Erosion Hydrique Dans La Ville De Kananga En RD. **Congo : Masse De Terre Erodée Et Structures** Géologiques

Bushabu Ngolo Hubert¹, Kabasele Yenga-Yenga Albert², Minga Milolo Stéphane³, Kitenge Okaya Singlaithons⁴, Kazadi Tshiamala Evariste⁵, Piema Makima Hilaire⁶

Département De Physique Et Techniques Appliquées, Université Pédagogique De Kananga (UPKAN), Kananga, RD. Congo)

Département De Physique Et Sciences Appliquées, Laboratoire De Télédétection Spatiale, Université

Pédagogique Nationale (UPN), Kinshasa, RD. Congo

Département De Physique Et Sciences Appliquées, Laboratoire De Géophysique, Université Pédagogique Nationale (UPN), Kinshasa, RD. Congo

Ecole De Télécommunication Et De Télédétection Spatiale (ETS), Laboratoire Osrnac, Université Pédagogique Nationale (UPN), Kinshasa, RD. Congo

Section De Mécanique, Institut Supérieur Des Techniques Appliquées (ISTA) De Domiongo, Domiongo, RD.

Congo

Résumé

Contexte : L'érosion hydrique reste un fléau naturel favorisée par une couverture végétale de faible indice de végétation par différence normalisée (NDVI), des précipitations saisonnières très fortes précipitations et un relief dominé par des pentes de déclivité moyenne 14 % (Yamba, 2016). Le volume de terre arraché et la masse de terre érodée dépendent aussi des structures géologiques qui forment la ville de Kananga. Cette étude vise à évaluer ces deux grandeurs érodées selon le type de sols afin d'en den donner la distribution spatiale.

Matériels et Méthodes : L'observation de dix-neuf sites érosifs sur 20 ans a nécessité l'usage de deux GPS de marques Garmin map 62 et Garmin etrex 10, d'un décamètre, d'un niveau. Les données satellitaires sont fournies par « Terra climat (http://www.climatology.lab.org.) » au pas mensuel : de janvier 2000 à décembre 2023 et les données météorologiques par la METTELSAT pour la même période. La variation de volume est évaluée par la calcul intégral de volume finis, tel que :

Pour le triangle, $V = \frac{1}{2} \int_{1}^{2} dL \int_{1}^{2} dl \int_{1}^{2} dz$, pour le trapèze, $\Delta V = (\Delta L)(\Delta z)(\frac{\Delta l + \Delta b}{2})$ La masse cumulée M de terre érodée est déterminée par la relation $M = \rho \cdot V = 5500 V$, avec $\rho = 5500 \text{ kg/m}^3$ la

masse volumique de la Terre.

Résultats : Le NDVI de la ville oscille entre 0.3542 ± 0.0312 et 0.7752 ± 0.0259 avec une movenne de 0.6049 ± 0.0000 0,0311. La commune urbano-rurale de Lukonga affiche le meilleur indice : 0,6748 \pm 0,0241 tandis que le plus bas indice est enregistré sur le site de Kananga_1 avec 0,5617 ±0,0341. La vigueur de la biomasse végétale n'est pas très bonne malgré le faible taux d'accroissement de 0,37 %. Les précipitations mensuelles varient dans la plage $(460,20 \pm 17,70)$ $t(H_2O/ha)$ et 0,00 $t(H_2O/ha)$ avec une moyenne de $(110,50 \pm 0,13)$ $t(H_2O/ha)$. Les structures géologiques qui dominent la ville sont principalement : le complexe granitique et migmatique de Dibaya qui abrite onze érosions vives défigure la ville avec (1 909 435,37) de tonnes de terre érodées pour un volume arraché de terre de (410 582,29 \pm 12 753,53) m³, soit le tiers du Supergroupe de Lukula qui abrite huit érosions dont la masse de terre érodée et le volume arraché de terre valent respectivement (5 750 397,58 \pm 6.851,77) tonnes et (1 045 526,83 \pm 6.199,55) m³.

Conclusion : Sur vingt ans, soit de 2004 à 2023, les précipitations ont arraché sur la ville de Kananga (1 456 109,12

) m^3 de terre et érodé une masse correspondante de (7 659 832,95 ± 2.221,71) tonnes.

Mots clés : NDVI, masse érodée, complexe de Dibaya, supergroupe de Lukula, précipitations.

Date of Submission: 01-05-2025

Date of Acceptance: 10-05-2025

I. Introduction

L'on suit dans cette étude dix-neuf sites érosifs qui menacent la ville de Kananga. Le volume cumulé de terre arraché ainsi que la masse érodée sont évalués. Les érosions vives sont ensuite groupées selon la structure géomorphologique de la ville. Les précipitations mensuelles et l'indice de végétation par différence normalisé (NDVI) sont suivis afin de discriminer l'ampleur du volume de terre arraché et de la masse érodée.

II. Milieu, Matériels Et Méthodes

Cette étude porte sur dix-neuf érosions vives de la ville de Kananga en République Démocratique du Congo. Leurs caractéristiques intrinsèques sont suivies de janvier 2004 à décembre 2023 et les données climatiques de janvier 2000 à décembre 2023. La masse de terre érodée est évaluée par la méthode des volumes finis et son évolution soumise aux aléas de changements climatiques.

Milieu d'étude

Situation géographique et administrative

La ville de Kananga, chef-lieu de la Province du Kasaï Central en République Démocratique du Congo, est comprise entre les latitudes 05°45'S - 06°00'S et les longitudes 22°15'E - 22°30 E. Sa superficie (SIG) est de 743 km².

Figure 1. Carte administrative de la ville de Kananga

Elle est bornée par les territoires ci-après : Demba au nord, Dibaya au sud, Dimbelenge à l'Est, Kazumba à l'Ouest et comprend cinq communes : Commune de Kananga (300 km²), Commune de Ndesha (44 km²), Commune de Katoka (24 km²), Commune de Lukonga (153 km²) et la Commune de Nganza (222 km²) (Figure 1).

Démographie

La population de Kananga s'élevait à 1 735552 habitants en 2024, soit une densité d'environ 2335 habitants au km².

Cette densité élevée peut constituer un des facteurs favorisants de l'érosion (https://worldpopulationreview.com/cities)

Hydrographie

La ville de Kananga est traversée, comme illustré sur la figure 1 ci-dessus :

- au Nord-Est par la rivière Tshibashi, alimentée par les rivières Lunganda, Malole, kamilobi et Ndesha ;
- au Sud par la rivière Nganza alimentée par les rivières Katoka, Kele-kele, Kamayi et Katuishi ;
- au Sud-Ouest par les rivières Lubi et Nkombua qui se déversent dans Lulua (CGES, 2023).

DOI: 10.9790/4861-1703010110

Les rivières Tshibashi et Nganza forment deux sous bassins versants du bassin versant de la rivière Lulua au niveau de la ville de Kananga.

Géologie et Topographie

La ville de Kananga est située sur le plateau du Kasaï avec un relief légèrement incliné qui favorise le ruissellement et qui accentue l'érosion. Son sol est particulièrement constitué de sable fin avec une faible teneur en argile et en matière organique. (Hudson, N.1995). Il est dominé principalement par deux structures géologiques (Fernandez-Alonso et al (2015) :

La structure géologique **Complexe granitique et migmatitique de Dibaya**, l'une des unités litho stratigraphiques de roches datant de période Archéenne et généralement composée des roches granitiques et migmatitiques formées il y a 2,7 milliards d'années (Delhal ,1975). Yamba (2016) présente l'étude stratigraphique de la ville de Kananga, de la surface vers la profondeur.

A cause de leur composition minérale et de la cohésion forte, cette structure est principalement résistante à l'érosion. Par contre les variations climatiques, les cycles de chaleur et d'humidité, peuvent exacerber l'altération des minéraux feldspathiques présents dans ces roches, peuvent créer des zones de faiblesse qui seront susceptibles d'être affectées par l'érosion différentielle dont vous observerez des parties moins résistantes s'érodent plus rapidement que les zones plus dégradation progressive.

La structure géologique « Complexe granitique et migmatitique de Dibaya » affleure toute la partie Ouest, une petite partie au Nord et au Sud-Est de la ville (Thoreau, 1967).

Le **Supergroupe de Lukula** en particulier la formation **Crétacique inferieur** est l'une de structure datant de la période Mésozoïque. Elle affleure tout le centre et l'Est de la ville. Il est constitué principalement des roches sédimentaires tels que des grés, des argiles et des schistes argileux qui sont friables et qui se désagrègent rapidement sous l'effet des intempéries. Cette formation géologique est généralement moins résistante à l'érosion et occupe environ 65% de la ville et présente ainsi une vulnérabilité accrue à l'érosion hydrique.

La ville présente des terrains souvent inclinés ou vallonnés, caractérisés par des pentes allant de douces à abruptes entre les collines convexes dont les sommets sont presque coupés (CGES, 2023). La courbe altimétrique marquant le MNT et parfois le MNA de la ville varie entre 547m, au Sud-Ouest de la ville sur la rivière Lulua et 704m au niveau de Tshikaji avec une moyenne de 630 m (Yamba, 2016).

Figure 2. Géologie et Topologie de la ville de Kananga

Localisation des sites érosifs

Avec les GPS décrits ci-haut, les sites érosifs ont été localisés, tel qu'indiqué sur la figure 3 ci-dessous et décrit dans le tableau 1 ci-dessous. AM, AV et Fd indiquent respectivement amont, aval et fond.

Figure 3. Localisation des sites érosifs de la ville de Kananga

La Commune de Kananga recense le plus grand nombre : huit (8) sur dix-neuf, suivie de la commune de Katoka qui en a quatre (4).

NIO	Sigle	Communa	Latituda Sud	Longitudo Est	Elév	vation (r	n)
IN .	_	Commune	Latitude-Sud	Longitude-Est	AM	AV	Fd
1	Kga_1	Kananga	5,90141°	22,48258°	660	640	642
2	Kga_2	Kananga	5,90139°	22,48254°	655	642	648
3	Kga_3	Kananga	5,90392°	22,42597°	621	608	613
4	Kga_4	Kananga	5,88391°	22,44682°	631	592	594
5	Kga_5	Kananga	5,88373°	22,44727°	622	609	602
6	Kga_6	Kananga	5,89690°	22,42151°	640	582	637
7	Kga_7	Kananga	5,89464°	22,40400°	620	582	609
8	Kga_8	Kananga	5,89295°	22,40492°	630	591	604
9	Nds_1	Ndesha	5,89232°	22,38572°	625	620	621
10	Nds_2	Ndesha	5,89144°	22,38572°	622	598	600
11	Nds_3	Ndesha	5,89238°	22,38476°	628	612	615
12	Ktk_1	Katoka	5,91270°	22,39303°	625	588	607
13	Ktk_2	Katoka	5,91061°	22,38384°	598	586	589
14	Ktk_3	Katoka	5,89362°	22,38425°	618	607	610
15	Ktk_4	Katoka	5,89348°	22,38409°	624	608	612
16	Lkg_1	Lukonga	5,86111°	22,38323°	594	586	588
17	Lkg_2	Lukonga	5,86161°	22,38314°	592	596	582
18	Ngz_1	Nganza	5,92844°	22,40802°	636	626	627
19	Ngz_2	Nganza	5,92803°	22,40743°	640	623	626

Tableau 1. Localisation des sites érosifs

Végétation

L'indice de végétation par différence normalisée (NDVI) mesure la vigueur de la végétation. Ses valeurs extrêmes sont -1 (absence de végétation) et +1 (végétation abondante : forêt dense).

Au pas mensuel, les valeurs enregistrées par les satellites sur 24 ans pour la ville de Kananga, soit de 2000 à 2023, sont consignées dans le tableau 2 ci-dessous.

Tableau	2.	Indic	e de	végéta	tion	par	différence	normalisé	(NDV	/I)_	Ville de	Kananga
												-

NTO	Sites	NDVI						
IN	Sites	Maximum	Minimum	Moyen				
1	Kga_1	0,7109	0,3542	0,5617				
2	Kga_2	0,6863	0,3819	0,5806				
3	Kga_3	0,6708	0,3803	0,5710				
4	Kga_4	0,6863	0,3819	0,5806				

5	Kga_5	0,7402	0,4379	0,6197
6	Kga_6	0,6708	0,3803	0,5710
7	Kga_7	0,6863	0,3819	0,5807
8	Kga_8	0,6863	0,3819	0,5806
9	Nds_1	0,7402	0,4379	0,6197
10	Nds_2	0,7402	0,4379	0,6197
11	Nds_3	0,7402	0,4379	0,6197
12	Ktk_1	0,7214	0,4079	0,6039
13	Ktk_2	0,7214	0,4079	0,6039
14	Ktk_3	0,7214	0,4079	0,6039
15	Ktk_4	0,7402	0,4379	0,6197
16	Lkg_1	0,7752	0,4247	0,6748
17	Lkg_2	0,7752	0,4247	0,6748
18	Ngz_1	0,7214	0,4079	0,6039
19	Ngz_2	0,7214	0,4079	0,6039

On remarque que le NDVI de la ville oscille entre $0,3542 \pm 0,0312$ et $0,7752 \pm 0,0259$ avec une moyenne de $0,6049 \pm 0,0311$ (Tableau 2). La commune urbano-rurale de Lukonga affiche le meilleur indice : $0,6748 \pm 0,0241$ tandis que le plus bas indice est enregistré sur le site de Kananga_1 avec $0,5617 \pm 0,0341$.

Figure 4. Distribution spatiale du NDVI_Satellite_Ville de Kananga

La tendance générale indiquée dans l'équation (1) ci-dessous $NDVI_Satellite = 0,0037x + 0,568$ (1) montre un accroissement avec un taux de 0,37 % comme l'illustre la figure 4 ci-dessus.

Précipitations mensuelles (PP)

Les précipitations sont considérées comme facteur principal favorisant l'érosion hydrique autant que la nature et la structure du sol. Au pas mensuel, les valeurs enregistrées par les satellites sur 24 ans pour la ville de Kananga, soit de 2000 à 2023, sont consignées dans le tableau 3 ci-dessous.

NTO	6!:4		PP (t (H ₂ O) /ha)	
IN ¹	Sites	Maximum	Minimum	Moyen
1	Kga_1	460,2	0	110,19
2	Kga_2	460,2	0	110,19
3	Kga_3	405	0	110,67
4	Kga_4	405	0	110,67
5	Kga_5	405	0	110,67
6	Kga_6	405	0	110,67
7	Kga_7	403,8	0	110,49
8	Kga_8	403,8	0	110,49
9	Nds_1	403,8	0	110,49
10	Nds_2	403,8	0	110,49
11	Nds_3	403,8	0	110,49
12	Ktk_1	403,8	0	110,49
13	Ktk_2	403,8	0	110,49
14	Ktk_3	403,8	0	110,49
15	Ktk_4	403,8	0	110,49
16	Lkg_1	403,8	0	110,49
17	Lkg_2	403,8	0	110,49

Tableau 3. Précipitations mensuelles (t(H2O/ha)) _Ville de Kananga

18	Ngz_1	403,8	0	110,49
19	Ngz_2	403,8	0	110,49

Les précipitations mensuelles de la ville de Kananga varient dans la plage ($460,20 \pm 17,70$) t(H₂O/ha) et 0,00 t(H₂O/ha) avec une moyenne de ($110,50 \pm 0,13$) t(H₂O/ha). Elles sont particulièrement abondantes autour de l'aéroport de Lungandu (Kananga) : ($460,20 \pm 17,70$) t(H₂O/ha) (Figure 5).

Figure 5. Distribution spatiale des précipitations mensuelles_Satellite_Ville de Kananga

Par rapport à la répartition des sites, la tendance générale est quasi stationnaire : $PP(t(H_2O/ha)) = 0,002x + 110,48$ (2)

Le taux de variation, quoique positif, est très faible : 0,2%. Ce qui explique une pluviométrie quasi identique sur tous les sites.

Matériels et Données

Matériels

Les matériels suivants ont été utilisés dans cette étude : un décamètre, une équerre, un rapporteur, un niveau d'eau de maçon, deux GPS : l'un de marque Garmin GPS map 62 et l'autre de marque Garmin etrex 10.

Données

L'étude a nécessité:

des données prélevées in situ avec les matériels ci-haut décrits pour la période 2004 à 2023. La longueur, la largeur et la profondeur des érosions exprimées en mètres (m), sont consignées dans le tableau 2 ci-dessous.

3.10	C14-1	2004			2010			2012			2016			2021		2023			
N ²	Sites	L	1	z	L	1	Z	L	1	Z	L	1	z	L	1	z	L	1	z
1	Kgal	127	10,4	13	217	26	20	198	18,6	22	356	82,9	37	496	35,8	46	496	35,8	18
2	Kga2	0	0	0	224	2,8	15	180	6,3	16	338	23,2	25	312	47,4	25	312	47,2	7
3	Kga3	363	14,6	8	311	31,3	7	418	26,3	21	239	127	9	235	115	8	235	115	8
4	Kga4	0	0	0	0	0	0	0	0	0	30,3	20,6	0	143	29,8	10	143	29,8	37
5	Kga5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	Kga6	0	0	0	0	0	0	0	0	0	105	28,9	17	288	127	30	288	127	3
7	Kga7	141	17,2	11	128	22,7	10	0	0	0	160	30,3	13	402	77,3	17	402	77,3	11
8	Kga8	117	6,2	11	64,8	37,9	6	136	7	17	255	19,1	31	284	73,8	32	284	73,8	26
9	Ndsl	133	10,5	9	76,4	15,1	7	120	6	9	41,9	8,4	3	554	68,9	27	554	68,9	4
10	Nds2	0	0	0	80,7	22,7	12	0	0	0	183	24,7	12	335	28,7	23	335	28,7	22
11	Nds3	0	0	0	0	0	0	0	0	0	72,1	2,9	9	226	3,43	32	226	3,43	13
12	Ktkl	0	0	0	66,4	4,1	8	113	5	4	32	8,5	5	68	25,7	9	68	25,7	18
13	Ktk2	0	0	0	21,8	11,4	2	51,7	6,14	1	48,9	33,4	2	67	50	2	67	50	8
14	Ktk3	0	0	0	30	5	3	0	0	0	45,1	12,5	5	139	15	12	139	15	8
15	Ktk4	0	0	0	0	0	0	0	0	0	60	25,1	6	199	63,8	14	159	23,8	12
16	Lkgl	0	0	0	74,3	2,4	2	42	7,2	1	333	5,4	7	411	15,4	25	411	15,4	6
17	Lkg2	0	0	0	7,5	5,6	0	98,3	7,9	10	15,5	10,3	2	75,9	8,9	- 7	75,9	8,9	10
18	Ngzl	0	0	0	84	6	2,1	112	8,5	2,5	143	13,4	3,4	287	20,7	8,2	316	24,3	9
19	Ngz2	127	0	0	39	3.6	2.2	93	5.8	3.7	109	8,4	4.5	215	11.9	11.9	264	22.6	14

Tableau 4. Mesures des paramètres des érosions : 2004 – 2023

> des données météorologiques livrées par la METTELSAT : de janvier 2000 à décembre 2023 ;

des données satellitaires fournies par « Terra climat (http : //www climatology lab.org.) » au pas mensuel : de janvier 2000 à décembre 2023.

Méthodes

De 2004 à 2023, les caractéristiques principales de dix – neuf érosions vives sont prélevées : la longueur (L), la largeur (l) et la profondeur (z). Les résultats sont consignés dans le tableau 4 ci-dessus ;

➤ La variation de volume est évaluée par la calcul intégral de volume finis (Ali, 2003), tel que : Pour le triangle,

 $V = \frac{1}{2} \int_{1}^{2} dL \int_{1}^{2} dl \int_{1}^{2} dz$ (3) Pour le trapèze, $\Delta V = (\Delta L)(\Delta z)(\frac{\Delta l + \Delta b}{2})$ (4) > La masse cumulée M de terre érodée est déterminée par la relation (5) ci-dessous $M = \rho . V = 5500 V$ (5) avec $\rho = 5500 kg/m^{3}$ la masse volumique de la Terre, valeur tirée de Hecht, E. (2012).

Les tableaux 5, 6 et 7 ci-dessous reprennent, de 2004 à 2023, les résultats obtenus sur la variation de volume ΔV , le volume cumulé V et la masse érodée M.

	Tubleud 5. Volume et masse de terre crodes : 2001 2012									
Sites	érosifs		2004			2010			2012	
N°	Nom	∆V (m ³)	V(m ³)	M(kg)	$\Delta V (m^3)$	V(m ³)	M(kg)	$\Delta V (m^3)$	V(m ³)	M(kg)
1	Kgal	0	8585,2	4218600	702	9287,2	51079600	140,6	9427,8	21852900
2	Kga2	0	0	0	0	4704	25872000	-77	4627	25448500
3	Kga3	0	21199,2	116595600	434,2	21633,4	118983700	-3745	17888,4	98386200
4	Kga4	0	0	0	0	0	0	0	0	0
5	Kga5	0	0	0	0	0	0	0	0	0
6	Kga6	0	0	0	0	0	0	0	0	0
7	Kga7	0	13338,6	73362300	35,75	13374,35	73558925	-14528	0	0
8	Kga8	0	3989,7	21943350	4136,85	8126,55	44696025	12100,44	20226,99	111248445
9	Ndsl	0	6284,25	34563375	260,36	6544,61	35995355	-396,76	6144785	337963175
10	Nds2	0	0	0	0	10991,34	60452370	-10991,34	0	0
11	Nds3	0	0	0	0	0	0	0	0	0
12	Ktkl	0	0	0	0	1088,96	5989280	-83,88	1005,08	5257940
13	Ktk2	0	0	0	0	248,52	1366860	78,637	327,157	1799363,5
14	Ktk3	0	0	0	0	225	1237500	-225	0	0
15	Ktk4	0	0	0	0	0	0	0	0	0
16	Lkgl	0	0	0	0	178,32	980750	77,52	255,84	1407120
17	Lkg2	0	0	0	0	63	346,500	730,94	79394	4366670
18	Ngzl	0	0	0	0	529,2	2910600	14	543,2	2987600
19	Ngz2	0	0	0	0	114.84	631620	105.6	220,44	1212420

Tableau 5. Volume et masse de terre érodés : 2004 – 2012

Les érosions Kga_4, Kga_5 et Kga_6 n'avaient pas encore commencé jusqu'en 2012. Autant pour celles de Ndesha, Katoka, Lukonga et Nganza qui n'existaient pas en 2012 (Tableau 5).

Sites	érosifs		2016			2018			2021	
N°	Nom	$\Delta V (m^3)$	V(m ³)	M(kg)	$\Delta V (m^3)$	V(m ³)	M(kg)	∆V (m ³)	V(m ³)	M(kg)
1	Kgal	76195,5	85623,3	470928150	-39526	46061,3	253337150	34240,85	80302,16	441661880
2	Kga2	12015,9	16642,9	915359500	-9472	7170,9	39439950	19617,6	26788,5	147336750
3	Kga3	108151,8	126040,2	693221100	147954,8	273995	1506972500	142074	416069	2288379500
4	Kga4	0	936,27	5149485	-12,02	924,25	11881925	1236,1	2160,35	11881925
5	Kgaố	0	0	0	0	25,08	137940	-25,08	0	0
6	Kga6	0	25793,25	141862875	43502,4	69295,65	381126075	94991,4	164287,05	903578775
7	Kga7	0	31512	173316000	133	31645	174047500	37620	69265	380847500
8	Kga8	10079,3	30306,29	166684595	263,9	30570,19	168136045	0	30570,19	168136045
9	Ndsl	562,32	6710,17	36905935	-2802,24	3907,93	21493615	220067,55	223975,48	1231865140
10	Nds2	0	27120,6	149163300	-886,5	2623,1	144287550	3365,4	29599,5	162797250
11	Nds3	0	940,905	5174977,5	-940,905	0	0	0	12402,88	68215840
12	Ktkl	-146,75	863,33	4748315	135,24	998,37	5492135	1539	2537,57	13956635
13	Ktk2	-38,164	288,99	1589445	94,078	383,07	2106885	650,769	1033,8	5685900
14	Ktk3	0	14056,375	7751562,5	47,6	1456,98	8013390	315,45	177243	9748365
15	Ktk4	0	4518	24849000	-25,25	4492,75	24710125	2211,6	6704,35	36873925
16	Lkgl	1571,4	1827,24	10049820	198,9	2026,14	11143770	29511,3	31537,44	173455920
17	Lkg2	794,88	1588,82	8738510	0	0	0	2364,285	2364,3	13003650
18	Ngzl	68,355	611,555	3363552,5	180,9	792,455	4358502,5	470,085	1262,54	6943970
19	Ngz2	16,64	237,08	1303940	281,4	518,48	2851640	66,3	584,78	3216250

Tableau 6. Volume et masse de terre érodés : 2016 – 2021

L'érosion de Kga_5 a commencé en 2018 (Tableau 6) avec extinction en 2021 et reprise en 2022 (Tableau 7).

Tableau 7. Volume et masse de terre érodés : 2022 - 2023

Sites	érosifs		2022		2023				
N°	Nom	$\Delta V (m^3)$	V(m ³)	M(kg)	$\Delta V (m^3)$	V(m ³)	M(kg)		
1	Kga1	11,5	80313,66	441725130	-7,68	80305,98	441682890		
2	Kga2	184776,8	211565,3	1163609150	300,72	211866,02	1165263110		
3	Kga3	99207,55	515276,550	2834021025	-243,1	515033,45	28326883975		

Erosion Hydrique Dans La Ville De Kananga En RD. Congo......

4	Kga4	5474	7634,25	41988,375	260,06	7894,41	43419255
5	Kga5	0	996,45	5480475	-21,12	975,33	5364315
6	Kga6	-103213,5	61073,35	335904525	-8300,25	52773,3	290253150
7	Kga7	345	69610	382855000	143,44	69753,44	283643920
8	Kga8	0	30570,19	168136045	64,8	3063459	168492445
9	Nds1	4233,6	228209,08	1255149940	-145,928	228063,152	1254347336
10	Nds2	-88,4	29511,1	162311050	25,2	29536,3	162449650
11	Nds3	0,24	12403,12	68217160	0,756	12403,876	68221318
12	Ktk1	10659,75	13197,32	72585260	139,23	13336,55	73351025
13	Ktk2	15256,65	16290	89595000	94,129	16384,578	90115175
14	Ktk3	0	1772,43	9748365	3,2	1775,63	9765965
15	Ktk4	0	6704,35	36873925	42,24	6746,59	37106245
16	Lkg1	725,4	32262,84	17745620	17	32279,84	177539120
17	Lkg2	14429,94	144299,1	793645050	99,4	144398,5	794191750
18	Ngz1	41,76	1304,3	7173650	9,936	1314,236	7228298
19	Ngz2	36,015	620,795	3414372,5	12,144	632,939	3481164,5

III. Résultats

Après 20 ans d'observations des dix-neuf sites érosifs de la ville de Kananga, les précipitations ont arraché (1 456 109,12 \pm 3.383,52) m³ de terre et érodé une masse correspondante de (7 659 832,95 \pm 2.221,71) tonnes tel que repartis sur le tableau 8 ci-dessous :

Sites	érosifs	¥7 (3)	M (4, , , , , ,)		
N°	Nom	v (m ²)	M (tonne)		
1	Kga1	80 305,98 ± 3.597,41	$441\ 682,\!89\pm21.013,\!08$		
2	Kga2	$211\ 866,02\pm 9.375,61$	$1\ 165\ 263, 11\pm 54.227, 80$		
3	Kga3	$515\ 033,\!45\pm22.085,\!35$	$2\ 832\ 683,98\pm 96.851,77$		
4	Kga4	7 894,41 ± 3.364,27	43 419,26± 1.482,93		
5	Kga5	$975,33 \pm 454,56$	5 364,32± 2500,08		
6	Kga6	$52\ 773,30\pm 5.549,84$	$290\ 253,\!15\pm 30.524,\!12$		
7	Kga7	$69\ 753,\!44 \pm 28.591,\!40$	$34\ 876,72 \pm 14.448,05$		
8	Kga8	$30\ 634,99\pm 10.753,53$	$168\ 492{,}45\pm 6.144{,}88$		
9	Nds1	$228\ 063,\!15\pm21.397,\!62$	$1\ 254\ 347,\!34\pm 60.605,\!36$		
10	Nds2	$29\ 536{,}30\pm1.409{,}25$	$162\ 449,\!65\pm7.314,\!73$		
11	Nds3	$12\ 403,\!88\pm 632,\!99$	$68\ 221,32\pm 3.481,46$		
12	Ktk1	$13\ 336{,}55\pm5.682{,}82$	73 351,03 ± 3.127,67		
13	Ktk2	$16\ 384,58\pm7.392,52$	$90\ 115,\!18\pm 4.065,\!88$		
14	Ktk3	$1\ 775,63\pm 6.186,76$	9 765,97 ± 4.531,01		
15	Ktk4	6 746,59 ± 3.155,00	$37\ 106,25\pm 1.735,25$		
16	Lkg1	$32\ 279,84\pm 16.150,29$	$177\ 539,\!12\pm7.829,\!48$		
17	Lkg2	$144\ 398,50 \pm 66.199,55$	$794\ 191,75 \pm 36.552,80$		
18	Ngz1	$1\ 314,24 \pm 470,16$	$7\ 228,30\pm 2.585,85$		
19	Ngz2	$632,94 \pm 251,32$	3 481,16 ± 1.382,26		
Т	otal	$1456109.12\pm 3.383.52$	7 659 832.95 ± 2.221.71		

Tableau 8. Volume et masse cumulés érodés

On observe sur le tableau 8 ci-dessus quatre érosions sur dix-neuf qui se démarquent de par l'ampleur du volume arraché et de la masse érodée. Il s'agit des érosions : Kga_2, Kga_3 dans la commune de Kananga ; Nds_1 dans la commune de la Ndesha et Lkg_2 dans celle de Lukonga. La commune de Kananga reste le centre de gravité des sites érosifs suivie de celle de la Ndesha, comme indiqué sur la figure 6 ci-dessous.

Les érosions Kga_3, Nds_1 et Kga_2 sont caractérisées par des volumes importants de terre arrachés ainsi que les masses érodées correspondantes (Figure 6).

Répartition selon les types de sols

La ville de Kananga repose sur deux structures géologiques qui abritent les dix-neuf sites érosifs. Le tableau 9 ci-dessous donne la répartition spatiale selon ces structures. Les volumes arrachés et les masses de terre érodées y associés sont indiqués.

N°	Sigle	Types de sols	Commune	V (m ³)	M (tonne)
1	Kga_l	Supergroupe de Lukula : formation Crétacique inférieure	Kananga	80 305,98 ± 3.597,41	441 682,89 ± 1.013,08
2	Kga_2	Supergroupe de Lukula : formation Crétacique inférieure	Kananga	211 866,02 ± 9.375,61	1 165 263,11 ± 4.227,80
3	Kga_3	Supergroupe de Lukula : formation Crétacique inférieure	Kananga	515 033,45 ± 22.085,35	2 832 683,98 ± 6.851,77
4	Kga_4	Supergroupe de Lukula : formation Crétacique inférieure	Kananga	7 894,41 ± 3.364,27	43 419,26± 1.482,93
5	Kga_5	Supergroupe de Lukula : formation Crétacique inférieure	Kananga	975,33 ± 454,56	5 364,32± 2500,08
6	Kga_6	Supergroupe de Lukula : formation Crétacique inférieure	Kananga	52 773,30 ± 5.549,84	290 253,15 ± 3.524,12
7	Lkg l	Supergroupe de Lukula : formation Crétacique inférieure	Lukonga	32 279,84 ± 16.150,29	177 539,12 ± 4.829,48
8	Lkg_2	Supergroupe de Lukula : formation Crétacique inférieure	Lukonga	144 398,50 ± 6.199,55	794 191,75 ± 3.552,80
		Total érodé sur le supergroupe de Lukula		1 045 526,83 ± 6.199,55	$5\ 750\ 397,58 \pm 6.851,77$
9	Kga_7	Complexe granitique et migmatitique de Dibaya	Kananga	69 753,44 ± 8.591,40	34 876,72 ± 14.448,05
10	Kga_8	Complexe granitique et migmatitique de Dibaya	Kananga	30 634,99 ± 10.753,53	168 492,45 ± 6.144,88
11	Nds_1	Complexe granitique et migmatitique de Dibaya	Ndesha	228 063,15 ± 2.397,62	1 254 347,34 ± 60.605,36
12	Nds_2	Complexe granitique et migmatitique de Dibaya	Ndesha	29 536,30 ± 1.409,25	162 449,65 ± 7.314,73
13	Nds_3	Complexe granitique et migmatitique de Dibaya	Ndesha	12 403,88 ± 632,99	68 221,32 ± 3.481,46
14	Ktk_1	Complexe granitique et migmatitique de Dibaya	Katoka	13 336,55 ± 5.682,82	73 351,03 ± 3.127,67
15	Ktk_2	Complexe granitique et migmatitique de Dibaya	Katoka	16 384,58 ± 7.392,52	90 115,18 ± 4.065,88
16	Ktk_3	Complexe granitique et migmatitique de Dibaya	Katoka	1 775,63 ± 6.186,76	9 765,97 ± 4.531,01
17	Ktk_4	Complexe granitique et migmatitique de Dibaya	Katoka	6 746,59 ± 3.155,00	37 106,25 ± 1.735,25
18	Ngz_1	Complexe granitique et migmatitique de Dibaya	Nganza.	$1314,24 \pm 470,16$	7 228,30 ± 2.585,85
19	Ngz_2	Complexe granitique et migmatitique de Dibaya	Nganza.	632,94 ± 251,32	3 481,16 ± 1.382,26
	Total	l érodé sur le complexe granitique et migmatitique du Dib	aya	410 582,29 ± 12 753,53	1 909 435,37 ± 6 144,88

	Tableau 9.	Répartition	de volumes et	masses érodés	par types	de se	ols
--	------------	-------------	---------------	---------------	-----------	-------	-----

Le Supergroupe de Lukula, de par ses caractéristiques de vulnérabilité à l'érosion hydrique, se démarque par un volume arraché et une masse de terre érodée importants, soit les 2/3 du total. La dernière structure, le Complexe granitique et migmatitique de Dibaya détient le tiers.

Figure 7. Répartition des volumes et masses érodés par types de sols

Le Supergroupe de Lukula qui abrite huit érosions vives reste la structure défigurant la ville avec (5 750 397,58 \pm 6.851,77) de tonnes de terre érodées pour un volume arraché de terre de (1 045 526,83 \pm 6.199,55) m³. Le Complexe granitique et migmatitique de Dibaya abrite onze érosions ; la masse de terre érodée et le volume arraché de terre valent respectivement (1 909 435,37 \pm 6 144,88) tonnes et (410 582,29 \pm 12 753,53) m³.

IV. Discussion

Les précipitations mensuelles qui entraînent l'érosion hydrique dans la ville de Kananga varient autour de (110,50 \pm 0,13) t(H₂O/ha). La faible couverture végétale présente un indice de végétation par différence normalisée moyen de 0,6049 \pm 0,0311 : très faible pour lutter contre l'érosion.

La ville repose sur deux structures géologiques principales : le Supergroupe de Lukula et le Complexe granitique et migmatitique de Dibaya. La première, qui occupe près de 65 % de la ville, est très vulnérable au phénomène et a laissé éroder (5 750 397,58 \pm 6.851,77) de tonnes de terre. La seconde, qui occupe le tiers de la

ville, présente une résistance au phénomène bien qu'il regorge onze érosions vives qui n'ont arraché que (1 909 $435,37 \pm 6$ 144,88) tonnes.

V. Conclusion

La combinaison de facteurs géologiques (nature des roches et structure du sol), climatiques (précipitations et ruissellement) et humains (urbanisation et déforestation) penche en faveur de l'urbanisation sur la seconde structure géologique.

Références

- [1]. Ali Arif (2003). Méthodes Des Volumes Finis. Chapitre 3. Université Mohamed Khider Biskra.
- [2]. Amar Kassoul (2009). Physique 4. Mécanique Rationnelle. Cours Er Exercice. Université Hassiba Benbouadi De Chlef.
- [3]. Aurore Degré (2009). Hydrologie Générale. Notes De Cours Provisoires ; Année Académique 2009-2010. Gembloux.
- [4]. Beauchamp, J. (2005). Cours De Sédimentation Chapitre 3. Transport Des Matériaux. Université De Cergy Pontoise.
- [5]. Beaufils M.F. (2004). Gérer Les Inondations Par Ruissellement Pluvial. Guide De Sensibilisation. CEP.
- [6]. Ben Hadj Salem A. (2015). Cours D'initiation Au GPS. Volume 3. GVC.
- [7]. Ben Sahah Chafik (1984). Les Caractéristiques De L'érosion En Relation Avec Les Pratiques Agricoles. Mémoire DEA, Resource En Eau. Université Paris Sud. Paris.
- [8]. Bonnet S., Toromanoff F., Bauwens S. Et Michez Andrien. (2013). Principes De Base De La Télédétection Et Ses Potentialités Comme Outil De Caractérisation De La Ressource Forestière. Partie 2. Le Lidar Aérien In Géoscience, Lidar. Liège.
- [9]. Bruno A. (1999). La Dynamique Du Cycle De L'eau Dans Un Bassin Versant. Processus, Facteurs, Modèles. 2^{ième} Edition HGA, Strasbourg.
- [10]. Bushabu Mbengele-Ming Et Al. (2002). Les Besoins Energétiques Des Ménages De Kananga (RDC). In Bulletin De La Société Géographique De Liège, 42, 2002-56-60.
- [11]. Bushabu Ngolo H. (2021). Modélisation Spatiotemporelle Du Ruissellement Des Eaux Sur Le Sol Du Bassin Versant De La Rivière De Lukunga (RDC). Mémoire DEA, Physique Spatiale De Télédétection. UPN/Kinshasa.
- [12]. Cairoli R. (1987). Algèbre Linéaire 1. Presses Polytechniques Romandes. Lausanne (Suisse). ISBN : 2-88074-1106-6.
- [13]. Cagnac, G. Et Thiberge, L. (1957). Géométrie. Masson Et Cie. Paris.
- [14]. Campy, M. Et Macaire J.J (2003). Géologie De La Surface. Dunod. Paris.
- [15]. Carine Lucas (2016). Modélisation Des Problèmes De Mécanique Des Fluides : Approches Théoriques Et Numériques. Equations Aux Dérivées Partielles [Math. AP]. Thèse De Doctorat Université d'Orléans. Tel-01420101.
- [16]. Cecil C. A. (2015). Agents Et Causes De La Déforestation Et Dégradation Dans Les Sites Pilotes Du Projet FFEM (Fonds Français Pour L'environnement Mondial).
- [17]. CGES (2020). Projet D'urgence Et De Résilience De Kananga (PURUK). Rapport Final, Mai 2023. Ministère De L'urbanisme Et D'habitat.
- [18]. Cohen Marianne (2009). Dynamique Des Paysages, Erosion Et Développement Durable Dans Les Montagnes Méditerranéennes. Rapport Final D'activité. Avril 2009. UMR Ladyss. Université Paris 7. Denis Diderot.
- [19]. Dautreband S. Et Sohier C. (2006). L'érosion Hydrique Et Les Pertes En Sol En Région Wallonie. Faculté Universitaire Des Sciences Agronomiques De Gembloux.
- [20]. Delcourte Sarah (2007). Développement De Méthodes De Volumes Finis Pour La Mécanique Des Fluides. Cea. Thèse De Doctorat. Université De Toulouse.
- [21]. Echo (2014). Guide Pratique D'utilisation Du GPS Sur Le Terrain Et Cartographie Des Données. Coopi.
- [22]. FAO (1976). Aménagement Des Bassins Versants. Cahier FAO. Conservation Des Sols N°1.
- [23]. Foster G.R. (1990). Process- Based Modelling Of Soil Erosion By Water On Agricultural Land. In Soil Erosion On Agricultural Land (J. Bourdan. IDL. Foster, JA. Dearing, Éd.) John Willey And Sons Ltd. Chichester (UK). 229-245.
- [24]. Foster G.R. (1990). Process- Based Modelling Of Soil Erosion By Water On Agricultural Land. In Soil Erosion On Agricultural Land (J. Bourdan. IDL. Foster, JA. Dearing, Éd.) John Willey And Sons Ltd. Chichester (UK). 229-245.
- [25]. GEE S2. Modélisation Et Simulation Numérique Des Systèmes Energétiques Par Eléments Et Volumes Finis.
- [26]. Hecht, E. (2012). Physique. Traduit De L'américain Par T. Becherrawy. De Boeck. Nouveaux Horizons. Paris ISBN 978-2-35745-147-6.
- [27]. Jalal Lakhlili (2016). Modélisation Et Simulation Numériques De L'érosion Par Méthode
- [28]. Jalal Lakhlili (2016). Modélisation Et Simulation Numériques De L'érosion Par Méthode
- [29]. Kayembe Wa Kayembe Mathieu Et Wolf Eleonou (2015). Contribution De L'approche Géographique A L'étude Des Facteurs Humains De L'érosion Ravinante, Intra Urbain A Kinshasa RD Congo In Géo-Eco-Trop. Tome 1. 119-138.
- [30]. Lopanza, M. J. Et Al. (2020). Erosions Urbaines A Kinshasa : Causes Conséquences Et Perspectives. Dans European Journal Of Social Sciences Studies. ISSN: 2501 – 8590. ISSN – L: 2501-8590. Online.
- [31]. Makanzu Fils Et Al. (2018). Kinshasa En Proie A L'érosion En Ravine : Inventaire Cartographique Et Impact Socio-Economique. En Ligne : Filsmakanzu@Yahoo.Fr.
- [32]. Mbeza, M., Miti, T. Et Alou, K. (1991). L'érosion Ravinante Dans La Ville De Kolwezi Au Shaba. Dans Géo-Eco-Top. Pp. 91-104.
 [33]. Roose E., Et Sarrailh J.M. (1990). Érodibilité De Quelques Sols Tropicaux, Vingt Années De Mesures En Parcelle D'érosion Sous
- Pluies Naturelles. Cahier De L'orstein Pédologie. Vol.25, N°12. 2up.
- [34]. Yamba, T. K. 2016. Changement Climatique Et Délimitation Spatiale Des Zones Vulnérables A L'aide De La Télédétection : Etude Du Cas De L'espace Urbain De Kananga (Kasaï Central/R.D. Congo).