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Abstract:  
Background: Holonomic quantum computation leverages geometric phases to implement quantum gates, 
offering inherent robustness against certain types of errors. This makes it a promising candidate for fault-
tolerant quantum computing. In this study, we explore adiabatic topological quantum control in a three-level 
Lambda system, focusing on the performance of holonomic gates under realistic, noisy conditions. 
Materials and Methods: We employed numerical simulations to implement holonomic quantum gates via cyclic 
adiabatic evolutions in parameter space. Realistic imperfections were introduced through controlled Gaussian 
perturbations applied to the adiabatic trajectories. The time evolution of the quantum state was computed using 
small-time-step propagators derived from the system Hamiltonian. The resulting gates were projected onto the 
logical subspace of the qubit, and the evolution of the logical state was visualized on the Bloch sphere to assess 
gate performance. 
Results: Despite the presence of Gaussian noise in the control parameters, the holonomic gates remained 
nearly unitary. This behavior underscores the robustness of topological quantum control. The Bloch sphere 
visualizations provided valuable insight into the dynamics of the logical qubit under noisy conditions. 
Conclusion: Our results demonstrate the resilience of holonomic quantum gates to realistic perturbations, 
confirming the advantages of geometric control schemes for robust quantum computation. The combination of 
noisy trajectory modeling and Bloch sphere analysis offers a powerful approach for evaluating the fidelity and 
stability of quantum gates in practical implementations, with potential implications for fault-tolerant quantum 
computing architectures. 
Key Word: Holonomic quantum control, topological quantum gates, adiabatic evolution, Bloch sphere 
visualization, noise robustness. 
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I. Introduction 
 Quantum control is essential for advancing quantum technologies, as it allows quantum states to be 

manipulated precisely for use in quantum computation, communication, and sensing1. It is crucial for improving 
these technologies. This is because it allows us to alter quantum states with great precision. These states can 
then be used in quantum computation, communication, and sensing. One approach that has attracted significant 
attention is topological quantum control, thanks to its ability to withstand certain types of error. These errors 
result from the geometric properties of quantum evolutions rather than from detailed dynamical parameters2,3. 
This strength makes topological quantum control a likely choice for fault-tolerant quantum computing 
structures4. 

Holonomic quantum computation, a subset of topological control, uses non-Abelian geometric phases, or 
holonomies, acquired by quantum systems undergoing cyclic adiabatic evolution in a parameter space5,6. Three-
level Lambda (Λ) systems have been suggested as effective ways of implementing holonomic gates, where the 
logical qubit is encoded in a degenerate subspace that is resistant to certain control errors7,8. 

Despite their theoretical robustness, the practical implementation of holonomic gates is challenged by issues 
such as parameter fluctuations and environmental noise, which can reduce gate fidelity9. It is crucial to 
understand the effects of noise on the performance of topological quantum gates to realize scalable quantum 
processors10. 

In this study, we investigate adiabatic topological quantum control in a three-level Λ-type system with noisy 
parameter trajectories using numerical methods. We introduce Gaussian noise into the control angles, θ(t) and 
ϕ(t), to model realistic experimental imperfections, and analyze the impact of these imperfections on holonomic 
gate fidelity. To provide an intuitive visualization of qubit dynamics, we plot the evolution of the logical state 
on a Bloch sphere. This offers geometric insight into the control process. 



Topological Quantum Control With Noisy Adiabatic Paths And Bloch Sphere Visualization 

DOI: 10.9790/4861-1705011023                            www.iosrjournals.org                                                 11 | Page 

The results demonstrate that holonomic gates can maintain a certain degree of unitarity and stability in the 
presence of significant noise, suggesting that geometric control schemes could be effective in noisy 
environments. Furthermore, the Bloch sphere visualization is a valuable tool for evaluating and refining 
quantum control protocols. 
 
Theoretical framework 

Topological quantum control exploits the geometric properties of quantum state evolution, offering 
robustness that is not reliant on detailed dynamics, but rather on the global features of the evolution path in 
parameter space2. Non-Abelian geometric phases (or holonomies) arising from cyclic adiabatic evolution within 
a degenerate space are utilized in holonomic quantum computation5,3. 
 
Three-Level lambda system Hamiltonian 

A commonly studied system for holonomic control is the three-level Lambda (Λ) configuration, where two 
low-energy states |0⟩ and |1⟩ encode the logical qubit, and an excited state |𝑒⟩ serves as an ancillary level for 
control7.  

 

 
Figure 1: A three-level Lambda-type system used for adiabatic holonomic quantum computation. 

 
The diagram shows a three-level arrangement where the two logical (ground) states |0⟩ and |1⟩ are joined to 

an excited state |𝑒⟩ by two control fields that change over time. These control fields are called Ω଴(𝑡) and Ωଵ(𝑡). 
As depicted in figure 1, these couplings define the so-called bright and dark states |𝐵(𝑡)⟩ and |𝐷(𝑡)⟩, which 

are coherent superpositions of the logical states. The dark state remains decoupled from the excited state 
throughout the evolution, enabling robust adiabatic control that is central to implementing holonomic quantum 
gates. The coupling scheme gives rise to two orthogonal instantaneous superposition states, and the dark state is 
given by: 

|𝐷(𝑡)⟩ =
ஐభ(௧)

ஐ(௧)
|0⟩ +

ஐబ(௧)

ஐ(௧)
|1⟩                                                                                                                                                  (1)  

where Ω(𝑡) = ඥ|Ω଴(𝑡)|ଶ + |Ωଵ(𝑡)|ଶ is the generalized Rabi frequency. 
During adiabatic evolution, the system remains in the dark state subspace, avoiding population of the 

excited state |𝑒⟩. This mechanism enables robust geometric phase accumulation and forms the basis for non-
Abelian holonomic quantum gates. 

The system’s Hamiltonian under resonant drives can be written as: 
𝐻(𝑡) = Ω଴(𝑡)|0⟩⟨𝑒| + Ωଵ|1⟩⟨𝑒| + Ω଴

∗(𝑡)|𝑒⟩⟨0| + Ωଵ
∗|𝑒⟩⟨1|                                                                                       (2) 

where Ω଴(𝑡) and Ωଵ(𝑡) are time-dependent Rabi frequencies controlling the transitions |0⟩ ↔ |𝑒⟩ and |1⟩ ↔ |𝑒⟩, 
respectively. 

Parameterizing these couplings as: 
Ω଴(t) = Ωcosθ(t), Ωଵ(t) = Ωsinθ(t)e୧ம(୲)                                                                                                                       (3)  
with Ω representing a constant amplitude, control is achieved through the gradual variation of angles.𝜃(𝑡) and 
𝜙(𝑡) over a closed path in the (𝜃, 𝜙) parameter space. 
 
Adiabatic evolution and holonomies 

If the evolution is adiabatic and cyclic, the system remains within the degenerate subspace spanned by the 
dark states, which do not populate the excited level |𝑒⟩ 6. The change in the logical qubit space is like a turning 
around of the path, which is determined by the shape of the path: 
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𝑈

= 𝒫 exp ቌ− ර 𝒜

𝒞

ቍ                                                                                                                                                                     (4) 

where 𝒫 denotes path ordering, 𝒞 is the closed loop in parameter space, and 𝒜 is the non-Abelian Berry 
connection5. 
 
Noise in parameter trajectories 

Realistic implementations involve noise and control imperfections that cause deviations from ideal paths 
and potentially affect gate fidelity [9]. To model these effects, we introduce Gaussian noise perturbations, 𝛿𝜃(𝑡) 
and 𝛿𝜙(𝑡), which are added to the nominal control angles to produce noisy trajectories. 
𝜃ᇱ(𝑡) = 𝜃(𝑡) + 𝛿𝜃(𝑡), 𝜙ᇱ(𝑡) = 𝜙(𝑡) + 𝛿𝜙(𝑡)                                                                                                                 (5)  

Studying the system’s response to these noisy trajectories enables assessment of the robustness of 
holonomic gates under realistic conditions. 
 
Projection to logical subspace and Bloch sphere representation 

Although the system is three-level, quantum information is encoded in the two-dimensional logical 
subspace span {|0⟩, |1⟩ }. After time evolution under the noisy Hamiltonian, the final state is projected onto this 
logical subspace. The logical qubit state |𝜓௅⟩ can be represented on the Bloch sphere by mapping the two-level 
state vector to a three-dimensional vector r = (𝑥, 𝑦, z), where: 
 𝑥 = 2𝑅𝑒(𝛼∗𝛽), 𝑦 = 2𝐼𝑚(𝛼∗𝛽), 𝑧 = |𝛼|ଶ − |𝛽|ଶ                                                                                                             (6)  

 
II. Material And Methods 

To investigate the robustness of adiabatic topological quantum control under realistic noise conditions, we 
numerically solve the time-dependent Schrödinger equation for a three-level Lambda system with a time-
dependent Hamiltonian H(t). The main steps of the numerical procedure are described below. 
 
Generation of noisy trajectories 

The ideal control parameters 𝜃(𝑡) and 𝜙(𝑡) define a smooth, closed path in the parameter space, commonly 
parametrized as7: 

𝜃(𝑡) =
𝜋

2
ቆ1 − cos ൬

2𝜋𝑡

𝑇
൰ቇ , 𝜙(𝑡) =

2𝜋𝑡

𝑇
                                                                                                                          (7) 

where 𝑇 is the total evolution time. To simulate imperfections, present in realistic experimental settings, we add 
independent Gaussian noise to both parameters at discrete time intervals9: 
𝜃ᇱ(𝑡௜) = 𝜃(𝑡௜) + 𝛿𝜃௜ , 𝜙ᇱ(𝑡௜) = 𝜙(𝑡௜) + 𝛿𝜙௜                                                                                                                       (8)  
with 𝛿𝜃௜, 𝛿𝜙௜~𝑁(0, 𝜎ଶ), where 𝜎 quantifies noise strength. 
 
Construction of time evolution operators 
The time evolution over a small-time step Δt is approximated by the unitary propagator. 
𝑈(𝑡௜ + Δ𝑡, 𝑡௜) = 𝑒(ି௜ு(௧೔)୼௧)                                                                                                                                                   (9) 
where 𝐻(𝑡௜) is evaluated at the noisy parameters 𝜃ᇱ(𝑡௜), 𝜙ᇱ(𝑡௜)

14. The full evolution operator is obtained as the 
time-ordered product of these propagators: 

𝑈(𝑇, 0) = ෍ 𝑈(𝑡௜ାଵ, 𝑡௜)

ேିଵ

௜ୀ଴

                                                                                                                                                     (10) 

with 𝑁 =
୘

୼௧
 . 

 
Projection onto the logical qubit subspace 

The first logical qubit state, |𝜓௅(0)⟩, is found within the two-dimensional dark space of the three-level 
system. After evolving under 𝑈(𝑇, 0), the resulting state, |𝜓(𝑇)⟩, may contain some population outside the 
logical subspace due to noise-induced leakage6. We can analyze gate performance by projecting the final state 
back onto the logical space spanned by |0⟩ and |1⟩. 
 
Visualization of the geometric phase as an area in (𝜽, 𝝓) space 

The representation of the geometric phase as a surface area in the angular parameter space—characterized 
by the polar angle 𝜃 and azimuthal angle 𝜙 —offers a robust and insightful geometric interpretation of phase 
accumulation in quantum systems. Trajectories on the Bloch sphere are often used to illustrate this visualization. 
The geometric phase is the solid angle subtended by a closed path in this context. 
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Figure 2 illustrates the trajectory of a quantum system in the control parameter space (𝜃, 𝜙) and its relation 
to the geometric phase integral. The lower sinusoidal blue curve corresponds to the polar angle 𝜃 as a function 
of the azimuthal parameter 𝜙, tracing a closed loop in parameter space. The upper dark blue curve represents 
𝑐𝑜𝑠ଶ(𝜃), whose integral over 𝜙 determines the geometric phase 𝛾 = ∮ 𝑐𝑜𝑠ଶ(𝜃)𝑑𝜙. The light blue shaded area 
under the 𝑐𝑜𝑠ଶ(𝜃) curve illustrates the accumulated geometric phase, emphasizing its topological nature and 
resilience to local perturbations. A red dot marks the initial point of the evolution, highlighting the cyclic 
character of the trajectory. This dual representation links the system’s trajectory in (𝜃, 𝜙) space to the phase 
acquired during adiabatic holonomic evolution. 

 

 
Figure 2. Trajectory in parameter space and geometric phase integral. 

 
In mathematics, the geometric Berry phase obtained during a periodic, adiabatic process can be described as 

a surface integral of the Berry curvature across the area enclosed by the trajectory in parameter space. This 
makes a clear connection between the geometric phase and the solid angle, showing how the ideas of quantum 
mechanics can be linked to real-world geometry11. 

Not only is conceptual clarity enriched by this geometric approach, but it also serves as a practical 
analytical tool in the study of two-level quantum systems, such as spin-½ particles, qubits, and polarized light 
setups. It allows for a straightforward and visual comprehension of phase accumulation, circumventing the 
necessity for complex algebraic manipulations12. 

From an applied perspective, picturing the geometric phase as a tool can aid in the planning, management, 
and review of trials across areas such as quantum information processing, topological materials, and precision 
interferometry. The geometric representation of the phase offers an intuitive method for manipulating quantum 
phases. This is a foundational aspect for implementing quantum gates. It is also important for detecting 
topological invariants, and it helps to optimize interferometric sensitivity13. 
 
Bloch sphere visualization 

The projected logical qubit state |𝜓௅(𝑇)⟩ = 𝛼|0⟩ + 𝛽|1⟩ is mapped onto the coordinates of the Bloch 
sphere6, which allows for an intuitive geometric characterized of qubit evolution and gate fidelity 10,14. 

The Bloch sphere is a fundamental tool in quantum mechanics, particularly for studying and visualizing the 
quantum states of two-level systems, such as qubits. It shows quantum states as points on a sphere. Each point 
on the sphere shows a different pure state of the qubit. This representation makes it easier for us to understand 
complex quantum phenomena such as superposition, entanglement and quantum gates, which are all 
fundamental to quantum computing and quantum information theory. 

In quantum computing, where qubits are the basic units of information, the Bloch sphere assists with 
designing and analyzing quantum algorithms. The visual model helps researchers and engineers to conceptualize 
quantum entanglement and interference, which are pivotal for tasks such as quantum error correction and 
quantum cryptography 15. 

In sum, the Bloch sphere serves to advance the didactic comprehension of quantum mechanics and quantum 
information, thus rendering it an indispensable instrument for theoretical study and practical applications in the 
domain of quantum technologies. 
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Topological quantum control with noisy adiabatic paths: A detailed example 
We provide a detailed example illustrating how topological features in quantum control can remain robust 

under noisy adiabatic evolution, using a single qubit system subjected to a rotating magnetic field. This setup is 
well-known for exhibiting geometric Berry phases and serves as a canonical example for visualizing topological 
control on the Bloch sphere 11,16,17. 
 
System description: Qubit in a rotating magnetic field  
We consider a two-level system (qubit) governed by a time-dependent Hamiltonian: 

𝐻(𝑡) =
ℏ

2
Ωሬሬ⃗ (𝑡) ∙ 𝜎⃗                                                                                                                                                                   (11) 

where 𝜎⃗ = ൫𝜎௫, 𝜎௬ , 𝜎௭൯ are the Pauli matrices, and Ωሬሬ⃗ (𝑡) represents an effective magnetic field of fixed 
magnitude Ω whose direction varies slowly over time. Specifically, the control path in parameter space is 
defined by: 

Ωሬሬ⃗ (𝑡) = Ω ቌ

𝑠𝑖𝑛𝜃(𝑡)𝑐𝑜𝑠𝜙(𝑡)

𝑠𝑖𝑛𝜃(𝑡)𝑠𝑖𝑛𝜙(𝑡)

𝑐𝑜𝑠𝜃(𝑡)

ቍ                                                                                                                                            (12) 

In the noiseless case, 𝜃(𝑡) = 𝜃଴ is constant and 𝜙(𝑡) varies slowly from 0 to 2𝜋, sweeping out a closed 
loop on the Bloch sphere. This adiabatic evolution leads to the accumulation of a Berry phase, which is purely 
geometric and given by: 
𝛾 = −𝜋(1 − 𝑐𝑜𝑠𝜃଴)                                                                                                                                                              (13) 
corresponding to the solid angle enclosed by the loop on sphere 11. 
 
Noisy control path 

We now introduce noise into the adiabatic path by allowing small random perturbations in the polar angle 
𝜃(𝑡). Specifically, we consider: 
𝜃(𝑡) = 𝜃଴ + 𝛿𝜃(𝑡)                                                                                                                                                                 (14) 
where 𝛿𝜃(𝑡) is a zero-mean Gaussian stochastic process with correlation function: 

〈𝛿𝜃(𝑡)𝛿𝜃(𝑠)〉 = 𝜎ଶ𝑒
ି|௧ି௦|

ఛ೎                                                                                                                                                    (15) 
with noise strength 𝜎 and correlation time 𝜏௖. This leads to stochastic variation in the geometric phase: 
𝛾෤ = −𝜋൫1 − 𝑐𝑜𝑠(𝜃଴

+ 𝛿𝜃(𝑡))൯                                                                                                                                                (16) 
Expanding to second order: 

𝛾෤ ≈ −𝜋 ൬1 − 𝑐𝑜𝑠𝜃଴ +
1

2
𝜎ଶ𝑐𝑜𝑠𝜃଴൰                                                                                                                                   (17) 

Taking the expectation over the noise ensemble, we obtain the mean and variance of the noisy geometric phase: 
𝑉𝑎𝑟(𝛾෤) = 𝜋ଶ𝑠𝑖𝑛ଶ𝜃଴ ∙ 𝜎ଶ                                                                                                                                                      (18) 

These expressions indicate that the geometric phase is robust to first-order fluctuations in the control path, 
but second-order contributions lead to dephasing and decoherence 18. 
Bloch sphere visualization 

To visualize the effect of noise on the system’s trajectory, we numerically simulate the qubit’s evolution 
using the stochastic Schrödinger equation: 
𝑑

𝑑𝑡
𝑟(𝑡) = ൣΩሬሬ⃗ (𝑡) + 𝛿Ωሬሬ⃗ (𝑡)൧ × 𝑟(𝑡)                                                                                                                                       (19) 

where 𝑟(𝑡) is the Bloch vector and 𝛿Ωሬሬ⃗ (𝑡) is the noise-induced fluctuation in the control field. The result is a 
trajectory that deviates from the ideal conical path, leading to a “blurring” of the endpoint on the Bloch sphere 
and reduction of visibility in interference experiments 19. 

 

 
Figure 3. Time evolution of a qubit subjected to a rotating magnetic field. 
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The trajectory in the ൫𝑟௫ , 𝑟௬൯ plane, shown as a function of time, illustrates how the system’s topological 

features remain robust under noisy adiabatic evolution. This setup, known for exhibiting geometric Berry 
phases, serves as a canonical example for visualizing topological control on the Bloch sphere.  

The evolution of the Bloch vector is governed by both a deterministic precession and stochastic noise. The 
deterministic part comes from the system’s Hamiltonian, which leads to precession of the Bloch vector around 
the z-axis at a constant frequency Ω଴. This precession is driven by a frequency of 1 Hz, as described by Ω଴ =
[0,0,2𝜋], which causes the vector to rotate around the z-axis, tracing a circular path on the Bloch sphere’s xy-
plane15,20. The disturbance is the second element, and it is represented as a white Gaussian disturbance. This is 
included at each time interval. This noise term introduces fluctuations into the evolution of the vector, causing 
random deviations from the ideal precession. 

The vector's time evolution is approximated using the Euler–Maruyama method, which employs small time 
steps Δ𝑡 to simulate the dynamics. At each stage, the Bloch vector is revised based on the noise term and the 
deterministic precession, making sure that it stays to prevent numerical errors15, 19. The noise term is scaled by 

ට
ଶ஽

୼௧
 , where D represents the noise intensity, adding random perturbations to each component of the vector. 

The movement of the Bloch vector is shown in three dimensions. The time dimension is shown on the x-
axis, the r_x and r_y components are shown along the y and z axes. The hue of the line in the three-dimensional 
representation is associated with the r_z component, thereby emphasizing the manner in which the qubit’s state 
vacillates along the vertical axis due to the presence of noise. The trajectory of the Bloch vector perpetually 
fluctuates, exhibiting a combination of regular and random movements. 

In the absence of noise, the vector would follow a smooth, circular path in the xy-plane, rotating around the 
z-axis. However, the introduction of stochastic noise causes the path to deviate, resulting in irregular oscillations 
in all three components of vector11,21. These fluctuations are most evident in the r_y and r_z components, which 
exhibit erratic behavior as the noise perturbs the state. Despite this, the overall evolution retains a periodic 
character, reflecting the underlying deterministic precession around the z-axis4. 

The evolution of the Bloch vector under the influence of both deterministic precession and stochastic noise 
provides a comprehensive understanding of qubit dynamics in realistic conditions. The visualization 
demonstrates how noise affects the quantum state, leading to irregular fluctuations while preserving the periodic 
precession. This analysis is essential for understanding the behavior of quantum systems in noisy environments 
and is relevant for quantum computing and information processing, where noise can significantly impact the 
reliability of quantum operations2. 
 
 
Topological robustness and implications 

Despite the presence of noise, the topological nature of the geometric phase imparts robustness to the 
control protocol. The key feature is that the phase depends on the area enclosed in parameter space, not the 
details of how the path is traversed. For systems that undergo cyclic adiabatic evolution, small deviations in the 
path shape lead to small second-order corrections, preserving the qualitative behavior of evolution2,20. 

This property is of practical importance in quantum computing, particularly in holonomic and geometric 
quantum gates, where control fidelity benefits from topological protection against noise6. 

 
III. Result 

We performed numerical simulations of the adiabatic holonomic quantum gate in a three-level Lambda 
system subjected to Gaussian noise in the control parameters 𝜃(𝑡) and 𝜙(𝑡). The simulations were conducted 
for varying noise amplitudes 𝜎 and total evolution time 𝑇, with the goal of assessing the robustness of the 
topological gates and visualizing the qubit dynamics on the Bloch sphere. 

 

 
Figure 4. This figure illustrates the numerical simulation of the qubit’s state evolution on the Bloch sphere under 

the adiabatic variation of control parameters. 
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The Bloch sphere representation illustrates the state of a two-level quantum system, with the red dot 

marking the initial state. The purple trajectory depicts the closed path traced by the state vector as the system 
undergoes adiabatic evolution driven by a continuous and cyclic variation of the control parameters. 

This closed loop is a hallmark of a geometric phase (specifically, the Berry phase) acquired by the quantum 
state over the course of the evolution. The geometric phase depends solely on the trajectory’s geometry on the 
Bloch sphere. It does not depend on the specific details of the temporal evolution. This includes the rate of 
traversal. As a result, it is inherently robust to certain types of control imperfections and noise, making it a 
powerful feature for fault-tolerant quantum computation and quantum control protocols. 

The coordinate axes (𝑋, 𝑌, 𝑍) define the orientation of the Bloch sphere, with the state vector initially 
aligned near the 𝑍-axis. Upon completion of the closed loop, although the state returns to its initial position in 
Hilbert space, it has undergone a global phase transformation. This topological effect underlies the interest in 
geometric quantum gates for building resilient quantum technologies. 
 
Noise effects on state evolution 

The evolution of a logical qubit state on the Bloch sphere under both ideal (noise-free) and noisy conditions 
is presented in figure 5, with the trajectory traced by the qubit during a cyclic holonomic quantum gate operation 
being illustrated. The blue line shows the perfect, noise-free situation, while the green, orange, and red lines 
show noisy changes with random noise added (with 𝜎 = 0.01, 0.05, and 0.1 radians, respectively). 

In the best case, the qubit moves in a straight line on the Bloch sphere, going back to its starting point. This 
behavior is consistent with high-fidelity holonomic operations, in which the cyclic evolution ensures robustness 
against certain control imperfections and dynamical noise — a key theoretical advantage of holonomic quantum 
computation6,7,22. 

 

 
Figure 5. Bloch Sphere trajectories of a logical qubit under varying noise levels. 

 
As noise is introduced, the trajectories increasingly deviate from the ideal path. Nevertheless, even when 

there is only moderate noise (𝜎 = 0.05), the final state stays close to the target point. This demonstrates the high 
resistance of holonomic gates to changes in parameters9. This resilience arises from the geometric nature of 
holonomic operations, which depend only on the global properties of the control path. Nevertheless, larger noise 
amplitudes (e.g., 𝜎 = 0.1) cause more pronounced deviations and result in visible distortions and fluctuations. 
These lead to partial leakage out of the logical subspace; a phenomenon reflected in the reduced purity of the 
projected qubit state. Such degradation underscores the limitations of passive robustness and highlights the 
necessity of combining geometric design with error mitigation techniques for practical quantum gate 
implementations. 
 
Characterization of noisy qubit dynamics on the Bloch sphere and associated geometric phases. 

The interactive control of noise amplitude and total evolution time provides insight into their effects on 
qubit state evolution and geometric phase accumulation. 
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Figure 6. The Bloch sphere shows qubit state evolution under an adiabatic holonomic quantum gate. 

 
The blue curve represents the ideal, noise-free path, whereas the red dashed curve illustrates the noisy 

trajectory with perturbations (𝜎 = 0.05 rad). Deviations in phase are introduced by noise, which reduces gate 
fidelity and highlights the trade-off between robustness and noise sensitivity in topological quantum control. 

This figure shows qubit state evolution on the Bloch sphere under a cyclic adiabatic control protocol. The 
blue curve represents the ideal (noise-free) trajectory, following a smooth closed path corresponding to the 
intended holonomic gate operation, which accumulates a well-defined Berry phase. The red dashed curve 
illustrates the turbulent trajectory, where arbitrary perturbations with a magnitude of σ impact the control 
parameters 𝜃 and 𝜙, resulting in variations that modify the route. 

Two key effects are caused by noise-induced deviations: first, the accumulated geometric phase along the 
noisy path differs from the ideal Berry phase, with phase errors in the quantum gate being reflected; second, 
gate fidelity is reduced by noisy evolution by shifting the state from the target path, with susceptibility to 
decoherence and leakage being potentially increased. These effects highlight the trade-off in topological 
quantum control: while geometric phases offer intrinsic robustness due to their dependence on global properties, 
local noise can degrade gate performance by altering the path’s geometry. So, what we’re saying here is that 
keeping an eye on noise amplitude and evolution time is important for getting the right balance between 
adiabaticity and noise resilience in practical quantum systems. 
 
Evolution of the polar angle 𝜽 as a function of the azimuthal angle 𝝓 for a single noisy trajectory 

The temporal evolution of the polar angle, 𝜃, as a function of the azimuthal angle, 𝜙, for an individual 
trajectory subject to stochastic perturbations characterized by Gaussian noise is illustrated in figure 7. This 
representation clearly shows how random fluctuations influence the spherical coordinates that define the qubit’s 
state vector on the Bloch sphere. 

The underlying smooth sinusoidal profile corresponds to the deterministic, noise-free trajectory predicted 
by the system’s coherent evolution. Irregular deviations arising from angular perturbations introduced by the 
noise process have been superimposed on this baseline, effectively modelling angular diffusion within the 
qubit’s Hilbert space. 

 

 
Figure 7. Trajectory of noise in (θ, φ) coordinates. 
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This plot serves as a critical diagnostic tool for quantitatively characterizing the angular diffusion 

mechanisms responsible for decoherence phenomena. Specifically, it demonstrates that, for moderate noise 
amplitudes, stochastic fluctuations primarily induce distortions to the trajectory without completely obliterating 
its inherent periodicity. As a result, the qubit's development has a clear repeating pattern, even when there is 
noise. 

These observations complement the comprehensive three-dimensional visualization presented in figure 5, 
offering a more granular perspective on the interplay between coherent dynamics and noise-induced angular 
diffusion. Together, these analyses deepen our understanding of how Gaussian fluctuations modulate the qubit’s 
trajectory on the Bloch sphere, informing theoretical models and experimental approaches aimed at mitigating 
decoherence effects in quantum information processing. 
 
Pure holonomic evolution: A smooth cyclic path 

Figure 8 shows a single ideal trajectory of a logical qubit evolving smoothly on the Bloch sphere under a 
holonomic quantum gate. A complex cyclic path that does not retrace itself but eventually returns close to the 
initial state is illustrated by the figure. The trajectory features nontrivial winding along both azimuthal and polar 
directions, suggesting a non-Abelian geometric phase accumulation. 
  

 
Figure 8. The evolution of the state in Bloch's sphere under ideal conditions. 

 
This smooth evolution provides a baseline for comparison with noisy counterparts, which is useful for 

determining the impact of noise on the system. It emphasizes the power of geometric control and the cyclic 
nature of holonomic operations, both of which are key to fault-tolerant gate design. 

Together, these three visualizations illustrate the resilience and vulnerability of holonomic gates in quantum 
computation. High-fidelity performance under weak noise is ensured by the intrinsic geometric protection, but 
stronger fluctuations can ultimately limit this by inducing trajectory deviation and space leakage. 

Future work should explore real-time feedback and error-correcting protocols adapted to geometric control 
schemes, as well as hybrid approaches that combine holonomic gates with dynamical decoupling or reservoir 
engineering. 
 
Fidelity analysis 

To quantitatively evaluate gate performance, we computed the average fidelity 𝐹 between the ideal and 
noisy final states over multiple noise realizations, defined as 

𝐹 = หൻ𝜓௜ௗ௘௔௟ห𝜓௡௢௜௦௬ൿห
ଶ

                                                                                                                                                          (20) 
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Figure 9. Fidelity as a function of noise amplitude 𝜎 for various total evolution times 𝑇. 

 
Fidelity is enhanced under weak noise by longer adiabatic durations, which better satisfy the adiabatic 

condition8. However, extended exposure to stochastic perturbations eventually reduces fidelity, indicating a 
trade-off between adiabatic accuracy and noise sensitivity10,23. 

In the low-noise regime (i.e., for small values of σ), the figure clearly shows that increasing the total 
evolution time T improves fidelity. This behavior can be understood in light of the adiabatic theorem, which 
states that a quantum system will remain in its instantaneous eigenstate provided that the Hamiltonian varies 
sufficiently slowly and that the spectral gap remains open. Longer evolution times make it easier to meet the 
adiabatic conditions, as shown by the adiabatic criterion8, which makes sure the ground state can be tracked 
more accurately and with more precision. The figure supports this interpretation by showing that, for small noise 
amplitudes, curves corresponding to larger T values consistently lie above those corresponding to shorter 
evolution durations. 

However, this trend will not persist indefinitely. As the noise amplitude increases, the benefit of a longer 
evolution time decreases and can even become negative. Specifically, for moderate to large values of σ, the 
fidelity decreases more steeply with longer T due to cumulative decoherence and stochastic perturbations. An 
increased exposure duration inherently permits greater noise amassing, which degrades quantum coherence and 
eventually disturbs the adiabatic path. Rather than remaining confined to the desired instantaneous eigenstate, 
the system undergoes an increasing number of transitions to undesired states due to noise influence. 

This behavior illustrates a fundamental trade-off between adiabaticity and noise resilience, which are both 
important considerations in this field. Slower evolution ensures better adherence to the ideal adiabatic path; 
however, it also results in prolonged exposure to environmental noise, which acts destructively on the coherence 
and fidelity of the quantum state. As Sjöqvist explains10, these trade-offs are key to the design of strong quantum 
control protocols, especially in open systems or experimental settings where it is impossible to completely get 
rid of noise. 

So, as you can see in figure 9, there's this really important point where the benefits of adiabaticity meet the 
negative effects of noise. For any given noise amplitude, neither the shortest nor the longest evolution time is 
universally optimal. Instead, system designers must carefully select T based on the noise characteristics in 
question and the desired fidelity threshold. This has profound implications for quantum computation and 
simulation strategies, where maximizing fidelity under realistic constraints is essential. 

The simulations also tracked population leakage into the excited auxiliary level, |e⟩. The results show that 
leakage remains minimal for small noise levels, but increases with σ, which is consistent with previous 
theoretical studies9. Unitarity is lost and gate infidelity is caused by this leakage, highlighting the importance of 
error mitigation strategies in practical implementations. 

The numerical results confirm that holonomic quantum gates implemented via adiabatic parameter cycles 
exhibit resilience to moderate noise, maintaining high fidelity and coherence in the logical qubit subspace. 
Visualization on the Bloch sphere provides a clear geometric understanding of the dynamics and aids in 
identifying error sources. These findings support the viability of holonomic quantum control for fault-tolerant 
quantum computing architectures under realistic experimental conditions. 

 
IV. Discussion 

The numerical simulations presented in this study shed light on the robustness and limitations of adiabatic 
holonomic quantum control in the presence of noise. It is shown by our results that, consistent with previous 
theoretical predictions, intrinsic resilience to parameter fluctuations is exhibited by holonomic gates due to their 
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geometric nature. This property is very good for quantum information processing, where control problems and 
noise from the environment are big problems. 

Only slight deviations from the ideal cyclic trajectories are caused by moderate noise, as revealed by the 
Bloch sphere visualization. This preserves the coherence and relative phase of the logical qubit states. This 
corroborates the earlier findings that the geometric phases underlying holonomic gates are stable against minor 
perturbations in the control parameters6,14. Nonetheless, as the amplitude of the noise increases, there is a 
concomitant increase in leakage into the excited ancillary state, which results in degradation of gate fidelity and 
indicates a practical limit to noise tolerance. 

The fidelity analysis reveals a trade-off between the adiabaticity condition and exposure to noise. While 
longer evolution times better satisfy adiabatic requirements and reduce non-adiabatic errors, they also increase 
the time during which noise can accumulate. Therefore, optimizing gate duration is crucial for maximizing 
performance in noisy. 

From a practical point of view, these results support ongoing work to use holonomic quantum gates in 
platforms such as trapped ions, superconducting circuits and semiconductor quantum dots. In these systems, it is 
possible to precisely control the way the system changes over time. Future work could explore integrating error-
correcting codes and dynamical decoupling techniques with holonomic control to further suppress the effects of 
noise and leakage. 

In summary, the robustness of topological quantum control demonstrated here reinforces its potential as a 
building block for scalable, fault-tolerant quantum computation. The amalgamation of numerical simulations 
and geometric visualization tools furnishes a robust framework for the design, optimization and benchmarking 
of holonomic quantum gates under realistic operational conditions. 

 
V. Conclusion 

In this study, we numerically investigated the implementation of adiabatic holonomic quantum control in a 
three-level Lambda system, with a particular focus on the impact of Gaussian noise on the control parameters. 
Our simulations show that holonomic gates are robust against moderate noise, preserving the coherence and 
fidelity of logical qubit states. The geometric character of the control protocol underlies this durability, as 
evidenced by the consistent paths seen on the Bloch sphere. 

However, noise-induced deviations and leakage to the ancillary excited state impose practical limits on gate 
fidelity, particularly at higher noise levels and longer gate durations. This highlights the importance of 
optimizing the adiabatic evolution time and incorporating noise mitigation techniques in experimental 
realizations, which are essential for achieving accurate results and ensuring the reliability of the findings. 

Our findings lend support to the notion that topological quantum control has the potential to serve as a 
promising approach for fault-tolerant quantum computation, seamlessly integrating geometric robustness with 
experimental feasibility. Future studies integrating error correction and exploring non-adiabatic holonomic 
schemes could further improve the performance and applicability of these protocols. 

 
Appendix A: 

Let 𝐻(𝑡) be a time-dependent Hamiltonian. 
 

𝐻(𝑡) =
ℏ

2
Ωሬሬ⃗ (t) ∙ 𝜎⃗                                                                                                                                                                   (21) 

Where Ωሬሬ⃗ (t) describes a magnetic field of constant magnitude that slowly rotates in space. Consider a qubit in a 
rotating magnetic field, with 
Ωሬሬ⃗ (t) = Ω(sinθcosϕ(t), sinθsinϕ(t), cosθ)                                                                                                                     (22) 
where  
Ω: field strength (constant), 
θ: fixed angle with respect to the zzz-axis, 
ϕ(t) = 𝜔𝑡: phase that rotates with a slow angular frequency 𝜔. 
This field traces out a cone in parameter space → a closed path on the Bloch sphere if ϕ goes from 0 → 2𝜋. 
The Hamiltonian becomes. 

𝐻(𝑡) =
ℏ

2
൬ cos 𝜃 𝑠𝑖𝑛𝜃𝑒ି௜ம(୲)

𝑠𝑖𝑛𝜃𝑒௜ம(୲) −𝑐𝑜𝑠𝜃
൰                                                                                                                               (23) 

The eigenvalues are:  

𝐸± =
ℏΩ

2
                                                                                                                                                                                  (24) 

The eigenvector associated with 𝐸ା  (instantaneous state) is: 



Topological Quantum Control With Noisy Adiabatic Paths And Bloch Sphere Visualization 

DOI: 10.9790/4861-1705011023                            www.iosrjournals.org                                                 21 | Page 

|+(𝜃, 𝜙(𝑡))⟩ = ൮
𝑐𝑜𝑠 ൬

𝜃

2
൰

𝑠𝑖𝑛 ൬
𝜃

2
൰ 𝑒௜థ(௧)

൲                                                                                                                                    (25) 

The Berry phase for this state, if 𝜙(𝑡) completes a full cycle from 0 → 2𝜋, is 

𝛾ା = 𝑖 ර〈+ห∇
ఒሬሬ⃗

ห +〉 ∙ 𝑑𝜆                                                                                                                                                         (26) 

Since 𝜆(𝜃, 𝜙) and 𝜃 is constant, only 𝜙 varies. 
We compute:  
𝑑

𝑑𝑡
|+⟩ =

𝑑𝜙

𝑑𝑡

𝜕

𝜕𝜙
|+⟩ = 𝜙̇

𝜕

𝜕𝜙
|+⟩                                                                                                                                        (27) 

Thus: 

𝛾ା = 𝑖 න 〈+ ฬ
𝑑

𝑑𝑡
ฬ +〉

்

଴

𝑑𝑡 = 𝑖 න 𝜙̇ 〈+ ฬ
𝜕

𝜕𝜙
ฬ +〉

்

଴

𝑑𝑡 = 𝑖 න 〈+ ฬ
𝜕

𝜕𝜙
ฬ +〉

ଶగ

଴

𝑑𝜙                                                                (28) 

Computing: 

𝜕

𝜕𝜙
|+⟩ = ൭

0

𝑖𝑠𝑖𝑛 ൬
𝜃

2
൰ 𝑒௜థ൱ , ർ+| = ൬cos ൬

𝜃

2
൰ 𝑠𝑖𝑛 ൬

𝜃

2
൰𝑒௜థ൰                                                                                        (29) 

Therefore:  

〈+ ฬ
𝜕

𝜕𝜙
ฬ +〉 = 𝑖𝑠𝑖𝑛 ൬

𝜃

2
൰                                                                                                                                                         (30) 

Finally: 

𝛾ା = 𝑖 න 𝑖𝑠𝑖𝑛 ൬
𝜃

2
൰

ଶగ

଴

𝑑𝜙 = −𝜋(1 − 𝑐𝑜𝑠𝜃)                                                                                                                       (31) 

This is exactly the solid angle subtended by the magnetic field path on the Bloch sphere. The geometric phase 
does not depend on Ω nor on the rotation speed (𝜔), if the evolution is adiabatic. 
Now suppose 𝜃 → 𝜃 + 𝛿𝜃(𝑡),  with 𝛿𝜃(𝑡) small. The phase becomes. 
𝛾ା = −𝜋൫1 − 𝑐𝑜𝑠(𝜃 +  𝛿𝜃(𝑡))൯                                                                                                                                         (32) 
By Taylor expansion: 

𝛾෤ା ≈ −𝜋 ൬1 − 𝑐𝑜𝑠𝜃 + 𝛿𝜃𝑠𝑖𝑛𝜃 +
1

2
(𝛿𝜃)ଶ𝑐𝑜𝑠𝜃൰                                                                                                            (33) 

Averaging over Gaussian noise with 〈𝛿𝜃〉 = 0, we have: 

𝛾෤ା ≈ −𝜋 ൬1 − 𝑐𝑜𝑠𝜃 +
1

2
〈(𝛿𝜃)ଶ〉𝑐𝑜𝑠𝜃൰                                                                                                                            (34) 

And the variance of the phase is: 
𝑉𝑎𝑟(𝛾෤ା) = 𝜋ଶ𝑠𝑖𝑛ଶ𝜃 ∙ 〈(𝛿𝜃)ଶ〉                                                                                                                                             (35) 
The geometric phase is therefore not perfectly robust against stochastic fluctuations. 
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