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Abstract: 
A detailed analysis of the matrix methods is done. The aim is to apply these matrix methods to understand 

functioning of spintronic devices. We have explored a two-electron composite system in a ferromagnet system. 

The electron spin has been utilized in various spintronic devices by utilizing FN (Ferromagnet/Non-ferromagnet) 

junctions. The aim is to increase the efficiency of the spintronic devices by mathematical models. 
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I. Introduction 
The matrix methods, such as, the orthonormal bases, Gram-Schmidt process, invertible/reversible 

matrices, determinants, projections, Eigen Values, Eigen vectors, span, range, rank, square root, reduction map, 

positive semidefinite (PSD), density matrices, reduced density matrices, Trace, partial trace, and partial transpose 

are discussed with emphasis on applications in understanding a multiple-electron-spin system in spintronic 

devices. The case of a two electrons system in a ferromagnetic material is considered discussed utilizing the 

matrix algebra. 

 

II. Linear And Matrix Algebra: Role In Quantum Computing 
The quantum bits (qubits) are designated as the orthonormal bases of a unitary matrix. The mathematical 

computations involving quantum bits deal with matrices, vector spaces, and tensors. A single qubit is represented 

as a 2 × 1 column vector in the ket notation (|𝑞⟩). The orthonormal bases for a composite quantum system 

(consisting of more than 1 qubit) is obtained by the tensor product (Kronecker product) of the orthonormal bases 

of the constituent qubits. The difference between orthonormal bases and any linearly independent bases is that 

orthonormal bases form a unit square grid, whereas any other linearly independent bases form a parallelogram 

grid (Johnston 2021). In fact, any non-zero invertible matrix converts the unit square grid into parallelogram grid. 

A matrix which is non-invertible, i.e., with zero determinant will collapse a square or parallelogram grid into a 

line resulting in loss of information (non-invertible/irreversible). Given any linearly independent bases of a 

matrix/ vector space/ polynomial, one can always calculate the corresponding orthonormal bases using Gram-

Schmidt Process (Denton and Waldron 2012; Johnston 2021; Lipschutz and Lipson 2009). 

Determinant of a matrix 𝐴 can be interpreted as a measurement of expansion of the space occupied by 

orthonormal bases when operated upon by 𝐴. Determinant is generally calculated using the permutation formula. 

For a diagonal matrix, the determinant is given by the sum of its diagonal elements which is also the definition of 

Trace of a matrix. Determinant of similarity matrices is the same. 

Determinant of a matrix 𝐴 is a measure of how much a linear transformation (provided by the matrix 𝐴) 

expands or contracts space. Trace can be compared with determinant in providing similar information. Trace of 

an 𝑛-dimensional identity matrix is 𝑡𝑟𝑎𝑐𝑒(𝐼) = 𝑛. If the trace of any matrix 𝐶 is zero then there must exist 

matrices 𝐴 and 𝐵 such that there commutation [𝐴, 𝐵] is given by 𝐴𝐵 − 𝐵𝐴 = 𝐶. Geometric interpretation of Trace 

tells that if 

 

𝑓𝐴: 𝔽 → 𝔽    (1) 

Such that 

 

𝑓𝐴 = det (𝐼 + 𝑥𝐴)   (2) 

 

Where 𝑥 is the 𝑥 − 𝑎𝑥𝑖𝑠 space coordinate, then 

𝑓𝐴
′ = 𝑡𝑟𝑎𝑐𝑒(𝐴)    (3) 
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That is, the trace is the directional derivative of the determinant. 

Eigen values 𝜆 and corresponding Eigen vectors 𝒗 of a matrix 𝐴 are computed from the its characteristic 

equation det(𝐴 −  𝜆𝐼) = 𝑝𝐴(𝜆), where 𝐼 is the identity matrix of same dimensions as matrix 𝐴, and 𝑝𝐴(𝜆) is a 

polynomial in 𝜆, and the degree of 𝑝𝐴 is the size of 𝐴. The Eigen vectors of 𝐴 belong to subspace of 𝐴 called the 

Eigenspace. One of the applications of Eigen values and Eigen vectors is to diagonalize the corresponding matrix 

𝐴 satisfying the relation 𝐴 = 𝑃𝐷𝑃−1, where the Eigen values of 𝐴 are the diagonal elements in matrix 𝐷 and the 

columns of matrix 𝑃 consist of the corresponding Eigen vectors in the same order. Matrices 𝐴 and 𝐷 are similarity 

matrices, because of the fact that these two matrices (and for that matter, any group of similarity matrices) have 

same Eigen Values. Trace of similarity matrices is the same. Hence Trace can be evaluated as the sum of Eigen 

values of a matrix. 

 

Mathematically, we can write the Trace of a square matrix 𝐴 as the sum of its diagonal terms 𝑎𝑖𝑖: 
 

𝑇𝑟𝑎𝑐𝑒(𝐴) = ∑ 𝑎𝑖𝑖
𝑛
𝑖=1     (4) 

 

Trace can also be obtained as the sum of Eigen values of matrix 𝐴 counted with multiplicities: 

 

𝑇𝑟𝑎𝑐𝑒(𝐴) = ∑ 𝜆𝑖
𝑛
𝑖=1     (5) 

 

Physical significance of Trace: Trace is not just a mathematical number, in quantum computing it ensures 

that the probabilities are normalized (Trace of a density matrix (𝝆) is unity (Blum 2012), Vandana Arora 2025), 

this will be discussed in detail in later sections in this paper. 

 

𝑇𝑟𝑎𝑐𝑒(𝝆) = 1        (6) 

 

Trace also gives the expectation value of an observable ⟨𝑥⟩ in quantum mechanics: 

 
⟨𝑥⟩ = 𝑇𝑟𝑎𝑐𝑒(𝝆𝑥)     (7) 

 

In physics, Trace is linked to flux, pressure, and stress tensors, giving a ‘total sum’ of the effect of any matrix. 

Let us now understand the terms: span, range, and rank of a matrix. ‘Span’ is the set of all the vectors 

one can make in a given vector space, or a matrix of a given dimension. ‘Range’ gives the span of all the columns 

in a given matrix. And ‘rank’ tells the dimension of the range, i.e. the number of independent columns of a matrix. 

 

Square root of a matrix: If matrix 𝐵 is the square root of matrix 𝐴, then 

𝐵2 = 𝐴       (8) 

Not every matrix has a real square root, but every positive semi-definitive matrix does have a real square 

root. The square root of a matrix is not unique, meaning that there can be multiple square root matrices 

corresponding to a matrix. Square root matrix does have a physical significance: in quantum mechanics, the 

density matrix 𝝆 can be written as 𝝆 = √𝝆√𝝆 . The density matrix describes the mixed states, and its square root 

appears in defining the purifications of mixed states (embedding the system in a larger Hilbert space). Also in 

measurement probabilities 𝑝(𝑖) = 𝑇𝑟𝑎𝑐𝑒(𝑀𝑖
†𝑀𝑖𝝆), the 𝑀𝑖 operators are usually constructed from the square root 

of positive operators. For example, in quantum mechanics, when making a measurement using computational 

bases 𝐸𝑖  , the probability of outcome 𝑖 when measuring a state 𝝆 is: 

 

𝑝(𝑖) = 𝑇𝑟𝑎𝑐𝑒(𝐸𝑖𝝆)      (9) 

 

In order to connect this to the ‘state update rule’ after measurements, i.e. the state collapses to 𝑖 after 

measurement outcome reveals 𝑖 state; we introduce measurement operator 𝑀𝑖 such that 

 

𝐸𝑖 = 𝑀𝑖
†𝑀𝑖       (10) 

 

This guarantees that 𝐸𝑖 is positive semidefinite (PSD), i.e. the probabilities are consistent (non-negative): 

 

𝑝(𝑖) = 𝑇𝑟𝑎𝑐𝑒(𝑀𝑖
†𝑀𝑖𝝆)      (11) 
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Now if after the measurement, the outcome state is 𝑖 , then state of the system collapses to 

 

𝝆 ↦
𝑀𝑖𝝆𝑀𝑖

†

𝑝(𝑖)
       (12) 

 

Projection (𝑃) can be thought of as a linear transformation that crushes the vectors when operated upon, 

onto a sub-space of the original vector space. For a given sub-space of a vector-space, there is a unique orthogonal 

projection, whereas there are numerous oblique projections for the same sub-space. Making a projection twice 

has no additional effect over a single projection, hence  𝑃2 = 𝑃. An orthogonal projection matrix is symmetric 

about the main diagonal. The trace of a projection matrix is the same as its rank, in other words, it tells about the 

dimension of the subspace projected onto by the projection matrix 𝑃. 

 

The next important linear mapping in matrices is the “Reduction Map” 𝛷𝑅: Ϻ𝑛 → Ϻ𝑛, which is defined as 

 

𝛷𝑅(𝑋) = 𝑇𝑟𝑎𝑐𝑒(𝑋)𝐼 − 𝑋      (13) 

 

The reduction map takes a matrix 𝑋, and subtracts it from a multiple of the identity equal to its trace. It 

can be shown that the reduction map neatly separates the trace part from the traceless part. In quantum theory, 

the reduction map plays two important roles: detection of entanglement, and to highlight the “trace component” 

vs. “traceless component” structure of an operator, which is crucial for understanding quantum state 

decompositions. 

With all the basic terms now understood about matrix algebra, we will now focus on to their applications 

in understanding the quantum computation terms, such as, density matrix, reduced density matrix, and partial 

trace. 

The density matrix 𝝆 corresponding to a quantum state |φ⟩ (pure or mixed) is calculated as the outer 

product of the quantum state with itself, i.e. 𝝆 = |φ⟩ ⟨φ|. The physical interpretation of density matrix is that the 

diagonal terms give the probability density of the quantum state |φ⟩ in the computational bases and its trace is 

equal to unity signifying that the total probability of occurrence of  |φ⟩ is unity. The off-diagonal terms are related 

to the entanglement. 

By calculating partial trace and partial transpose on the density matrix, the details of the entanglement 

can be evaluated. The partial trace is how to “ignore” or “discard” part of a bipartite quantum system consisting 

of two quantum states |A⟩and |B⟩. Let the density matrix of the bipartite system is 

 

𝝆𝑨𝑩 = ℋ𝐴⊗ℋ𝐵      (14) 

 

The reduced density matrix of sub-system 𝐴 by taking partial trace over sub-system 𝐵 is evaluated as: 

 

𝝆𝑨 = 𝑇𝑟𝑎𝑐𝑒𝐵(𝝆𝑨𝑩)      (15) 

 

The trace of 𝝆𝑨𝑩
𝟐  is unity (𝑇𝑟𝑎𝑐𝑒(𝝆𝑨𝑩

𝟐 ) = 1), whereas the value of the partial trace of reduced matrix 

gives a measure of the entanglement of the sub-systems 𝐴 and 𝐵. For example, for a Bell state, which is maximally 

entangled, and the partial trace can be shown to be 𝑇𝑟𝑎𝑐𝑒(𝝆𝑨
𝟐) = 𝑇𝑟𝑎𝑐𝑒 (

1

2
𝐼) =

1

2
< 1. It is emphasized here that 

Trace is a scalar quantity, whereas partial Trace is an operator function. 

 

Partial Transpose: The partial transpose is an operation where only one subsystem of a bipartite operator 

is transposed. According to the Peres–Horodecki criterion (PPT test): 

 

if 𝝆𝑨𝑩 is separable, i.e. consists of mixed states, then partial transpose of 𝝆𝑨𝑩, i.e. 𝝆𝐴𝐵
𝑇𝐵 ⩾ 0 (positive 

semidefinite, PSD) 

And if 𝝆𝐴𝐵
𝑇𝐵  has negative Eigen values, then 𝝆𝑨𝑩 is entangled. 

 

III. Electron Spin Relaxation Process 
The pillar of spintronic devices is an FN (Ferromagnetic/Non-ferromagnetic) junction. Materials with 

ferromagnetic/anti-ferromagnetic properties include Fe, Ni, Co, Fe3O4, CrO2, to name a few. The polarized spin 

electrons are injected from F-region to N-region, where their spins start to relax (de-polarize) away from the FN 

interface due to various relaxation mechanisms such as, the “spin-orbit interaction”, “Hyperfine lines”, “carrier-

carrier interaction”, “environment interaction” (Dey and Roy 2021), resulting in alterations in their orientations. 
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In this paper, we consider a system of two electrons in a ferromagnetic material and evaluate the spin 

relaxation mechanisms using Pauli’s matrix algebra. For a spin 
1

2
 particle, the spin operator is given as: 

 

𝑺̂ =
ħ

𝟐
𝝈       (16) 

 

Where 𝝈 = (𝝈𝒙, 𝝈𝒚, 𝝈𝒛) are the Pauli’s matrices, given by: 

 

𝝈𝒙 = (
0 1
1 0

)      (17) 

 

𝝈𝒚 = (
0 −𝑖
𝑖 0

)      (18) 

 

𝝈𝒛 = (
1 0
0 −1

)      (19) 

 

The corresponding spin operators are 𝑺𝒙̂ =
ħ

𝟐
𝝈𝒙,    𝑺𝒚̂ =

ħ

𝟐
𝝈𝒚,    𝑺𝒛̂ =

ħ

𝟐
𝝈𝒛. For an N-aligned spins in a 

ferromagnet, the total spin operator is given as 

 

𝑺̂𝑻𝒐𝒕𝒂𝒍 = ∑ 𝑺̂𝒊
𝑵
𝒊=𝟏       (20) 

 

In case of fully polarized  𝑁 ground states, the giant spin is given by 𝑺 =
𝑁

2
 and the spin matrix is now 

(2𝑆 + 1) × (2𝑆 + 1) dimensions instead of 2 × 2 Pauli matrices. The actual magnetization direction of the 

composite system is encoded in the expectation value of this (2𝑆 + 1) × (2𝑆 + 1) matrix. 

 

For two-electron composite system, the total spin operator is obtained as: 

 

𝑺̂𝒙 =
ħ

𝟐
(𝝈𝒙⊗ 𝑰 + 𝑰⊗ 𝝈𝒙) =

ħ

𝟐
 (

0 1
1 0

1 0
0 1

1 0
0 1

0 1
1 0

)   (21) 

 

𝑺̂𝒚 =
ħ

𝟐
(𝝈𝒚⊗ 𝑰 + 𝑰⊗ 𝝈𝒚) =

ħ

𝟐
 (

0 −𝑖
𝑖 0

−𝑖 0
0 −𝑖

𝑖 0
0 𝑖

0 −𝑖
𝑖 0

)   (21) 

 

𝑺̂𝒛 =
ħ

𝟐
(𝝈𝒛⊗ 𝑰 + 𝑰⊗ 𝝈𝒛) =

ħ

𝟐
 (

2 0
0 0

0 0
0 0

0 0
0 0

0 0
0 −2

)   (21) 

 

The square of the total spin is evaluated as follows: 

 

𝑺̂𝑻𝒐𝒕𝒂𝒍
𝟐 = 𝑺̂𝒙

𝟐 + 𝑺̂𝒚
𝟐 + 𝑺̂𝒛

𝟐 = (

2ħ𝟐 0
0 ħ𝟐

0 0
ħ𝟐 0

0 ħ𝟐

0 0
ħ𝟐 0
0 2ħ𝟐

)   (22) 

 

Density Matrices: 

A simple ferromagnet example consists of pure fully polarized state, i.e. both spins up. Take the pure state as: 
|𝜑⟩ = |00⟩ = |0⟩⟨0|      (23) 

 

The corresponding density matrix is 

𝝆𝟎𝟎 = |00⟩⟨00| = (

1 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

)     (24) 
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The corresponding single-spin reduced matrix is: 

 

𝝆(𝟏) = 𝑻𝒓𝟐(𝝆𝟎𝟎) = (
1 0
0 0

) = |0⟩⟨0|     (25) 

 

(𝑻𝒓𝟐 implies tracing out spin 2) 

 

Eqn. 25 concludes that each spin is in pure state |0⟩ which is expected for a fully polarized pair. 

 

Now considering the case when the density matrix projects onto a triplet sub-space of the ferromagnet, 

let the system be in an unpolarized state within the triplet manifold: 

 

𝝆𝒕𝒓𝒊𝒑𝒍𝒆𝒕 =
1

3
∑ |1,𝑚⟩⟨1,𝑚|𝑚=+1,0,−1 =

(

 
 
 

1

3
0

0
1

6

0 0
1

6
0

0
1

6

0 0

1

6
0

0
1

3)

 
 
 

    (26) 

 

Its single-spin reduced density matrix (tracing out the second spin) is obtained as 

 

𝑻𝒓𝟐(𝝆𝒕𝒓𝒊𝒑𝒍𝒆𝒕) =
𝟏

𝟐
𝑰(𝟐×𝟐) = (

1

2
0

0
1

2

)      (27) 

 

Eqn. 27 can be interpreted as the two-spin system in a triplet manifold has no information about the 

orientation, each individual spin is maximally mixed, i.e. completely unpolarized, and has a reduced state as  
1

2
𝐼 

. 

IV. Discussion 
The authors have given a detailed description of the matrix algebra required to understand the quantum 

nature of electron spin in spintronic devices. A two-electron pure and triplet states of a ferromagnet is analyzed 

using the methods of the density matrix. Reduced density matrices are computed using partial tracing technique. 

The mathematical model is verified in a real spintronic environment. 
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