 = 𝜙𝑛𝑟𝑦𝑛𝑟 𝑠  

0 0 0 0 0 2 1 0 1.5 1 1 (1− 𝑠) 0.5  1 + 𝑠  1.5  

0 0 0 0 0 2 1 1 1.5 1 𝐶1 − 5 𝑠 +  2   (1− 𝑠) 0.5  1 + 𝑠  1.5 𝐶1 − 5 𝑠
+ 2)   

0 0 0 0 0 2 1 2 1.5 1 𝐶2 42𝑠2 − 24s − 3  (1 − 𝑠) 0.5  1 + 𝑠  1.5 𝐶2 42𝑠2

− 24s − 3  

2 0 0 0 4 2 1 1 0.32 4.8 𝐶1 (-2.64s +9.6) (1 − 𝑠)−2 1 + 𝑠 2.31𝐶1 (-2.64s 

+9.6) 

nl m 𝜅 𝜂 l a b 𝑛𝑟  𝜁 +  𝛿

2
 
𝛿 − 𝜁

2
 

𝑦𝑛𝑟 𝑠  𝑅𝑛𝑟 𝑟 = 𝜙𝑛𝑟𝑦𝑛𝑟 𝑠  

2 0 0 0 4 2 1 2 0.32 4.8 C1(16.9s
2
-69.9s-

87.52) 

(1 − 𝑠)−2 1 + 𝑠 2.31 (16.9s
2
-

69.9s-87.52) 

2 1 0 0 5 2 1 1 0.35 5.7

6 

𝐶1 (--2.7s + 11.52) (1 − 𝑠)−2.45 1 + 𝑠  3.30 𝐶1 (--2.7s 

+ 11.52) 

2 1 2 0 5.7 2 1 1 0.23 6.4

3 

𝐶1 (-2.46s + 12.86) (1 − 𝑠)−2.85 1 + 𝑠  3.58 𝐶1 (-2.46s 

+ 12.86) 

2 1 0 4 9 2 1 1 0.16 9.6

6 

𝐶1 (-2.32s + 19.32) (1 − 𝑠)−4.5 1 + 𝑠 5.16𝐶1  (−2.32s 
+  19.32)) 

2 1 2 4 9.7 2 1 1 7.31 7.3

2 

C (-16.62s +14.64) (1
− 𝑠) 0.24  1 + 𝑠  7.57 𝐶1 (−16.62s 
+  14.64) 

2 0 2 0 5.4 2 1 1 0.24 6.1
4 

𝐶1 (-2.48s + 12.28) (1 − 𝑠)−2.7 1 + 𝑠 3.44𝐶1 (-2.48s + 

12.28) 

 

Table 2. The First and 2nd Excited State Of Scarf 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

l a b 𝜁 +  𝛿

2
 E1 

ℏ2

2𝑀
𝛼2  E2 

ℏ2

2𝑀
𝛼2  

0 2 1 1.5 4 16 

1 2 1 0.69 4.63 10.01 

2 2 1 0.5 3.5 8.5 

3 2 1 0.39 2,57 7.35 

3.4 2 1 0.35 2.17 6.87 

4 2 1 0.32 1.64 6.28 

5 2 1 0.35 0.92 5.62 

5.4 2 1 0.24 0.15 4.63 

5.7 2 1 0.23 -0.18 4.27 

6 2 1 0.22 -0.54 3.9 

7.4 2 1 0.19 -2.32 2.06 

9 2 1 0.16 -4.74 -0.42 

9.7 2 1 0.14 -5.96 -2.68 
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3.2 The Solutionofangularschrodinerequationfor Scarftpotentialcombined Withnon Central Poschl-

Teller Potential. 

The angular Schrodinger equation in equation (14b) is rewritten as 
1

𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
 𝑠𝑖𝑛𝜃

𝜕𝑃

𝜕𝜃
 −

𝑚2𝑃

𝑠𝑖𝑛2𝜃
−  

𝜅 𝜅−1 

𝑠𝑖𝑛 2𝜃
+

𝜂(𝜂−1)

𝑐𝑜𝑠 2𝜃
 𝑃 + 𝑙 𝑙 + 1 𝑃 = 0     (49) 

wherel(l+1) is separation constant. By making a variable transformation 𝑐𝑜𝑠2𝜃 = 𝑥 in equation (49) the we get   

 1 − 𝑥2 
𝜕2𝑃

𝜕𝑥2 −  
1

2
+

3

2
𝑥 

𝑑𝑃

𝑑𝑠
−   

2 𝜅 𝜅−1 +𝑚2  1+𝑥 

4(1−𝑥2)
+

2𝜂(𝜂−1)(1−𝑥)

4(1−𝑥2)
−

𝑙 𝑙+1 (1−𝑥2)

4(1−𝑥2)
  𝑃 = 0    (50) 

The form of equation (50) is similar to the equation (1) thus we have 

𝜍 =  1− 𝑥2   , 𝜏 = − 
1

2
+

3

2
𝑥                      (51a) 

𝜍 = −
 {2 𝜅 𝜅−1 +𝑚2 +2𝜂 (𝜂−1)−𝑙 𝑙+1  

4
+

 2 𝜅 𝜅−1 +𝑚2 −2𝜂(𝜂−1) 

4
𝑥 +

𝑙 𝑙+1 

4
𝑥2}               (51b) 

Using equations (5) and (51) we obtain 

𝜋 =  
1−𝑥

4
 ±  

2 𝜅 𝜅−1 +𝑚2 +2𝜂(𝜂−1)−𝑙 𝑙+1 

4
+ 𝑘 +

1

16
 +  

2 𝜅 𝜅−1 +𝑚2 −2𝜂(𝜂−1)

4
−

1

8
 𝑥 +  

𝑙 𝑙+1 

4
− 𝑘 +

1

16
 𝑥2  

(52)  

The quadratic expression under the root of equation (52) must be square of first degree polynomial therefore 

equation (42) can be rewritten as  

𝜋 =  
1−𝑥

4
 ±  

𝑙 𝑙+1 

4
− 𝑘 +

1

16
  𝑥 +

2 𝜅 𝜅−1 +𝑚2 −2𝜂 (𝜂−1)

4
−

1

8

2 
𝑙 𝑙+1 

4
−𝑘+

1

16
 

        (53) 

and the discriminate of the quadratic expression under the square root must be zero, that is 

 
2 𝜅 𝜅−1 +𝑚2 −2𝜂 (𝜂−1)

4
−

1

8
 

2

− 4  
𝑙 𝑙+1 

4
− 𝑘 +

1

16
  

2 𝜅 𝜅−1 +𝑚2 +2𝜂(𝜂−1)

4
+

1

8
−

𝑙 𝑙+1 

4
+ 𝑘 −

1

16
 = 0   (54) 

To calculate the values of k in equation (54) we set  

𝑞 =
2 𝜅 𝜅−1 +𝑚2 

4
and𝑡 =

2𝜂(𝜂−1)

4
+

1

8
=

 𝜂−
1

2
 

2

2

       (55) 

and so from equation (54) we obtain 

𝑘1 =
 𝑙+

1

2
 

2

4
−

  𝑞− 𝑡 
2

2
                     (56a) 

𝑘2 =
 𝑙+

1

2
 

2

4
−

  𝑞+ 𝑡 
2

2
                    (56b) 

Therefore from equation (53) and (56) and by imposing the condition that 𝜏′ < 0 we obtain  

𝜋1 = −𝑥   
𝑞− 𝑡

 2
+

1

4
 −  𝑞+ 𝑡

 2
+

1

4
for𝑘1       (57a) 

𝜋2 = −𝑥   
𝑞+ 𝑡

 2
+

1

4
 −  𝑞− 𝑡

 2
+

1

4
 for𝑘2      (57b) 

By using equations (8), (57a) and (57b) we obtain 

𝜏1 = −2𝑥   
𝑞− 𝑡

 2
+ 1 − 2  𝑞+ 𝑡

 2
for𝑘1 (58a) 

𝜏2 = −2𝑥   
𝑞+ 𝑡

 2
+ 1 − 2  𝑞− 𝑡

 2
for𝑘2 (58b) 

By using equations (6), (7), (56), (57), and (58) we obtain the new eigenvalues  

𝜆1 =
 𝑙+

1

2
 

2

4
−

  𝑞− 𝑡 
2

2
−   

𝑞− 𝑡

 2
+

1

4
 for𝑘1      (59a)  

𝜆2 =
 𝑙+

1

2
 

2

4
−

  𝑞+ 𝑡 
2

2
−   

𝑞+ 𝑡

 2
+

1

4
 for𝑘2      (59b) 

and 

𝜆1 = 𝜆𝑛 = 2𝑛   
𝑞− 𝑡

 2
 + 𝑛 𝑛 + 1 for k1      (60a) 

𝜆2 = 𝜆𝑛 = 2𝑛   
𝑞+ 𝑡

 2
 + 𝑛 𝑛 + 1 for k2      (60b) 

The orbital quantum number is obtained from equations (59) and (60) as 

𝑙 +
1

2
= ±2  

 𝜅 𝜅−1 +𝑚2− 𝜂−
1

2
 

2
+ 𝑛 +

1

2
 for k1     (61a) 

and 

𝑙 +
1

2
= ±2  

 𝜅 𝜅−1 +𝑚2+ 𝜂−
1

2
 

2
+ 𝑛 +

1

2
 for k2     (61b) 

To have physical meaning, the proper choice of l is the values obtained from k2 thus 

𝑙 =    𝜅 𝜅 − 1 + 𝑚2 + 𝜂 + 2𝑛𝑙       (62) 
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The first part of the wave function obtained by using equations (4) and (53b) is   

𝜙 = (1− 𝑥)
 𝑞

 2(1 + 𝑥)
 𝑡

 2
+

1

4       (63) 
The weight function for the second part of the wave function obtained by using equations (10), (51a) and (58b) 

is  

𝜌 = (1− 𝑥)
2 𝑞

 2 (1 + 𝑥)
2 𝑡

 2          (64) 
By using equations (9), (10) and (64) we obtain the second part of the angular wave function given as 

𝑦𝑛  𝑥 =
𝐶𝑛

𝜌 𝑥 

𝑑𝑛

𝑑𝑥 𝑛
 𝜍𝑛 𝑥 𝜌 𝑥  =

𝐶𝑛

(1−𝑥)

2 𝑞

 2 (1+𝑥)

2 𝑡

 2

𝑑𝑛

𝑑𝑥 𝑛
 (1 − 𝑥)

2 𝑞

 2
+𝑛

(1 + 𝑥)
2 𝑡

 2
+𝑛
 = 𝐵𝑛𝑃𝑛

 𝛼,𝛽 
 (65)     

where𝑃𝑛
 𝛼 ,𝛽 

 is the Jacobi polynomial, and 

𝐵𝑛 = 𝐶𝑛 (−1)𝑛2𝑛𝑛!,  𝛼 =  2𝑞,  𝛽 =  2𝑡       (66) 

From equations (2), (63) and (65) we obtain the complete angular wave function as 

𝑃 𝜃 = 𝐵𝑛 (1− 𝑥)
𝛼

2 (1 + 𝑥)
𝛽

2
+

1

4𝑃𝑛
 𝛼 ,𝛽 

(𝑥)       (67) 

The normalization factor Bn is obtained from the normalization condition of angular wave function which is 

expressed in equation (67) as   

 𝑃𝑚  𝜃 
𝜋

0
𝑃𝑛  𝜃 𝑠𝑖𝑛𝜃𝑑𝜃 = 𝛿𝑚𝑛         (68) 

By inserting equation (67) into equation (68) we have      

− 𝐵𝑚 (1− 𝑥)
𝛼

2 (1 + 𝑥)
𝛽

2
+

1

4𝑃𝑚
 𝛼 ,𝛽 

(𝑠)𝐵𝑛 (1− 𝑥)
𝛼

2 (1 + 𝑥)
𝛽

2
+

1

4𝑃𝑛
 𝛼 ,𝛽 

(𝑥)
1

−1
𝑠𝑖𝑛𝜃

𝑑𝜃

𝑑𝑥
𝑑𝑥 = 𝛿𝑚𝑛    (69)            

Since 
𝑑𝑥

𝑠𝑖𝑛𝜃𝑑𝜃
= −4𝑐𝑜𝑠𝜃 = −4 

1+𝑥

2
= −2 2 1 + 𝑥   , then equation (69) can be rewritten as 

 
𝐵𝑚𝐵𝑛

2 2
 (1− 𝑥)𝛼(1 + 𝑥)𝛽𝑃𝑚

 𝛼 ,𝛽 
(𝑥)𝑃𝑛

 𝛼 ,𝛽 
(𝑥)

1

−1
𝑑𝑥 = 𝛿𝑚𝑛      (70) 

Then the normalization factor obtained from equation (70) is  

 

𝐵𝑛𝑙 =  
 2𝑛+𝛼+𝛽+1 𝑛 !Γ(𝑛+𝛼+𝛽+1)

2
𝛼+𝛽−

1
2Γ 𝑛+𝛼+1 Γ(𝑛+𝛽+1)

         (71) 

The total wave function of the system is obtained from equations (45), (49), (67), and (71) and is given as 

𝜓(𝑟,𝜃,𝜑) = 𝐵𝑛𝑟𝐷𝑛 (1− 𝑠)
 
𝜁

2
+

1

4
  1 + 𝑠 

 
𝛿

2
+

1

4
 
𝑃𝑛𝑟

(𝜁 ,𝛿)
(𝑠)(1− 𝑥)

𝛼

2 (1 + 𝑥)
𝛽

2
+

1

4𝑃𝑛𝑙
 𝛼 ,𝛽 

(𝑥)  (72) 

 

Table 3.The First and Second Degree of Jacobi Polynomials with/without The Presence of Non-Central Poschl-

Teller Potential and The Related Un-Normalized Angular Wave Function, 𝑦1 𝑥   and 𝑦2 𝑥  Obtined from 
Equation (73b) and (73c) 

nl m 𝜅 𝜂 l  2𝑞  2𝑡 𝑦𝑛𝑙 𝑥  𝑃𝑙
𝑚  𝜃  

1 0 0 0 2 0 −0.5 −1.5𝑥 − 0.5 − 3𝑐𝑜𝑠2𝜃 − 1  
1 1 0 0 3 1 −0.5 −2.5𝑥 − 1.5 −𝑠𝑖𝑛𝜃 5𝑐𝑜𝑠2𝜃 − 1  
1 0 2 0 3.4 1.4 −0.5 −2.9𝑥 − 1.9 𝑠𝑖𝑛1.4𝜃 −2.9𝑐𝑜𝑠2𝜃 − 1.9  
1 0 0 2 4 0 1.5 −3.5𝑥 + 1.5 𝑐𝑜𝑠2𝜃 −3.5𝑐𝑜𝑠2𝜃 + 1.5  
1 0 2 4 7.4 1.4 3.5 −6.9𝑥 + 2.1 𝑠𝑖 𝑛 1.4𝜃 𝑐𝑜 𝑠 4𝜃  −6.9𝑐𝑜𝑠 2𝜃 + 2.1  
2 0 0 0 4 0 -0.5 8.75𝑥 2 + 2.5x− 3.25  8.75𝑐𝑜𝑠 22θ + 2.5𝑐𝑜𝑠 2𝜃 − 3.25  

2 1 0 0 5 1 -0.5 15.75𝑥 2 + 10.5x

− 2.25 
𝑠𝑖𝑛𝜃  15.75cos22θ + 10.5cos2θ

− 2.25  

2 1 2 0 5.7 1.7 -0.5 21.84𝑥 2 + 18.48x

− 0.36 

𝑠𝑖 𝑛 1.7𝜃  21.84cos22θ + 18.48cos2θ

− 0.36  
2 1 0 4 9 1 3.5 63.75𝑥 2 + 37.5x

− 2.25 

𝑠𝑖𝑛𝜃𝑐𝑜 𝑠 4𝜃  63.75cos22θ + 37.5cos2θ

− 2.25  
2 1 2 4 9.7 1.7 3.5 75.44𝑥 2 + 29.52x

− 5.96 

𝑠𝑖 𝑛 1.7𝜃𝑐𝑜 𝑠 4𝜃  75.44cos22θ

+ 29.52cos2θ − 5.96  
2 0 2 0 5.3 1.4 -0.5 19.11𝑥 2 + 14.82x−

1.29 

𝑠𝑖 𝑛 1.4 19.11cos22θ + 14.82cosθ

− 1.29      
2 0 0 2 6 0 1.5 24.75 𝑥 2 − 13.5x−

3.25 

𝑐𝑜 𝑠 2𝜃  24.75cos22θ− 13.5cosθ − 3.25  
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 𝒀𝟐𝟎𝟎𝟎 𝜽  =  𝒀𝟒
𝟎 = 𝟖.𝟕𝟓 𝒄𝒐𝒔𝟒𝜽+ 𝒔𝒊𝒏𝟒𝜽− 𝟐𝒄𝒐𝒔𝟐𝜽𝒔𝒊𝒏𝟐𝜽 + 𝟐.𝟓(𝒄𝒐𝒔𝟐𝜽−𝒔𝒊𝒏𝟐𝜽)− 𝟑.𝟐𝟓 

  

 𝒀𝟐𝟏𝟎𝟎 𝜽  =  𝒀𝟓
𝟏 = 𝒔𝒊𝒏𝜽  −𝟏𝟓.𝟕𝟓 𝒄𝒐𝒔𝟒𝜽+ 𝒔𝒊𝒏𝟒𝜽− 𝟐𝒄𝒐𝒔𝟐𝜽𝒔𝒊𝒏𝟐𝜽 − 𝟏𝟎.𝟓(𝒄𝒐𝒔𝟐𝜽−𝒔𝒊𝒏𝟐𝜽) +

𝟗

𝟒
   

  

 𝒀𝟐𝟎𝟐𝟎 𝜽  =  𝒀𝟓.𝟒
𝟎  = 𝟐𝟎.𝟗𝟓 𝒔𝒊𝒏𝜽 𝟏.𝟒 −𝟏𝟗.𝟏𝟏 𝒄𝒐𝒔𝟒𝜽 + 𝒔𝒊𝒏𝟒𝜽 − 𝟐𝒄𝒐𝒔𝟐𝜽𝒔𝒊𝒏𝟐𝜽 − 𝟏𝟒.𝟖𝟐(𝒄𝒐𝒔𝟐𝜽−𝒔𝒊𝒏𝟐𝜽) + 𝟏. 𝟐𝟗  

 

 

 𝒀𝟐𝟎𝟎𝟐 𝜽  =  𝒀𝟔
𝟎 = 𝟐𝟏.𝟐𝟓𝒄𝒐𝒔𝟐𝜽 −𝟐𝟒.𝟕𝟓 𝒄𝒐𝒔𝟒𝜽 + 𝒔𝒊𝒏𝟒𝜽 − 𝟐𝒄𝒐𝒔𝟐𝜽𝒔𝒊𝒏𝟐𝜽 + 𝟏𝟑. 𝟓 𝒄𝒐𝒔𝟐𝜽−𝒔𝒊𝒏𝟐𝜽 + 𝟑.𝟐𝟓  

 
 

 

Figure 1. Polar Diagram Of  𝑌 𝑙
𝑚  With/Without The Presence of Poschl-Teller Potential and The Corresponding 

The Three Dimensional Polar Representations of Absolute Values of Angular Function. The Effect Of 

𝑐𝑜𝑠𝑒𝑐 2𝜃  Is Similar With The Effect of M, Magnetic Quantum Number Which Change The Direction of 

Angular Momentum In Z Direction, As Shown In Figures (B) And (C), While The Effect of  𝑠𝑒𝑐 2𝜃  
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Construction of Jacobi polynomials 

The first three un-normalized Jacobi polynomials obtained from equation (65) are 

𝑦 0 𝑥  = 𝐶 0 (73a)    

𝑦 1 𝑥  = 𝐶 1 − 2𝑞 −  2𝑡 − 2 𝑥 +   2𝑡 −  2𝑞        (73b) 

𝑦 2 𝑥  =   2𝑞 +  2𝑡 + 4   2𝑞 +  2𝑡 + 3 𝑥 2 − 2  2𝑡 −  2𝑞    2𝑞 +  2𝑡 + 3 𝑥 +   2𝑡 −  2𝑞  
2
−

  2𝑞 +  2𝑡 + 4 (73c) 

The first and second order of Jacoby polynomials with and without the presence of Poschl-Teller 

potential determined analytically using equations (73b) and (73c) and its corresponding polar wave function are 

presented in Table 2. By the absent of Poschl-teller potential the angular wave functions reduce to associated 

Legendre function but only for which the different values of l and m are even number as shown in the 1st, 2nd, 6th 

and 7th rows. The effect of the presence of Poschl-Teller potential is described using the polar diagram of the 

angular wave function and three dimensional representation of the absolute value of the angular wave function 

as shown in Figure 1. The only significant effect of the presence of Poschl-Teller potential to the angular wave 

function is coming from the 𝑠𝑒 𝑐 2𝜃  term as shown in figure 1 (d). The 𝑠𝑒 𝑐 2𝜃  term causes the increase of the 

orbital quantum number thus change the degeneracy number.[28,29] 

 

IV. Result And Discussion 
The presence of Poschl-Teller non-central potential simultaneously with Scarf potential causes 

increases the orbital quantum number and decreases the energy levels of Scarf potential. By setting 𝜂 = 𝜅 =
𝑙 = 0 the energy spectrum and the radial wave function of the non-central potential reduces to the energy 

spectrum and wave function of Scarf potential. For 𝜂 = 𝜅 = 0 the angular wave function of Scarf  potential 

with Poschl-Teller reduces to associated Legendre polynomials with l and m differed by even numbers. Both the 
radial or angular wave functions are expressed in Jacobi polynomials and the angular wave function is 

normalized. It may be concluded that there is an effect of the presence of Poschl-Teller potential to the system 

governed by Scarf potential, therefore the Poschl-Teller non-central potential can be considered as the 

perturbation part. 

 

V. Conclusion 
It has been shown that the Schrodinger equation of Scarf potential with Poschl-Teller non-central potential 

is solved approximately using Nikiforov–Uvarov method with suitable coordinate transformation. The energy 

spectrum of the system is obtained in the closed form and the radial and angular wave function is expressed in 

Jacobi polynomials. The presence of Poschl-Teller non-central potential causes the decrease in energy spectrum 
of Scarf potential and increases the orbital quantum number. 
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