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Abstract:  
The helium ion is one of the ions included in the hydrogenic atom because it has only one electron in its 

outermost orbital, so the problem in the helium ion can be solved using the Schrodinger equation approach at 

spherical coordinates. This study was conducted to examine the solution of helium ions in the representation of 

positional space using the Schrödinger equation on quantum numbers n ≤ 4. The type of research used is basic 

research, namely the development of existing theories. The results obtained in the form of Laguerre polynomials 

are 𝐿𝑛(𝑟) = 𝑒𝑟 𝑑𝑛

𝑑𝑟𝑛
(𝑟𝑛𝑒−𝑟) and associated Laguerre polynomials is 𝐿𝑛

𝑘 (𝑟) = 𝑒𝑟𝑟−𝑘 𝑑𝑛

𝑑𝑟𝑛
(𝑒−𝑟𝑟𝑛+𝑘)  then 

applied to the Schrodinger wave function of the radial part of the Helium ion, namely  𝑅𝑛𝑙 =

− (
2𝑧

𝑛𝑎0
)

3

2
√

(𝑛−ℓ−1)!

2𝑛[(𝑛+1)!]3 𝑒−(
𝑧𝑟

𝑛𝑎
)(𝜉)ℓ𝐿𝑛+𝑙

2ℓ+1(𝜉). 
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I. Introduction  
 The physics that developed until the end of the nineteenth century was known as classical physics and 

had two main branches, namely Newtonian classical mechanics and Maxwellian electromagnetic field 

theory. Classical mechanics is characterized by the presence of particles as something confined within 

space. The term confined can simply be said to mean the existence of a clear boundary between matter and 

something outside itself or its environment [1]. While electromagnetic is characterized by the quantity of the 

field of waves that propagate in space. The terrain is scattered in the fog-like space of different thicknesses and 

thins until it finally completely disappears [2]. 

The development of physics in the classical era continued until new discoveries were obtained 

continuously. However, some of the physical phenomena that occurred in the late nineteenth century could not 

be explained by classical physical theory. One of them is the formulation of Rayleigh and James Jeans which 

does not match the results of observations in the low wavelength region in the ultraviolet region. This is because 

the results of integration are infinitely valuable, so this event is known as an ultraviolet disaster [3]. Therefore, 

quantum physics appears to be a complement to the shortcomings of classical physics in the investigation of 

physics [4] 

The behavior of light like particles is supported by Planck's hypothesis, Einstein's quantum theory of 

Light as well as Compton's scattering theory. This phenomenon assumes that light is a particle [4]. In 1924 

Louis de Brogile proposed the hypothesis that particles should have wave properties taking into account the 

symmetry properties of nature [5]. The wavelength is obtained by Planck's constant divided by mass 

multiplication and wave rate. De Brogile's hypothesis explains waves have properties as particles and particles 

have wave properties [6]. 

The Schrödinger equation is an equation introduced by Erwin Schrödinger to discuss the description of 

particle waves in atomic dimensions that satisfy the principles and laws of physics [4]. The simplest form of the 

Schrödinger equation is the equation for a free particle or a particle affected by a constant potential, 𝑉(𝑥) = 𝐶 

[7]. This equation is very important as well as Newton's equation which became the basis for the development of 

physical science, so that the Schrödinger equation itself became the basis for the development of modern 

physics related to quantum mechanics [8].  

The 3-dimensional stable Schrödinger equation in spherical coordinates is commonly used in solving 

the problem of hydrogenic atoms. This equation is a partial differential equation of order 2 that depends on 3 

variables, namely: Ψ (𝑟, 𝜃, 𝜙). So that the variable separation method, by stating Ψ (𝑟, 𝜃, 𝜙) = 𝑅(𝑟)𝑌(𝜃, ∅)  

where R(r) is a radial function and 𝑌(𝜃, 𝜙) is an angulatory function (Purwanto, 2016), often used. Aziz & 
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Abdullah (2015) stated that the variable separation method in solving the Schrodinger equation of hydrogen 

atoms can use the angular momentum operator method, potential operator and can use the Laplacian 

operator. The wave function of hydrogen atoms can be represented in terms of position and momentum 

representations. 

The wave function of a hydrogenic atom is a solution of the Schrödinger equation of a hydrogenic atom 

[10]. A hydrogenic atom is an atom that gives up its electrons leaving only one electron in its outermost orbit 

[11][12]. In the hydrogenic atom there is a charged nucleus Ze and an electroton surrounding the nucleus. 

Helium is a type of noble gas atom that has two electrons in its orbitals, two protons and two neutrons [13]. If 

one of the two electrons in a helium atom ions, it will be a helium ion that has characteristics similar to a 

hydrogenic atom [7]. The helium ion system is similar to the hydrogen atomic system, so the hydrogenic atomic 

stage can be used to solve the helium ion schrodinger equation [14].  

The wave function of the helium ion can be determined by solving the Schrödinger equation for 

hydrogenic atoms [15]. Schrodinger completion can be done separately into radial section and angle section 

functions [16]. If a system contains radial functions or angular functions then the Schrodinger equation is 

reduced to a second-order differential equation. This equation has a special solution by containing polynomials 

of special functions such as hermit, hypergeometry, lagendre and Laguerre [17]. 

One important component in the analysis and modeling of the Schrödinger equation is the Lagguerre 

polynomial. The Lagguerre polynomial is a mathematical function that serves as a solution to differential 

equations. The Schrödinger equation for hydrogenic atoms in spherical coordinates also yields differential 

equations in some cases when the system has spherical symmetry such as hydrogen atoms and hydrogen-like 

atoms [18]. Lagguerre's polynomials helped and formulated exact solutions of the Schrödinger equation for such 

systems and provided valuable insights in quantum and atomic physics [19]. 

 

II. Material And Methods 
The Schrödinger equation plays a role what is very important in the development of modern physics, 

especially quantum mechanics, is logically analogous to the laws of classical physics [20]. The Schrödinger 

equation is a second-order partial differential equation used to provide information about the waveform of a 

particle.   

The steady Schrödinger equation for hydrogenic atoms in cartesian coordinates is generally formulated as 

follows:  

(
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2 +
𝜕2

𝜕𝑧2) 𝜓 +
2𝑚

ℏ2
(𝐸 − 𝑉)𝜓 = 0                                   

(1) 

or: 

    ∇2Ψ + 
2𝑚

ℏ2
(𝐸 − 𝑉)Ψ = 0                   

(2) 

Using the help of the Laplace transform, the Schrödinger equation can also be expressed in spherical 

coordinates, namely:  
ℏ2

2𝑚0
 [

1

𝑟2  
𝜕

𝜕𝑟
 (𝑟2  

𝜕

𝜕𝑟
) +  

1

𝑟2 sin 𝜃

𝜕

𝜕𝜃
 (sin 𝜃  

𝜕

𝜕𝜃
) +  

1

𝑟2 sin 𝜃

𝜕2

𝜕𝜙2] Ψ (𝑟, 𝜃, 𝜙) + [𝐸 − 𝑉]Ψ (𝑟, 𝜃, 𝜙) = 0            

(3)  

The variable separation method can be done by introducing Ψ (𝑟, 𝜃, 𝜙) = 𝑅(𝑟)𝑌(𝜃, 𝜙)  and multiply equation 

(3) by 
1

𝑅(𝑟)𝑌(𝜃,𝜙)
 The following equation will be obtained: 

1

𝑅
 

𝑑

𝑑𝑟
(𝑟2  

𝜕𝑅

𝜕𝑟
) +  

2𝑚0𝑟2

ℏ2  [𝐸 − 𝑉]𝑅 + [
1

sin 𝜃

𝜕

𝜕𝜃
 (sin 𝜃  

𝜕Y

𝜕𝜃
) + 

1

sin2 𝜃

𝜕2Y

𝜕𝜙2] = 0               

(4) 

or  
1

𝑅
 

𝑑

𝑑𝑟
(𝑟2  

𝜕𝑅

𝜕𝑟
) +  

2𝑚0𝑟2

ℏ2  [𝐸 − 𝑉]𝑅 =  − [
1

sin 𝜃

𝜕

𝜕𝜃
 (sin 𝜃  

𝜕Y

𝜕𝜃
) + 

1

sin2 𝜃

𝜕2Y

𝜕𝜙2] =  𝜆               

(5) 

Based on equation (5) above, the radial section Schrodinger equation can be simplified to: 
1

𝑟2

𝑑

𝑑𝑟
(𝑟2  

𝜕𝑅

𝜕𝑟
) +  

2𝑚0

ℏ2  [𝐸 − 𝑉]𝑅 =  
𝜆

𝑟2 𝑅                  

(6) 

By introducing the parameters   𝑉(𝑟) = − 
𝑘𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑎

𝑟
= −

𝐴

𝑟
  𝜆 = 𝑙(𝑙 + 1)and, equation (6) can be expressed in 

the form: 
1

𝑟2

𝑑

𝑑𝑟
(𝑟2  

𝜕𝑅

𝜕𝑟
) + {

2𝑚0

ℏ2 [𝐸 +
𝐴

𝑟
] −

𝑙(𝑙+1)

𝑟2 } 𝑅 = 0                   

(7) 
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And using parameter (i) ; (ii) 𝜉 = 𝛽𝑟𝛽2 =
8𝜇|𝐸|

ℏ2 ; and (iii) 𝛾 =
2𝜇𝐴

𝛽ℏ2 =
𝐴

ℏ
(

𝜇

2|𝐸|
)

1/2

obtain: 

𝜉
𝑑2𝑅

𝑑𝜉2 + 2
𝑑𝑅

𝑑𝜉
+ [𝛾 −

𝜉

4
−

𝑙(𝑙+1)

𝜉
] 𝑅 = 0                  

(8) 

This research is a descriptive qualitative research in the form of a literature study to solve the Schrodinger 

equation of the radial part of the helium ion using the Laguerre equation [21].   

𝑟
𝑑2𝑅

𝑑𝑟2 + (1 − 𝑟)
𝑑𝑅

𝑑𝑟
+ 𝛼𝑅 = 0     (𝛼 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛)                     

(9)  

Which has a solution in the form of a polynomial function, namely: 

𝑅(𝑟) = ∑ 𝑎𝜆𝑟𝑘+𝜆∞
𝜆=0      (𝑎0 ≠ 0)                             

(10) 

By substituting equation (10), the first derivative is 
𝑑𝑅

𝑑𝑟
= ∑ (𝑘 + 𝜆)𝑎𝜆𝑟𝑘+𝜆−1∞

𝜆=0                                             

(11) 

And derivatives of both, 

        
𝑑2𝑅

𝑑𝑟2 = ∑ (𝑘 + 𝜆)(𝑘 + 𝜆 − 1)𝑎𝜆𝑟𝑘+𝜆−2∞
𝜆=0               

(12) 

into equation (9). So the Laguerre equation above becomes: 

[𝑘(𝑘 − 1) + 𝑘]𝑎0𝑟𝑘−1 + ∑ {[(𝑘 + 𝜆 + 1)(𝑘 + 𝜆) + 𝑘 + 𝜆 + 1]𝑎𝜆+1 + (𝛼 − 𝑘 − 𝜆)𝑎𝜆}𝑟𝑘+𝜆∞
𝜆=0 = 0            

(13) 

The above equation gives the meaning that [22]: 

(i) [𝑘(𝑘 − 1) + 𝑘]𝑎0 = 0    and    

(ii) 𝑎𝜆+1 =
(𝑘+𝜆−𝛼)

(𝑘+𝜆+1)(𝑘+𝜆)+𝑘+𝜆+1
𝑎𝜆                           

(14) 

Given that the recursion formula is obtained as follows:      𝑎0 ≠ 0𝑘 = 0 

𝑎𝜆+1 = −
(𝛼−𝜆)

(𝜆+1)2 𝑎𝜆                     

(15) 

So the solution of the Laguerre equation (10) above, can be expressed in terms of power series functions as 

follows:   𝑅(𝑟) = ∑ 𝑎𝜆𝑟𝑘+𝜆∞
𝜆=0      (𝑎0 ≠ 0) 

𝑅(𝑟) = 𝑎0 [1 −
α

12 r +
α(α−1)

(2!)2 r2 + ⋯ +
(−1)jα(α−1)⋯(α−j+1)rj

(j!)2 ] + ⋯                          

(16) 

Equation (16) becomes finite (polynomial of degree n) when or (equal to a positive integer). So that the finite 

solution can be stated:   𝛼 − 𝑗 + 1 = 0𝛼 = 𝐽 − 1 

𝑅(𝑟) = 𝑎0 ∑
(−1)𝜆𝛼(𝛼−1)⋯(𝛼−𝜆+1)𝑟𝜆

(𝜆!)2
𝑛
𝜆=0        

𝑅(𝑟) = 𝑎0 ∑
(−1)𝜆𝛼!𝑟𝜆

(𝛼−𝜆)!(𝜆!)2
𝑛
𝜆=0 ≡ 𝐿𝑛(𝑟)                                  

(17)  

Where Rodrigues' formula for the Laguerre polynomial is  [23].   

𝐿𝑛(𝑟) = 𝑒𝑟 𝑑𝑛

𝑑𝑟𝑛
(𝑟𝑛𝑒−𝑟)                              

(18) 

Laguerre polynomials for range n are obtained as presented in table 1. 

 

Tabel 1. Polinomial Laguerre 𝐿𝑛(𝑟) 

n 𝐿𝑛(𝑟) 

1 1 

2 1 − 𝑟 

3 2 − 4𝑟 + 𝑟2 

4 6 − 18𝑟 + 9𝑟2 − 𝑟3 

 

The 𝑘 differential of the Laguerre equation to 𝑟 obtained:  

𝑟
𝑑𝑘+2

𝑑𝑟𝑘+2 𝐿𝑛(𝑟) + (𝑘 + 1 − 𝑟)
𝑑𝑘+1

𝑑𝑟𝑘+1 𝐿𝑛(𝑟) + (𝑛 − 𝑘) 
𝑑𝑘

𝑑𝑟𝑘 𝐿𝑛(𝑟) = 0                                        

(19)  

or 
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𝑟
𝑑2𝐿𝑛

𝑘 (𝑟)

𝑑𝑟2 + (𝑘 + 1 − 𝑟)
𝑑𝐿𝑛

𝑘 (𝑟)

𝑑𝑟
+ (𝑛 − 𝑘)𝐿𝑛

𝑘 (𝑟) = 0  

where    

𝐿𝑛
𝑘 (𝑟) =

𝑑𝑘

𝑑𝑟𝑘 𝐿𝑛(𝑟)                                            

(20) 

and n and towards is a constant (positive integer). Associated Laguerre polynomials with degrees represented by  

(𝑛 − 𝑘)𝐿𝑛
𝑘 (𝑟)[24]. By using the generating function for associated Laguerre polynomials [25], 

(−𝑡)𝑘 exp(−𝑡𝑟/(1−𝑡))

(1−𝑡)𝑘+1 = ∑
𝐿𝑛

𝑘 (𝑟)𝑡𝑛

𝑛!

∞
𝑛=𝑘                             

(21) 

and Rodrigues' formula is 

𝐿𝑛
𝑘 (𝑟) = 𝑒𝑟𝑟−𝑘 𝑑𝑛

𝑑𝑟𝑛
(𝑒−𝑟𝑟𝑛+𝑘)                              

(22) 

 

III. Result  
The solution of the radial part of the Schrodinger equation (8) is done by considering the equation at the time so 

that the equation is obtained:𝜉 → ∞ 

{
𝑑2

𝑑𝜉2 −
1

4
} 𝑅𝑛𝑙(𝜉) = 0                 

(23) 

And it has a solution, 

𝑅𝑛𝑙(𝜉)~𝑒−
𝜉

2.                                                                                

(24) 

At the time 𝜉 → 0, equation (8) becomes: 
𝑑2

𝑑𝜉2
{𝜉𝑅𝑛𝑙(𝜉)} −

𝑙(𝑙+1)

𝜉2
{𝜉𝑅𝑛𝑙(𝜉)} = 0                             

(25) 

Has a shaped solution,  

𝑅𝑛𝑙(𝜉)~ 𝜉𝑙 .                                                                                 

(26) 

So the solution to the Schrodinger equation of the radial part of the hydrogenic atom is,  

𝑅𝑛𝑙(𝜉) = 𝑁𝑛𝑙  𝑒
−

𝜉

2 𝜉𝑙  𝐿𝑛
𝑘 (𝜉)                                                         

(27) 

or  

𝑅𝑛𝑙(𝑟) = 𝑁𝑛𝑙  𝑒
−

𝑧𝑟

𝑛𝑎0 (
2𝑧𝑟

𝑛𝑎0
)

𝑙

𝐿𝑛+1
2𝑙+1 (

2𝑧𝑟

𝑛𝑎0
)                                     

(28) 

where  

𝑁𝑛𝑙 = − (
𝟐𝒛

𝒏𝒂𝟎
)

𝟑
𝟐⁄

√
(𝒏−𝒍−𝟏)!

𝟐𝒏[(𝒏+𝒍)!]𝟑                              

(29) 

is a normalization constant. So the solution of the radial function of the normalized hydrogenic atom is: 

𝑅𝑛𝑙 = − (
2𝑧

𝑛𝑎0
)

3

2
√

(𝑛−ℓ−1)!

2𝑛[(𝑛+1)!]3 𝑒−(
𝑧𝑟

𝑛𝑎
)(𝜉)ℓ𝐿𝑛+𝑙

2ℓ+1(𝜉)                   

(30) 

where 𝜉 =
2𝑧𝑟

𝑛𝑎0
. 

Using the associated Laguerre function and Laguerre function, the radial wave function of the Helium ion, 𝐻𝑒+
2
4  

at quantum numbers is (𝑛, 𝑙) =  (1,0) 

(i) 𝐿𝑛+𝑙
2ℓ+1(𝜉) =  𝐿1

1 (𝜉) =
𝑑

𝑑𝜉
𝐿1(𝜉) 

Because 𝐿1(𝜉) = 𝑒𝜉 𝑑

𝑑𝜉
(𝜉𝑒−𝜉) =  1 − 𝜉 

So  𝐿1
1 (𝜉) =

𝑑

𝑑𝜉
𝐿1(𝜉) = −1  

(ii) 𝑁10 = − (
𝟐.𝟐

𝒂𝟎
)

𝟑
𝟐⁄

√
(𝟏−𝟎−𝟏)!

𝟐[(𝟏+𝟎)!]𝟑 = −𝟐 (
𝟐

𝒂𝟎
)

𝟑

𝟐
 

(iii) 𝑅10(𝑟) = 2 (
2

𝑎0
)

3

2
𝑒

−
2𝑟

𝑎0 



Application Of Laguerre Polynomial Equation In Solving Schrodinger Equation Radial Section……. 

DOI: 10.9790/4861-1601012231                        www.iosrjournals.org                                      26 | Page 

For quantum numbers (𝑛, 𝑙) =  (2,0), the radial wave function is 

(i) 𝐿𝑛+𝑙
2ℓ+1(𝜉) =  𝐿2

1 (𝜉) =
𝑑

𝑑𝜉
𝐿2(𝜉) 

Because𝐿2(𝜉) = 𝑒𝜉 𝑑2

𝑑𝜉2 (𝜉2𝑒−𝜉) = 2 − 4𝜉 + 𝜉2  

So  𝐿2
1 (𝜉) =

𝑑

𝑑𝜉
𝐿1(𝜉) = 2𝜉 − 4  

(ii) 𝑁20 = − (
𝟐.𝟐

𝟐𝒂𝟎
)

𝟑
𝟐⁄

√
(𝟐−𝟎−𝟏)!

𝟒[(𝟐+𝟎)!]𝟑 = − (
𝟐

𝒂𝟎
)

𝟑

𝟐 𝟏

𝟒√𝟐
 

(iii) 𝑅20(𝑟) = (
1

𝑎0
)

3

2
𝑒

−
𝑟

𝑎0 (2 −
2𝑟

𝑎0
) 

In the same way, the wave function of Helium ions on quantum numbers (𝑛, 𝑙) =  (2,1) is, 

(i) 𝐿𝑛+𝑙
2ℓ+1(𝜉) =  𝐿3

3 (𝜉) =
𝑑

𝑑𝜉
𝐿3(𝜉) 

Because𝐿2(𝜉) = 𝑒𝜉 𝑑3

𝑑𝜉3 (𝜉2𝑒−𝜉) = 6 − 18𝜉 + 9𝜉2 − 𝜉3  

So  𝐿3
3 (𝜉) =

𝑑

𝑑𝜉
𝐿3(𝜉) = −6  

(ii) 𝑁21 = − (
𝟐.𝟐

𝟐𝒂𝟎
)

𝟑
𝟐⁄

√
(𝟐−𝟏−𝟏)!

𝟒[(𝟐+𝟏)!]𝟑 = − (
𝟐

𝒂𝟎
)

𝟑

𝟐 𝟏

𝟏𝟐√𝟔
 

(iii) 𝑅21(𝑟) =
1

√3(𝑎0)
3
2

𝑒
−(

𝑟

𝑎0
)

  (
2𝑟

𝑎0
)  

And on quantum numbers (𝑛, 𝑙) =  (3,0) are, 

(i) 𝐿𝑛+𝑙
2ℓ+1(𝜉) =  𝐿3

1 (𝜉) =
𝑑

𝑑𝜉
𝐿3(𝜉) 

Because𝐿3(𝜉) = 𝑒𝜉 𝑑3

𝑑𝜉3 (𝜉3𝑒−𝜉) = 6 − 18𝜉 + 9𝜉2 − 𝜉3 

So  𝐿3
1 (𝜉) =

𝑑

𝑑𝜉
𝐿1(𝜉) = −18 + 18𝜉 − 3𝜉2  

(ii) 𝑁30 = − (
𝟐.𝟐

𝟑𝒂𝟎
)

𝟑
𝟐⁄

√
(𝟑−𝟎−𝟏)!

𝟐(𝟑)[(𝟑+𝟎)!]𝟑 = − (
4

3𝑎
)

3

2
√

2

6(6)3 

(iii) 𝑅30(𝑟) =
 8

√2(3𝑎0)
3
2

 𝑒
−(

2𝑟

3𝑎0
)

(1 −
4𝑟

3𝑎0
+

8𝑟2

27𝑎0
2) 

And on quantum numbers (𝑛, 𝑙) =  (3,1) are, 

(i) 𝐿𝑛+𝑙
2ℓ+1(𝜉) =  𝐿4

3 (𝜉) =
𝑑

𝑑𝜉
𝐿4(𝜉) 

Because𝐿4(𝜉) = 𝑒𝜉 𝑑4

𝑑𝜉4 (𝜉4𝑒−𝜉) = 24 − 96𝜉 + 72𝜉2 − 16𝜉3 + 𝜉4  

So  𝐿4
3 (𝜉) =

𝑑3

𝑑𝜉3 𝐿4(𝜉) = 24𝜉 − 96  

(ii) 𝑁31 = − (
𝟐.𝟐

𝟑𝒂𝟎
)

𝟑
𝟐⁄

√
(𝟑−𝟏−𝟏)!

𝟔[(𝟑+𝟏)!]𝟑 = − (
4

3𝑎
)

3/2

√
1

6[24]3 

(iii) 𝑅31(𝑟) =
2√2

9
(

2

3𝑎0
)

3/2

(
4𝑟

𝑎0
−

4𝑟2

3𝑎0
2) 𝑒−(

2𝑟

3𝑎
)
 

And on quantum numbers (𝑛, 𝑙) =  (3,2) are, 

(i) 𝐿𝑛+𝑙
2ℓ+1(𝜉) =  𝐿5

5 (𝜉) =
𝑑

𝑑𝜉
𝐿5(𝜉) 

Because𝐿5(𝜉) = 𝑒𝜉 𝑑5

𝑑𝜉5 (𝜉5𝑒−𝜉) = 120 − 600𝜉 + 600𝜉2 − 200𝜉3 + 25𝜉4 − 𝜉5  

So  𝐿5
5 (𝜉) =

𝑑5

𝑑𝜉5 𝐿5(𝜉) = 120  

(ii) 𝑁32 = − (
𝟐.𝟐

𝟑𝒂𝟎
)

𝟑
𝟐⁄

√
(𝟑−𝟐−𝟏)!

𝟔[(𝟑+𝟐)!]𝟑 = −
𝟏

𝟏𝟖𝟎√𝟓(𝟑𝒂𝟎)𝟑/𝟐 

(iii) 𝑅32(𝑟) =
4

27√10
(

2

3𝑎0
)

3/2

𝑒
−

2𝑟

3𝑎0 (
4𝑟2

𝑎0
2) 

And on quantum numbers (𝑛, 𝑙) =  (4,0) are, 

(i) 𝐿𝑛+𝑙
2ℓ+1(𝜉) =  𝐿4

1 (𝜉) =
𝑑

𝑑𝜉
𝐿4(𝜉) 

Because 𝐿4(𝜉) = 𝑒𝜉 𝑑4

𝑑𝜉4 (𝜉4𝑒−𝜉) = 24 − 96𝜉 + 72𝜉2 − 16𝜉3 + 𝑟𝜉4  

So  𝐿4
1 (𝜉) =

𝑑4

𝑑𝜉4 𝐿4(𝜉) = −24  
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(ii) 𝑁40 = − (
𝟐.𝟐

𝟑𝒂𝟎
)

𝟑
𝟐⁄

√
(𝟒−𝟎−𝟏)!

𝟖[(𝟑+𝟐)!]𝟑 = − (
1

𝑎0
)

3

2 √6

240√2
 

(iii) 𝑅40(𝑟) =
1

√2
(

1

𝑎0
)

3/2

(1 −
3𝑟

2𝑎0
+

𝑟2

2𝑎0
2 −

𝑟3

24𝑎0
3) 𝑒

−(
𝑟

2𝑎0
)
 

And on quantum numbers (𝑛, 𝑙) =  (4,1) are, 

(i) 𝐿𝑛+𝑙
2ℓ+1(𝜉) =  𝐿4

1 (𝜉) =
𝑑

𝑑𝜉
𝐿4(𝜉) 

Because 𝐿5(𝜉) = 𝑒𝜉 𝑑5

𝑑𝜉5 (𝜉5𝑒−𝜉) = 120 − 600𝜉 + 600𝜉2 − 200𝜉3 + 25𝜉4 − 𝜉5𝑒−𝜉   

So  𝐿5
3 (𝜉) =

𝑑5

𝑑𝜉5 𝐿5(𝜉) = −1200 + 600𝜉 − 60𝜉2  

(ii) 𝑁41 = − (
𝟐.𝟐

𝟑𝒂𝟎
)

𝟑
𝟐⁄

√
(𝟒−𝟎−𝟏)!

𝟖[(𝟑+𝟐)!]𝟑 = − (
1

𝑎0
)

3

2 √6

240√2
 

(iii) 𝑅41(𝑟) =
1

2√30
(

1

𝑎0
)

3/2

(
𝑟2

4𝑎0
2 −

5𝑟

2𝑎0
+ 5) (

𝑟

𝑎0
) 𝑒

−(
𝑟

2𝑎0
)
 

And on quantum numbers (𝑛, 𝑙) =  (4,2) are, 

(i) 𝐿𝑛+𝑙
2ℓ+1(𝜉) =  𝐿5

5 (𝜉) =
𝑑

𝑑𝜉
𝐿6(𝜉) 

Because 𝐿6(𝜉) = 𝑒𝜉 𝑑6

𝑑𝜉6 (𝜉6𝑒−𝜉) = 720 − 4320𝜉 + 5400𝜉2 − 2400𝜉3 + 450𝜉4 − 36𝜉5 + 𝜉6  

So  𝐿4
1 (𝜉) =

𝑑4

𝑑𝜉4 𝐿4(𝜉) = −4320𝜉 + 720𝜉  

(ii) 𝑁42 = − (
𝟐.𝟐

𝟒𝒂𝟎
)

𝟑
𝟐⁄

√
(𝟒−𝟐−𝟏)!

𝟖[(𝟒+𝟐)!]𝟑 = − (
1

𝑎0
)

3

2 1

720√720√8
 

(iii) 𝑅42(𝑟) =
1

24√10
(

1

𝑎0
)

3/2

𝑒
−(

𝑟

2𝑎0
)

(6 −
𝑟

𝑎0
) (

𝑟

𝑎0
)

2

 

And on quantum numbers (𝑛, 𝑙) =  (4,3) are, 

(i) 𝐿𝑛+𝑙
2ℓ+1(𝜉) =  𝐿7

7 (𝜉) =
𝑑

𝑑𝜉
𝐿7(𝜉) 

Because 𝐿7(𝜉) = 𝑒𝜉 𝑑7

𝑑𝜉7 (𝜉7𝑒−𝜉) = 5040 − 35280𝜉 + 52920𝜉2 − 29400𝜉3 + 7350𝜉4 − 882𝜉5 +

 49𝜉6 − 𝜉7 

So  𝐿7
7 (𝜉) =

𝑑7

𝑑𝜉7 𝐿7(𝜉) = −5040  

(ii) 𝑁43 = − (
𝟐.𝟐

𝟒𝒂𝟎
)

𝟑
𝟐⁄

√
(𝟒−𝟑−𝟏)!

𝟖[(𝟒+𝟑)!]𝟑 = − (
4

4𝑎0
)

3

2
√

1

8.50403 

(iii) 𝑅43(𝑟) =
1

24√70
(

1

𝑎0
)

3/2

𝑒
−(

𝑟

2𝑎0
)

(
𝑟

𝑎0
)

3

 

 

The radial wave function of a hydrogenic atom expresses the movement of electrons propagating and 

spreading from the center of the atom in all directions and depending on the distance (r) of origin. The radial 

wave function of a hydrogenic atom contains a principal quantum number (n) and an orbital quantum number 

(l). The principal quantum number represents the energy level of the electron orbital while the orbital quantum 

number determines the shape of the electron orbital. So the radial function of the helium ion wave in the 

principal quantum number n ≤ 4 is as follows: 

 

Tabel 2. Radial wave function of Z = 2 
n ℓ Rn,ℓ 

1 0 2 (
2

𝑎0

)

3
2

𝑒
−

2𝑟
𝑎0 

2 

0 (
1

𝑎0

)

3
2

𝑒
−

𝑟
𝑎0 (2 −

2𝑟

𝑎0

) 

1 
1

√3(𝑎0)
3
2

𝑒
−(

𝑟
𝑎0

)
  (

2𝑟

𝑎0

) 

3 

0 
 8

√2(3𝑎0)
3
2

 𝑒
−(

2𝑟
3𝑎0

)
(1 −

4𝑟

3𝑎0

+
8𝑟2

27𝑎0
2

) 

1 
2√2

9
(

2

3𝑎0

)
3/2

(
4𝑟

𝑎0

−
4𝑟2

3𝑎0
2) 𝑒−(

2𝑟
3𝑎

)
 

2 
4

27√10
(

2

3𝑎0

)
3/2

𝑒
−

2𝑟
3𝑎0 (

4𝑟2

𝑎0
2

) 
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n ℓ Rn,ℓ 

4 0 
1

√2
(

1

𝑎0

)
3/2

(1 −
3𝑟

2𝑎0

+
𝑟2

2𝑎0
2

−
𝑟3

24𝑎0
3
) 𝑒

−(
𝑟

2𝑎0
)
 

 1 
1

2√30
(

1

𝑎0

)
3/2

(
𝑟2

4𝑎0
2

−
5𝑟

2𝑎0

+ 5) (
𝑟

𝑎0

) 𝑒
−(

𝑟
2𝑎0

)
 

 2 
1

24√10
(

1

𝑎0

)
3/2

𝑒
−(

𝑟
2𝑎0

)
(6 −

𝑟

𝑎0

) (
𝑟

𝑎0

)
2

 

 3 

1

24√70
(

1

𝑎0

)
3/2

𝑒
−(

𝑟
2𝑎0

)
(

𝑟

𝑎0

)
3

 

 

 

In determining the normalized radial function of helium ions using the bohr radius 𝑎0= 0.529 ×  10−10meters. 

Figure 1a is a graph of the results of the radial function of the hydrogenic atomic wave used as a 

validation of the graph simulation for the principal quantum number n = 2 in the reference used [26]. 

 

 
Figure 1a 

 

Based on figure 1a it can be explained that the ordinate axis states the position of electrons (r) 

measured from the nucleus in the hydrogen atom in units (𝑎0) and the abscissa axis which expresses the peak of 

R (r) in units of ammunition (Å). 

 

 
Figure 1b 

 

Figure 1b is the result of the graph obtained by the researcher has similarity with the validation graph, 

so that figure 1b can be stated to be in accordance with the literature. 

Based on the results of table 2, there are ten different forms of radial functions in the principal quantum 

number n 4. To visualize each form of radial function obtained is by graphic form. The following is a graph of 

the radial wave function for the value of the main quantum number n 4 sequentially and the orbital quantum 

number (𝑙) where in the ordinate part the position of the electron is at a distance (r) from the center of the atom 

with an interval of up to 30. The part of the abscissa that expresses the radial wave function of ions in units of 

Armstrong (Å). 
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Figure 2 

 

Based on figure 2 as a graph of the radial wave function on the principal quantum number n = 1 and the 

orbital quantum number 𝑙 = 0 waveform is obtained. Where in this condition, there is a maximum peak at 1.470 

Å. and a minimum peak at 0,008 Å. 

 

 
Figure 3 

 

Figure 3 shows a graph of the radial wave function at the principal quantum number n = 2 and the 

orbital quantum number 𝑙 = 0 and 1 obtained 2 waveforms. At n = 2 and 𝑙 = 0, there is a maximum peak at 0,519 

Å. And a minimum peak at -0.069 Å. At n = 2 and 𝑙 = 1, there is a maximum peak at 0.108 Å and a minimum 

peak at 0.003 Å. 

 

 
Figure 4 

 

Figure 4 shows a graph of radial wave functions at major quantum numbers n = 3 and orbital quantum 

numbers 𝑙 = 0, 1 and 2 obtained 3 waveforms. At n = 3 and 𝑙 = 0, there is a maximum peak at 0.282Å and a 

minimum peak at -0.037Å. At n = 3 and 𝑙 = 1, there is a maximum peak at 0.059Å and a minimum peak at -

0.021Å. At n = 3 and 𝑙 = 2, there is a maximum peak at 0.032Å and a minimum peak at 0.001Å. 
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Figure 5 

 

Figure 5 shows a graph of the radial wave function at the main quantum number n = 4 and the orbital 

quantum number 𝑙 = 0, 1, 2 and 3 obtained 4 waveforms. At n = 4 and 𝑙= 0, there is a maximum peak at 1.837Å 

and a minimum peak at -0.243Å. At n = 4 and 𝑙= 1, there is a maximum peak at 0.395Å and a minimum peak at -

0.133Å. At n = 4 and 𝑙= 2, there is a maximum peak at 0.214Å and a minimum peak at -0.088Å. At n = 4 and 𝑙= 

3, there is a maximum peak at 0.138Å and a minimum peak at 0.001Å. 

 Based on the graph of the radial wave function on the principal quantum number n ≤ 4 it appears that 

there are ten different waveforms depending on the value of the orbital quantum number and the peak point gets 

smaller as the orbital quantum number increases. The results of the recapitulation of peak point data from garfik 

can be seen in table 3.  

 

Tabel 3. Peak point of the graph 

n ℓ 

Maximum 
peak point 

(Å) 

Minimum 
breaking point 

(Å) 

1 0 1,470 0,008 

2 
0 0,519 -0,069 

1 0,108 0,003 

3 

0 0,282 -0,037 

1 0,059 -0,021 

2 0,032 0,001 

4 

0 1,837 -0,243 

1 0,395 -0,133 

2 0,214 -0,088 

3 0,138 0,001 

 

The crest point formed shows an exponential decrease that occurs because the deviation of the radial 

wave function is inversely proportional to the exponential function. 

 

IV. Conclusion  
Based on the results obtained, it can be concluded that the solution of the Helium Ion Schrodinger 

Equation on the main quantum numbers n ≤ 4 in the representation of positional space has 10 radial functions. 

As the main quantum number increases with the orbital quantum number, the distance from the peak point value 

will decrease. When viewed from each quantum number, for the state of quantum numbers the distance from the 

peak point value increases. 
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