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Abstract: 
This paper proves that the Schrödinger equation is no longer valid to stand as the fundamental postulate of 

quantum mechanics. Most of the non-harmonic wave equations cannot be represented by this equation including 

the one’s in their simplest form has been derived. As the motion of a particle is more complicated and not always 

harmonic or Gaussian which forms the basis of defining an alternative equation that is all encompassing, 

complete and accurate to correctly describe the properties and behaviour of a quantum particle. 
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I. Introduction: 
The Schrödinger equation is a fundamental equation in quantum mechanics that describes the behaviour 

of wave functions, which represent the quantum states of particles. It is named after the Austrian physicist Erwin 

Schrödinger, who developed it in 1925. 

 

The time-dependent Schrödinger equation is given by: 

 

                                              iħ ∂ψ/∂t = -ħ²/2m ∂²ψ/∂x² + V(x)ψ 

 

In this equation, ħ is the reduced Planck's constant (h/2π), ψ represents the wave function of the particle, t is time, 

x is position, m is the mass of the particle, and V(x) is the potential energy function. 

 

The left-hand side of the equation involves the time derivative of the wave function, which represents the rate of 

change of the wave function with respect to time. The right-hand side consists of two terms: the first term 

represents the spatial derivative of the wave function, which describes the curvature of the wave function in space, 

and the second term represents the potential energy of the particle. 

 

The Schrödinger equation is a differential equation that relates the time evolution of the wave function to the 

energy and potential of the system. It provides a mathematical framework to describe the behaviour of quantum 

systems, such as atoms, molecules, and particles, and allows us to determine the probabilities of various outcomes 

when measuring physical quantities. 

 

By solving the Schrödinger equation, one can obtain the wave function of a quantum system, which contains all 

the information about the system's quantum state. From the wave function, various observable properties of the 

system can be calculated, such as the energy spectrum, particle position, momentum, and more. 

 

The Schrödinger's equation is not limited to free particles and can be used to describe particles in a wide range of 

scenarios, including those influenced by external potentials. 

 

It is generally believed that the Schrödinger's equation does not assume harmonic oscillation of electrons. The 

equation is a general equation that describes the behaviour of quantum particles, including electrons, in a wide 

range of systems and potential energy landscapes. While harmonic motion can be observed in certain systems 

involving electrons, such as in simple harmonic oscillators or in the motion of electrons in atoms, it is not an 

assumption of the Schrödinger's equation itself. 

 

As we know the electrons do not always move in harmonic motion. While harmonic motion, or oscillatory motion, 

is observed in some systems involving electrons, such as in atoms and molecules, electrons can also exhibit other 
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types of motion. For example, in a conductor, electrons can move in a random motion known as thermal motion. 

Additionally, in certain situations, electrons can move in a straight line or follow complex paths, depending on 

the forces acting on them. 

 

It will be shown below that the above postulate generally believed by the scientific community that the 

Schrödinger's equation can solve for most of the wave function in a particle is not true and that there are lot of 

non-harmonic wave functions, conditions and assumptions that the equation is not valid.  

 

II. Observations: 
We all know that the harmonic wave functions can easily describe solutions to the Schrödinger equation. In fact, 

the simplest and most well-known solutions to the time-independent Schrödinger equation are harmonic wave 

functions. 

 

A harmonic wave function is a mathematical representation of a harmonic oscillator, which is a system that 

oscillates around an equilibrium position with a restoring force proportional to the displacement.  

 

The harmonic wave function, often denoted as ψ(x), has the general form: 

 

                                                        ψ(x) = A * exp(-αx²) 

 

In this equation, A is the amplitude of the wave function, α is a constant related to the stiffness of the harmonic 

oscillator, and x represents the position of the particle. 

 

When this wave function is plugged into the time-independent Schrödinger equation for a harmonic oscillator 

potential, it satisfies the equation and represents a valid stationary state. There are thousands of literature available 

on this both on-line and in books, research articles and the like that shows the derivation of Schrödinger equation 

from the harmonic wave function. 

 

So, harmonic wave functions, which have a sinusoidal or Gaussian-like shape, can accurately describe the 

behaviour of particles in certain systems and are commonly used in quantum mechanics to solve the Schrödinger 

equation for the harmonic oscillator potential. In fact, it can also be derived from the more general wave equations, 

such as the wave equation for electromagnetic waves or the wave equation for sound waves.  

 

Non-harmonic waves can exhibit a wide range of distributions, depending on their specific characteristics and 

mathematical forms. Here are a few examples of common non-harmonic wave distributions: 

 

1. Gaussian Distribution: The Gaussian distribution, also known as the normal distribution,  is a common example 

of a non-harmonic wave distribution. It is characterized by a bell- shaped curve, with a peak at the mean value 

and symmetrical tails extending to both   sides. The Gaussian distribution is often used to describe wave packets 

or localized wave functions in quantum mechanics. 

 

2. Lorentzian Distribution: The Lorentzian distribution, also known as the Cauchy distribution, is another example 

of a non-harmonic wave distribution. It has a peaked shape similar to the Gaussian distribution but with heavier 

tails that extend infinitely. The Lorentzian distribution is often used to describe wavefunctions with long-range 

interactions or resonant behaviour. 

 

3. Uniform Distribution: The uniform distribution is a simple non-harmonic wave distribution where values are 

evenly distributed within a specified range. It is characterized by a constant probability density function over this 

range. The uniform distribution is commonly used in signal processing and random number generation. 

 

4. Exponential Distribution: The exponential distribution is a non-harmonic wave distribution that is often used 

to describe decay processes or the waiting times between events in stochastic systems. It has a decreasing 

exponential shape, with a higher probability of occurrence for smaller values and a long tail extending towards 

larger values. 

 

5. Square Distribution: A square wave is a non-harmonic wave that alternates between two distinct values. It is 

often used in signal processing and electronics. The general    formula for a square wave is: 

 

                               ψ(x) = A, for x within a certain range 
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                               ψ(x) = -A, for x outside that range 

 

               In this equation, A represents the amplitude of the wave. 

 

Shown below are some of the proofs that show that the Schrödinger equation cannot describe the particle motion 

for some of the most common non-harmonic wave functions with the exception of Gaussian wave function: 

 

1. The Lagrangian distribution is defined as: 

 

ψ(x, t) = A * exp(-iEt/ħ) * exp(-(x-x₀)²/2σ²) 

 

Where A is the normalization constant, E is the energy, t is time, x is position, x₀ is the mean position, σ is the 

standard deviation of the distribution, and ħ is the reduced Planck's constant. 

 

To determine whether this wave function satisfies the Schrödinger equation, we need to substitute it into the 

time-dependent Schrödinger equation: 

 

iħ ∂ψ/∂t = -ħ²/2m ∂²ψ/∂x² + V(x)ψ 

 

Let's first calculate the partial derivative of ψ with respect to time: 

 

∂ψ/∂t = -iEA * exp(-iEt/ħ) * exp(-(x-x₀)²/2σ²) 

 

Now, let's calculate the second partial derivative of ψ with respect to position: 

 

∂²ψ/∂x² = A * exp(-iEt/ħ) * exp(-(x-x₀)²/2σ²) * (1/σ² - (x-x₀)²/σ⁴) 
 

Now, let's substitute these derivatives into the Schrödinger equation: 

 

iħ * (-iEA * exp(-iEt/ħ) * exp(-(x-x₀)²/2σ²)) = -ħ²/2m * (A * exp(-iEt/ħ) * exp(-(x-x₀)²/2σ²) * (1/σ² - (x-x₀)²/σ⁴)) 
+ V(x) * (A * exp(-iEt/ħ) * exp(-(x-x₀)²/2σ²)) 

 

Simplifying this equation, we get: 

 

EA = -ħ/2m * (1/σ² - (x-x₀)²/σ⁴) + V(x) 

 

This equation should hold for all x and t if the Lagrangian distribution wave function satisfies the Schrödinger 

equation. However, since the Lagrangian distribution wave function does not have a time-independent potential 

term V(x), it cannot satisfy the Schrödinger equation in its current form. 

 

 

2. The Poisson distribution wave function is given by: 

 

ψ(x, t) = A * e^(-iEt/ħ) * e^(-λ) * (λ^k / k!) 

 

Where A is the normalization constant, E is the energy, t is time, x is position, λ is the average number of 

events, k is the number of events, and ħ is the reduced Planck's constant. 

 

To determine whether this wave function satisfies the Schrödinger equation, we need to substitute it into the 

time-dependent Schrödinger equation: 

 

iħ ∂ψ/∂t = -ħ²/2m ∂²ψ/∂x² + V(x)ψ 

 

Let's first calculate the partial derivative of ψ with respect to time: 

 

∂ψ/∂t = -iEA * e^(-iEt/ħ) * e^(-λ) * (λ^k / k!) 

 

Now, let's calculate the second partial derivative of ψ with respect to position: 
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∂²ψ/∂x² = A * e^(-iEt/ħ) * e^(-λ) * (λ^k / k!) * (-λ²) 

 

Now, let's substitute these derivatives into the Schrödinger equation: 

 

iħ * (-iEA * e^(-iEt/ħ) * e^(-λ) * (λ^k / k!)) = -ħ²/2m * (A * e^(-iEt/ħ) * e^(-λ) * (λ^k / k!) * (-λ²)) + V(x) * (A * 

e^(-iEt/ħ) * e^(-λ) * (λ^k / k!)) 

 

Simplifying this equation, we get: 

 

EA = -ħ²/2m * λ² * (λ^k / k!) + V(x) * (λ^k / k!) 

 

This equation should hold for all x and t if the Poisson distribution wave function satisfies the Schrödinger 

equation. However, since the Poisson distribution wave function does not have a time-independent potential 

term V(x), it cannot satisfy the Schrödinger equation in its current form. 

 

 

3. The wave function for a Uniform distribution is given by: 

 

ψ(x, t) = A * e^(-iEt/ħ) 

 

where A is the normalization constant, E is the energy, t is time, x is position, and ħ is the reduced Planck's 

constant. 

 

To determine whether this wave function satisfies the Schrödinger equation, we need to substitute it into the 

time-dependent Schrödinger equation: 

 

iħ ∂ψ/∂t = -ħ²/2m ∂²ψ/∂x² + V(x)ψ 

 

Let's first calculate the partial derivative of ψ with respect to time: 

 

∂ψ/∂t = -iEA * e^(-iEt/ħ) 

 

Now, let's calculate the second partial derivative of ψ with respect to position: 

 

∂²ψ/∂x² = 0 

 

Now, let's substitute these derivatives into the Schrödinger equation: 

 

iħ * (-iEA * e^(-iEt/ħ)) = -ħ²/2m * (0) + V(x) * (A * e^(-iEt/ħ)) 

 

Simplifying this equation, we get: 

 

EA = V(x)A * e^(-iEt/ħ) 

 

This equation should hold for all x and t if the uniform distribution wave function satisfies the Schrödinger 

equation. However, this equation implies that V(x) = 1, which means the potential is constant throughout space. 

This is not generally true for physical systems, as the potential usually depends on position. Therefore, the 

uniform distribution wave function does not satisfy the Schrödinger equation in its current form. 

 

4. The Lorentzian distribution wave function is given by: 

 

ψ(x, t) = A / (1 + ((x - x₀)/σ)²) 

 

where A is the normalization constant, x₀ is the mean position, σ is the standard deviation of the distribution, 

and x is position. 

 

To determine whether this wave function satisfies the Schrödinger equation, we need to substitute it into the 

time-dependent Schrödinger equation: 

 



Schrödinger Equation unfit for fundamental law 

DOI: 10.9790/4861-1505012633                                  www.iosrjournals.org                                           30 | Page  

iħ ∂ψ/∂t = -ħ²/2m ∂²ψ/∂x² + V(x)ψ 

 

Let's first calculate the partial derivative of ψ with respect to time: 

 

∂ψ/∂t = 0 

 

Now, let's calculate the second partial derivative of ψ with respect to position: 

 

∂²ψ/∂x² = A * (2σ² / (1 + ((x - x₀)/σ)²)³) 

 

Now, let's substitute these derivatives into the Schrödinger equation: 

 

iħ * (0) = -ħ²/2m * (A * (2σ² / (1 + ((x - x₀)/σ)²)³)) + V(x) * (A / (1 + ((x - x₀)/σ)²)) 

 

Simplifying this equation, we get: 

 

0 = -ħ²/2m * (A * (2σ² / (1 + ((x - x₀)/σ)²)³)) + V(x) * (A / (1 + ((x - x₀)/σ)²)) 

 

This equation should hold for all x and t if the Lorentzian distribution wave function satisfies the Schrödinger 

equation. However, this equation is not generally true since the left-hand side is zero, and it is unlikely that the 

right-hand side will be zero for all x and t unless V(x) = 0. Therefore, the Lorentzian distribution wave function 

does not satisfy the Schrödinger equation in its current form. 

 

 

5. The Exponential distribution wave function is given by: 

 

ψ(x, t) = A * e^(-iEt/ħ) * e^(-λ|x|) 

 

where A is the normalization constant, E is the energy, t is time, x is position, λ is the rate parameter, and ħ is 

the reduced Planck's constant. 

 

To determine whether this wave function satisfies the Schrödinger equation, we need to substitute it into the 

time-dependent Schrödinger equation: 

 

iħ ∂ψ/∂t = -ħ²/2m ∂²ψ/∂x² + V(x)ψ 

 

Let's first calculate the partial derivative of ψ with respect to time: 

 

∂ψ/∂t = -iEA * e^(-iEt/ħ) * e^(-λ|x|) 

 

Now, let's calculate the second partial derivative of ψ with respect to position: 

 

∂²ψ/∂x² = A * e^(-iEt/ħ) * (-λ²) * e^(-λ|x|) 

 

Now, let's substitute these derivatives into the Schrödinger equation: 

 

iħ * (-iEA * e^(-iEt/ħ) * e^(-λ|x|)) = -ħ²/2m * (A * e^(-iEt/ħ) * (-λ²) * e^(-λ|x|)) + V(x) * (A * e^(-iEt/ħ) * e^(-

λ|x|)) 

 

Simplifying this equation, we get: 

 

EA = -ħ²/2m * λ² * e^(-λ|x|) + V(x) * e^(-λ|x|) 

 

This equation should hold for all x and t if the exponential distribution wave function satisfies the Schrödinger 

equation. However, this equation implies that V(x) = λ², which means the potential is proportional to the square 

of the rate parameter λ. This is not generally true for physical systems, as the potential usually depends on 

position in a more complex manner. Therefore, the exponential distribution wave function does not satisfy the 

Schrödinger equation in its current form. 
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6. To show how the Gaussian distribution wave function satisfies the Schrödinger equation, let's start 

with the Gaussian wave function: 

 

ψ(x, t) = A * e^(-iEt/ħ) * e^(-(x - x₀)² / (4σ²)) 

 

where A is the normalization constant, E is the energy, t is time, x is position, x₀ is the mean position, σ is the 

standard deviation of the distribution, and ħ is the reduced Planck's constant. 

 

We need to substitute this wave function into the time-dependent Schrödinger equation: 

 

iħ ∂ψ/∂t = -ħ²/2m ∂²ψ/∂x² + V(x)ψ 

 

First, let's calculate the partial derivative of ψ with respect to time: 

 

∂ψ/∂t = -iEA * e^(-iEt/ħ) * e^(-(x - x₀)² / (4σ²)) 

 

Next, let's calculate the second partial derivative of ψ with respect to position: 

 

∂²ψ/∂x² = A * e^(-iEt/ħ) * (-(2σ² - 2(x - x₀)²) / (4σ⁴)) * e^(-(x - x₀)² / (4σ²)) 

 

Now, let's substitute these derivatives into the Schrödinger equation: 

 

iħ * (-iEA * e^(-iEt/ħ) * e^(-(x - x₀)² / (4σ²))) = -ħ²/2m * (A * e^(-iEt/ħ) * (-(2σ² - 2(x - x₀)²) / (4σ⁴)) * e^(-(x - 

x₀)² / (4σ²))) + V(x) * (A * e^(-iEt/ħ) * e^(-(x - x₀)² / (4σ²))) 

 

Simplifying this equation, we get: 

 

E = -ħ²/2m * (-(2σ² - 2(x - x₀)²) / (4σ⁴)) + V(x) 

 

Now, let's simplify the right-hand side further: 

 

E = (ħ²/2m) * (2σ² - 2(x - x₀)²) / (4σ⁴) + V(x) 

 

E = (ħ²/4mσ²) + [(ħ²(x - x₀)²) / (2mσ⁴)] + V(x) 

 

E = (ħ²/4mσ²) + [(ħ²(x - x₀)²) / (2mσ⁴)] + V(x) 

 

E = (ħ²/4mσ²) + [(ħ²(x - x₀)²) / (2mσ⁴)] + V(x) 

 

E = (ħ²/4mσ²) + (ħ²(x - x₀)²) / (2mσ⁴) + V(x) 

 

This equation shows that the right-hand side is equal to the energy E, which is a constant. Therefore, the 

Gaussian distribution wave function satisfies the Schrödinger equation in its current form. 

 

7. The Square distribution wave function is given by: 

 

ψ(x, t) = A * e^(-iEt/ħ) * sgn(x) 

 

where A is the normalization constant, E is the energy, t is time, x is position, sgn(x) is the sign function, and ħ 

is the reduced Planck's constant. 

 

To determine whether this wave function satisfies the Schrödinger equation, we need to substitute it into the 

time-dependent Schrödinger equation: 

 

iħ ∂ψ/∂t = -ħ²/2m ∂²ψ/∂x² + V(x)ψ 

 

Let's first calculate the partial derivative of ψ with respect to time: 
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∂ψ/∂t = -iEA * e^(-iEt/ħ) * sgn(x) 

 

Now, let's calculate the second partial derivative of ψ with respect to position: 

 

∂²ψ/∂x² = A * e^(-iEt/ħ) * 2δ(x) 

 

where δ(x) is the Dirac delta function. 

 

Now, let's substitute these derivatives into the Schrödinger equation: 

 

iħ * (-iEA * e^(-iEt/ħ) * sgn(x)) = -ħ²/2m * (A * e^(-iEt/ħ) * 2δ(x)) + V(x) * (A * e^(-iEt/ħ) * sgn(x)) 

 

Simplifying this equation, we get: 

 

EA = -ħ²/m * δ(x) + V(x) * sgn(x) 

 

This equation should hold for all x and t if the square distribution wave function satisfies the Schrödinger 

equation. However, this equation implies that the potential V(x) is proportional to the Dirac delta function δ(x) 

and the sign function sgn(x). In general, the potential in the Schrödinger equation does not have this specific 

form. Therefore, the square distribution wave function does not satisfy the Schrödinger equation in its current 

form. 

However, it is important to note that the Schrödinger equation has additional limitations and may not be applicable 

for certain scenarios as per below: 

 

1. Non-Quantum Systems: The Schrödinger equation is specifically formulated for quantum systems, where 

particles exhibit wave-like properties. For classical systems or macroscopic objects, the Schrödinger equation is 

not applicable. Classical waves, such as electromagnetic waves or waves in a fluid, are described by different 

equations, such as Maxwell's equations or the wave equation. 

 

2. Strongly Interacting Systems: In systems with strong interactions, such as those involving strong nuclear forces 

or high-energy particle collisions, the Schrödinger equation may not provide an accurate description. In these 

cases, more advanced theoretical frameworks, such as quantum field theory, are needed to account for the complex 

interactions and dynamics. 

 

3. Relativistic Effects: The Schrödinger equation is based on non-relativistic quantum mechanics, which neglects 

relativistic effects, such as time dilation and length contraction. For particles moving at speeds close to the speed 

of light or in systems involving strong gravitational fields, relativistic quantum mechanics, such as the Dirac 

equation, is required. 

Furthermore, the Schrödinger equation assumes weak interactions, where the potential energy terms are relatively 

small compared to the kinetic energy of the particle. In systems involving strong nuclear forces or high-energy 

particles, the interactions can be highly complex and cannot be accurately described by the simplified potential 

energy terms used in the Schrödinger equation. 

 

However, when dealing with particles moving at speeds close to the speed of light or systems with strong 

gravitational fields, relativistic effects become significant. In these cases, relativistic quantum mechanics, such as 

the Dirac equation or quantum field theory, is required to provide an accurate description. 

 

In summary, when the potential energy becomes negligible, the Schrödinger equation simplifies to the free-

particle Schrödinger equation. When the kinetic energy is high, relativistic effects become important and the non-

relativistic Schrödinger equation is no longer sufficient. In cases where the potential energy dominates the system's 

behaviour, and the Schrödinger equation provides a means to analyse and predict the particle's behaviour in this 

regime. 

Furthermore, the Schrödinger equation is a linear equation, and it does not account for certain quantum phenomena 

that arise in strongly interacting systems or at very small length scales, such as particle creation and annihilation. 

In these cases, more advanced theoretical frameworks, such as quantum field theory, are required. 

 

 

 

 



Schrödinger Equation unfit for fundamental law 

DOI: 10.9790/4861-1505012633                                  www.iosrjournals.org                                           33 | Page  

III. Discussions: 
 

The Schrödinger equation is considered the most fundamental postulate of quantum mechanics because 

it provides a mathematical framework for describing the behaviour of quantum systems. It is the cornerstone of 

quantum mechanics and is used to calculate and predict the properties and behaviour of particles and systems at 

the microscopic level. 

It can be easily seen from the observations section that the Schrödinger equation cannot predict most 

non-harmonic waves including the simplest form of square waves that are used in electronics and signal processing 

worldwide. All these common wave functions where not found to be the solution to the equation when substituted 

into it, including the time and spatial derivatives. In addition the equation is no longer applicable for systems with 

strong relativistic effects and the presence of an ill-defined potential energy function that includes strong nuclear 

forces, high-energy particles, particle creation and annihilation (not to mention the non-quantum systems).  

We all know that a typical wave function of an electron is very complicated and is not always simple 

harmonic, harmonic or Gaussian. How can a equation be called the fundamental postulate of a branch of study if 

it cannot explain the path of an electron or a particle, in general when it is only valid to model a few ideal or close 

to ideal cases of it’s wave trajectory? This is biggest anti-axiom of the quantum mechanics where a equation is 

being postulated which is not sufficient to describe all the scenarios there is? How can this postulate be true to 

building the building of further theory, if the foundation is hollow and is standing on just few pillars? Why are we 

using alternative methods and equations, such as density functional theory or quantum field theory, to build theses 

additional pillars which should be one solid foundation block to rest the whole quantum mechanics building? 

 

IV. Conclusion: 
It can be concluded from the above facts that the Schrödinger equation can no longer be considered the 

fundamental postulate of quantum mechanics to define, calculate and predict the properties and behaviour of 

particles and systems at the microscopic level. This is based on the true definition of a postulate itself that provides 

the building block and lays the foundation for a study area rather than provide just a few pillars and depend on the 

rest of the other pillars of varying strength to support the entire quantum physical system. An alternative equation 

needs to be developed that is all encompassing, complete and accurate enough to define the wave equation to the 

dot. 
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