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Abstract Creating anasymmetridorque signal over one full rotor revolution can be achieved when using a
two degree of freedom (2DoF) system having a rotary and a translatoryaDdésingaccordingly nonpar
magnetic repulsion techniquethis topic generally is popular in gray literature and is scarcely covered in peer
reviewed scientific publications, as it often leads to the topic of permanent magnet motors, driven only by
nonlinear magnetic spring coxfiirationson the rotor and stator system, where the conservation of energy is
violated. In this paper this problem is briefly discussed, while the focus is set to model the differential equation
system and mathematically explore some of its major behaviors and pespektiworking example of an
existent magnetic motor is presented (the famous patented Yildiz permanent magnetic motor [1]). At first, a
nonresonant rotary single DoF system will be modeled and discussed in detail. With two different methods an
asymmetrictorque signal is verified over one full rotor revolution using nonpolar magnetic repulsion
techniques. Following on, a 2DoF system is modeled, in which both DoF resonate mutually together and exhibit
at least one stable resonant frequency. The presentekl wiots to the working principle of the Yildiz motor
macroscopicallyi an asymmetric andncommensurable rotor torque generation described by two mutually
displacement coupled Mathieu equationsvhere the seemingly perpetual oscillation of such a system i
sustained. However, the dynamics of such oscillators must be regarded as a gneadtdfiact as no
microscopicalexplanation can be given of the energy conversion process nor a working prototype can yet be
presented.
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[.Introduction

Energy Harvesting is a technolodgr capturing norelectrical energy from ambient energy sources,
converting it into electrical energy and storing it to power wireless electronic ddyides, [3]. The process of
capturing mechanical energy such as shocks and vibrations is a particulaf felergy harvesting requiring
specific types of energy harvesting devices, so called kinetic energy harvesters[4KHBI), [6]. This work
origng ed from conventional el ectromagnetic (EM) vi brat
nonlinear spring is basepoint excited using nonpolar magnetic repulsion tecHiiguasch SDoF transducers
(first generation types) can harvest mechanical vibration energy effectively only in a narrow frequency window.
Exploring transduaesystems with more than one DoF might exhibit parametric and autoparametric resonance
[71, [8], [9], [10] and have been investigated more recently (second generation types). During examinations of
such (mainly 2DoF) resonator systems, also a rotary KEH systetmusiea nonpolar magnetic repulsion
techniques has been studied, which exbisitange seemingly perpetual motion behavior. The existence of at
least one such physical model, presented also at the TU EindfidMerthe Yildiz motor, can scientifically
always be questi@d as no scientist, nor at the TU Eindhoven (among others Dr. Backx and Dr. Duarte), nor
Dr. Turtur had the chance to examine and measuring the device thoroligiigyer, a European patent has
been granted12] and basic load measuremerdt the TU Eindoven were made (see also secfjonrhis
manuscript hints at least a macroscopic explanation, why such strange phenomena might be possible. We use
still the naming convention KEH device, as effectively rotor mass and rotor inertia are used to start a seemingly
perpetual oscillation in such a device. Microscopically, there might be yet unknown sources why such apparent
perpetual motion is possibJél]. Chapterl shows the modeling of an unbalanced torque signal usingatar
repulsion techniques, and chapti¢rapplies such permanent magnet (PM) spring systems in an SDoF oscillator
system using a cam. In chaptewe use instead of a cam, an additional DoF and investigate a 2DoF oscillator
system.

II. Creating A Numerical Model For Simulating An Unbalanced Torque Signal
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Using thefinite element(FEYool COMSOL and modeling nonpolar magnetic repulsion systeagnete
statically (magnet fiels no currents), force and torque signals for such systems can easily be extracted and
validated. Let us look first at one pairaiEk PMsin repulsive magnetic configuration, shownHig.la. Such a
pair is formed with an outatisk PM(1) on a stator in the reference frame amdinner rotoidisk PM (2) fixed
on ashaftthat can rotate ifkodirection and move along tleaxis. Disk PM magnet dimensions for stator and
rotor are designated withQyy (disk diameter) ania,y (disk height).Fig.1b shows a similar $ep, but four PM
pairs on the statemotor system are used. The stator (1) and rotor (2) are placed symmetrical at thé origin
axis outwards of the page and cross sediiond displayed to show translatory rotor movement. Similar setups
with differert number of statarotor PM disk magnet pairs are shown lateFiq9, Fig.12 andFig.23.
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Fig.1. 2DoF rotarytranslatory shaft movement with one statotor disk PM magnet pair (a) and four symmetricallycpth
statorrotor disk PM pairs (b) with PM disk geometry shr s.

To compute the torquand forcesignal of the magnet p#&#)acting on the rotofrom Fig.1 is of interest.
Thetorque andorce d the moving rotor PM is calculated by using the integral of the surface stress tensor. The
boundary normal vector pointing out from the PMris, the stress tensor, the resulting torque veuytits
amplitudet and the resulting force vectgamplitude™Q created by integrating over all boundary elemé&iis
(D, (2), see als¢13].

S= .oy (1)

WE pXx 3 (2)

Fig.2 shows the resulting FE calculated torque and force signals for one and fouratatd®M pairs
(from Fig.1). This FE calculated torque and force signal can be, for instance, approximated Witrdert
Fourier series. Using d"brder series, to make sure that the error in the force and torque interval is small. A
normalized Fourier approximated sa@ for radial torque signalQ:n %0(3) and for axial force signal
"Q, O (4) can be generated having used only sin terms, as we know that both functions must be odd.
4
"Qea %o € QT sin £ %ot %0 (©)]
£+=1
3 4 5 . 3
i A € 08I €4 %, A @)

gl
The rotary stiffness terrg, (0aidQ 1) and the axial stiffness terf@(0 & ). might be later measured
using only one single statootor PM pair.The resulting rotor torqueand forcesignal can therefore be written
as(5), (6). These equations correspond to the blue lineBig@P. In case where four, point symmetrical PM
pairs are used{g.1b), the resulting torque and force signal is simpby finurfold of the factod; respectively
Q (shown with the red lines iRig.2).

ticn %0 = 6 Qe %o ®
@A = R ¢ (6)
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On the rotor circumference, only a limited number of disk PM pairs can be placed in th#.sainelane
i due to the rotor diameter and the PM geometry. However, as such PM pairs can be placed on consecutive
%o & planes, theoretically an arbitrarily high torque and force signal can be created.

15 Radial Movement: Torque-Signal (z=0mm) 50 Axial Movement: z-force (¢=0°)
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Fig.2. FE simulated rotary shaft torquigwvoneand fourrotor-stator disk magnet pai(a)andhe axial force signal (b). The
same geometry and magnetizatfonall PM pairs usedair gap of PM magnet pair is kdgt & for all simulations; N52
disk magnetsisedd, = Qy= 104 & and@ = "@,= 5a & ); radius, from origin to the center of mass of thvingrotor
PMsiy = 2746 .

Diagrans of Fig.3a show againthe sameFE simulated torque signdl,, (blue signa) andits 4" order
Fourier series approximation (reslgna) using approximation(3). For these (blue and red) signals, the
corresponding des¥%gApbdedsxvakid. 6Andlreef description
signal: here needs to be mechanical torque energy purmpedhie rotor, reaching the maximal negative torque
of T4y, € 030504 at %oe 8° and reaching &o.= 0° the instable point where fd%o> 0° rotor starts
accelerating until reachinty, ¢,+ € +0.3050 & (with maximal velocity close téfo= 26°).

Also depcted in diagrams oFig.3a is the torque envelope signal denoted Withlt is also created by
using first an FE computed torque signal (orangeeukeeping the torque angle at its maximgiége 8° and
sweeping subsequently with this fixed torque angle) in the axial z direction. This created torque envelope
function t;must be an even function; like in tf@:o %o case, also an approximatell drder Fourier series is
used'Qy, & (7), with coefficientsc) ; andl 4, tofinally createthe correspondingtorquggnab (red andviolet
curves).

4
QG gyt ,008E] 44 )
E+=
A 3D torgue amplitude diagram can be realized, when combining both degrees of freé&damd &
together, shown ifrig.3b. This normalized function is the product 1f and fy, e.g. the product af8) and(7),
given in(8). This function'Q %¢& characterizes the normalized 2D torque function.

4 4
“Q%GQ € Qoﬂ %O"%b CI = QTSin é‘f:l %o %o CQJT + (I%TCOS ‘E'ﬂ ot G (8)
g4=1 £4=1 )
The correspondent normalized 2D force function is created analog the above presented torque function.
The equation(9) gives the normalized force signal in radial direction, again for physical reasons, it must be an
even function, here also given as"aotder Fourier series approximation expression.

4
"Basa %o € Wt ().,COS £4 g, %0 (9)
el )

Like in Fig.3b, in Fig.4bthe 3D forceamplitudediagramis realized, combining both degrees of freedém
and a together.This normalized function is the product @ and'@, e.g. the product of4) and(9), given in
(10).

4 o 4
Q%o & Quiy & R %o = QoSin 1 sl G+ 1 4C0S Ed g% (10)
gl gl )

e
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Generated Torque Signals 7, 7, of Spring Torque Function
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Fig.3. Diagram (a) shows the FE simulated torque signgsanda-directionand its 4' order Fourier series approximated
equivalent signal. Diagram (b) shows tiesultingnormalized torquamplitudeplot given in(8).
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Fig.4. Diagram (a) shows the FE simulated force sigim#s andg-directionand its A order Fourier series approximated

equivalent signals. Diagram (b) shows thsultingnormalized forcemplitude fot given in(10).

Fig.4 shows FE simulated force signals and its corresponding normalized 3D spring force function. This
function looks like the torque functidnbut we deal in this plane with a fore@d not a torque signal and the
PM alignment and its resulting force function is slightly different, as the PM are not rotating radially, but sliding
axially (as shown irFig.1c andFig.1d). The envelogunction (@) and the x force componerig) createlike
the torque function, a 3D for@mplitude graphin (b) shown normalized.

The Fig.3b andFig.4b can also be represented in a more compact way using a vector field plot. For each
doublet%q z, a corresponding vector representationtéord"'Ocan be created.

Fig.5. 2D vector field representation 2D torquéandforce function combiningof Fig.3b, Fig.4b.

Fig.6a depictsa distribution of diskPMs used in a FE simulation environment to simulate statically the
resulting torque on the siinner) rotor magnetshatsit on a imaginary rigidshaft(not shown inthis sketch.
The sketch ofig.6b shows inthe developed viewd dplang in green and blue the same statoior disk

DOI: 10.9790/4864100405778 www.iosrjourrals.org 60| Page




Oscillators with Nonpolar Magnetic Repulsion System and its Use in Rotary Nonresonant and

PMconfiguration. The gray large circles outside the green and blue dots sketch the approximated influence of
the magnefield of each permanent magnet. The light blue dot shows the beginning of tH nextiodic PM

surface distribution (at zero degree the stator and rotor PM are superimposed and only the rotor magnet is
visiblei behind there is the stator PM present).
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Fig.6. Diagrams show an axial PM configuration (ax) with 3 rotor PMs (R3) and 3 stator PMs on a single line (S3sl), PM
distribution naming nomenclature given axR3S3sl. Diagrareh@yvs developediew of PM distribution on the radial
surfacekoeand z.Diagram (b) the same system iy»axis direction.

If we keep for thisPM configuration therotor z-axis constanwhile moving along%, we will obtain
evidentlyalways a resulting $n torque of zermver one full revolutionHowever, when theotor in z-direction
is swayed as a functioof angle%o(this is also called a cam functior),torque signal unequal zefover one
revolution) can be obtained. Equatiqdl)gives a simple harmonic example functionfor such movement
dependencyty is the resulting rotor movement whégis moved fronD to 2, with a given amplitudé&and an
initial offset angle ;.

Gy %o = OsinQ ¢ %ot ,¢) (1)

Applying sucha camfunction andsettingparameters = 14 & and,; = 0°and| ; = 3, a positive torque
signal over on@" period cycle camasilybe reached. The shown cam functior{lf) has been first tested with
an analytical model bgvaluating(8) for each rotor magnet tiieand%.d i st ance to al | stator
revolution with which the resulting torque for this rotor PM element can be obtained. This evaluation is done for
all PM magnets on the rotor tanfi the overall net torque of this statotor PM configurationThe verification
is done by comparing the analytically obtained result withsthéc magnet field-E calculation over one full
revolutionThis FE calculation is computationally intensivel@a. 6006timesslower to compute (on a standard
PC it takes cal™Q.

This verification is shown rig.8. The red line is the analytidplobtained calculation using the magnetic
torque spring functiorf8)and the blue line shows the obtained FE simulated counterpart. Both curves have a
similar form and follow each other well. There are two parameters which are important. one is the overall
created net torquB tmagnitudeand its positivity, where for 50%, a paitive torque is achieved ard50% a
negative net torque is present. In this presented calculation, the static calculated FE simulatioryshaws
slightly larger positive torque magnitude and a larger positivity than its analytically obtained corinterpa
calculation.A torque different fronb0% can easily be reached with many differgabmetry configuration and
cam functionsFor creating amsymmetridhcommensurable torque signilis important to align the harmonic
axial rotor movement with the Pibnfiguration.

Having an analytical spring function, optimization can be done easily and the issue can be reduced to
multivariable optimization problem. A first, none exhaustive optimization was done, by regarding the PM stator
magnet distance as an opitation parameter. This optimization is shown in a swaepin Fig.7b, where for
one full revolution the PM di st ance edulbinFigfiaes sbown gi n i s
for an offset of stator PMs of 9mm (to the origin, compare Blg®a). The three resulting torque curviggs
cumulate the net torque at the same spots over one full revolution. The resulting sweep shows that for no
asymmetric z distance (e.g. PMPpsition Omm) a symmetric torque results. Also, fogéadistances >15mm,
no torque is produced, as PM repulsion spring influence is cut off. For offset distances between 1 and 15mm, the
net torque is given in red and the asymmetric percentage inFiguéh).
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Generated Individual- & 3-Torque (1 Revolution)
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Fig.7. Diagram a depictsameratedchormalizedtorque signals witlanalytical torquesimulatiors (orangé anddiagramb
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torque of all summed uprotor disk PMs iglearlypositive & 60%).All used PMs have same geometry and magnetization
strength of statoand rotor PMs (PM paragters given in caption ¢fig.2).

Fig.8a shows the FE setup aRif.8b the verification of the analytical generated torque signal given in

Fig.7a. For both calculation methods, the same clearly positive torque signal is generated.

(a)

Fig.8. Diagram (a) a shows FE mesh model built according setk®t Diagram (b) showsemerated torque signals with
FE simulation (blue) and analytically approximafeetl). In both cases, net torque of all summed up rotor disk PMs is
positive 61%) over one full revolution; peak torque is reached at 10°, 130° and 250° with torque maxima of ca. 0.135Nm
using analytical model with calculations using equa(B)nFE model shows same behavior, resulting in same averaged
peak torque of 0.135Nm.
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It is most interesting, that with a given geometrical stewtor PM distributia, an arbitrarily complex

torque curve over one full revolution can be generated. Note also, that making this analytical simplified

numerical model, it will rest an approximated signal andhagnetostatical FE simulation verification is

indispensableln this manuscript, we restrict the investigation of asymmetric torque signals using an additional

axial movement. Instead of such an axial movement, also a radial movement can be envisaged.

Il . NonresonantOscillator Using An Axial Cam

3.1 Lumped parameter modé

Fig.9 shows the lumped parameter moddl.rotating disk the rotorwith inertiaband mass , is spinning
radially with %¢®) andmoving axially witha(d). On diagram (b) an EM transducer circuit is shown Bitioils
wound around the stator PM setup. The circuit in the electrical domain consists of the tradggycéne
copper resistance of the cOftg-g 43 With its sum inductanc@g-¢143 and the resistive loaly o andbhe stator
rotor PM setup has the same configuration as showigiab.

DOI: 10.9790/48611004056778

www.iosrjourrals.org

62| Page

torq



Oscillators with Nonpolar Magnetic Repulsion System and its Use in Rotary Nonresonant and
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Fig.9. Model of a 2DoF disk rotating radially with angi€0) and moves axially witld(®) (a). Diagram (b) shows the
lumped parameter model including transducer systems on the stator. Theogtatdistribution might be the one shown in
Fig.6 or the one irFig.8b.

Equation(12) gives the vectoi (0) in Cartesian coordinates from the origin to the mass poion the
disk radius, and the axial z distan@d).
1o '©%0)
i 0= lpati %0 12
e ((e)
Deriving the corresponding governingfferential equation (DEyystem, we are applying the Lagrangian
formalism(13), (14) and obtain the kinetic enerdYof the systen{15).

. Q10 10
- = —=0 13
DTng Tdg (13
0="Y 'Y (14)
1 1 1
Y= Sa %0 "= sa )P+ S0%)? (15)

The friction termO for the torqueand’Q for the force DEare inserted separately in tiog-conservative
DE system Both friction terms are functions #6°0 anddd®), e.g.O %0 andQ ¢*06 following [14]. For
simplicity we denote them & and’Q knowing that they are functions of the velocity signdlse stiffness
terms® and Qcould be obtained if a potenti&f can be found. An attempt was made to obtain such a spring
potential, but it could not bepplied successfully, see also appendix chaptérThe stiffness terms are
functions dependent Géandd. Inserting thes@mormalizeds t i f ffan ®rgue ansl force signal® %¢& and
"Q %0 (see alsdrig.3b andFig.4b) with their corresponding amplitude consta@itand™Q add the additional
mechanical (viscous) damping from the electrical circuhe transducer constang,, ") times the curren’Q

the system can be written as follows:

0%ED + O%FO + 0 "Q %0 ,0SiN %0 +,; +-4,QW=0 (16)
. S, Qo - o~

a a&=H + W0 + QQ arcsin 5 6,00 +-4'® =0 a7

Oass®O) + Vaass+ Yeao D = - %0 (18)

As @(0) is adependent carparametenf%{0), (11) is inseredinto "Qo obtain(16). In (17), paramete?{0)
of "@has been replaced wittio) using the inverse function ¢11). Another way to writ€17) is, replacingi(0)
with %¢0) (and their derivatives) using1):

G O ( sin %0 +,¢ %02+ COS %O + ,; %BE®)) + QO O %00 + ,¢) %D

+ 0Q %00 ,0iN %0 +,; =0 (19
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The seemingly complex torque displacement terifi6fis a 1D curve which might have2a periodicity,
depending on the used statotor PM configurationKig.7 shows for instance such a sample curve). In the next
chapter, we usél6) and(18) and assume that tleial cam friction issmall This camot safely be assumeds
additional mechanical frictiofrom the camwill be present (additional friction like air drag in both care$
considered).

3.2 Time domain response

Figure 12 shows thtop-level block diagram oMATLAB Simulink implementation of DE syster(il6)
and(18). The shown damping characteristic for this model is depicted in red "Damping Models” (one of the 3
different friction models can be selected). The damping feedback of the electrihdato the mechanical
domain is shown with a blue amplifier block named “coilCoupling2” (corresponding transducer constant times
electrical currenty Q In the following simulations, the feedback loop has been set zerey&x).0. A simple
mechaital SDoF system is given with only a radial moving mass and ingréianonlinear mechanical friction
and an elaborate stiffness term (see for exafigld implemented via a lookup table).

coil

Coupling2 gain cCoil
1 Electrical
domain (i1)
Couplingt Integratorla
Spring Torque
Mm philp [«
1 1 Hollow shaft
d s d s (phi1)
phi* add Integrator phi1" Integrator phi1' (- Scope
4 x
Bl o (e

WS_philv WS phi1p

Out1 In1

Damping
Models 1..3

Fig.10. Top level implementation of DE set (15) and (17) in MATLAB Simulink.

In Fig.11, the motion signal§%q, %qge0f arotor with an axialharmoniccan(11) and parameterd = 1mm,
1 : =3 and,; = Ois shown, including also the normalized stiffness sighgk6::1¢ ). In such a casen
apparentperpetual rotor motioris generated. The final angular velocity steady state signals are highly
dependent of the chosen statotor PM dstribution and the friction of a given caBenerating a harmoni cam
with] ; = 3that absorbs not too much of friction and has a profile as shotig.ifa (see als&ig.8b orFig.11
pink line) is only difficult to realize. A more realisitc catmosild have only one single period per revolution, e.g.
1 ¢ = 1or atleast an amplitude which is smaller.

SDoF System Behavior - Scenariol
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Fig.11. Initial condition of rotor movementiis;~y= 4004 '@ ! (see also parameter settings in subheadings). The shown
system behavior of an axial cam movemamdPM distribution fromFig.7awith rotor displacemerfes(blue) am its angular
velocity (green) oscillating with steady state angular velocity oscill@6o®i (X i <1 < 35.2i¢X) i . A nonlinear
friction model™{= 3) of [14] for this rotary SDoF system has been applied.

Note also, that such a distribution can be arbitrarily repeated over the stator and rotor system and therefore
overcome principally any rotaryiftion (Q). Furthermore, suchpparentperpetual rotor motion can only be
achieved when a kinetic start enerfg§x(20) is greater or equal than the equivalent applied maximal angular
steady state velocity oscillation, ¢, = %8 . .

1
Y= 0% ... (20)
Ty 1 aam = %8 g, (21

IV. ResonantOscillator Using Magnetic Spring

4.1 Lumped parameter model

Let us consider the case with no cam function and both DoF can oscillate freely. The lumped parameter
model for such a KEH system is depicted-ig.12. For this system, six symmetric stator ®&e drawn (they
could represent also a stator PM distribution showRigil3 with two rows of 6 PMpsand on the rotor two
symmetri@al placedPMs are presentln addition, alscaxially in z direction two sets of PMs are present. The
inner PMs (A) are fixed on the rotand this system ((A) and rotor) can slide in the hollow shaft axialbng
the z axisjand the outer PMs (B) are fixed on the hollow shaft which rotates inyhglane.¢; ,, denotes the
distance from origin to the symmetry axis of the effertered rotor system.

Y Section A-A 2,
A " L(oi\l
B Stator'-‘,.,__i_i_i
- B s Zum
i-/\-(owlé .
__Hollow_
- . szt
shaft \_\\‘ (A) (t) )
LmiEumiS mX O "z
(B) | — (A)
R eiumis {’\
Lcow\S /
_f 4 o
H e Rotor J (m) B
"\ with D (d)

Fig.12. Lumped parameter model of 2DoF KEH system with a rot&ia)y axially a(0) moving rotor on a hollow shaft is
drawn without no bearing# transducer might be present, electrical domain shown in the lowéraledt side corner.

The resulting model, which has been already developed in chfptean be written as shown in DE
system(23), (24) and (25).Independent variables at&{d) and &(0) with inertia 0 and massi, as already
derived in(16) and(18). Also, the mechanical damping teri@saandQare present and realized with a nonlinear,
e.g. stickslip friction mode]14]. The stiffness functions are more elaborately modeled compandd)tand
(18). No fixedperiodictorque and force functiocan be assumethut for each PM spring the sum of all torque
and force signals over one complé@te cycle is modeledThe normalized® "¢ functions represent the torque
and force components of the stator spring system (over‘oper®od) The rotor magnets are placedatand
& . The stiffness termy; amplifies the torque sum of all magnetgsent in the systeny; . The same setup is
done for the force functions in the force [#), where'Q represents the axial spring stiffness $itade andQ
and'Q the corresponding linear and nonlinear stiffness parameters of the axial spring system Zjrsection
A-A depicted with (A and (B)). Transducers on the stator might add additional viscous damping to the
corresponding DE, here present with the according transducer paramgtams - for the radial and axial
component.

The potentialYof the axial spring is know(22) and applying the Lagrangian formalisgh3), (14), we
obtain the termsQ a+ Q& of (24). This 3" order polynomial approach is beneficial wheealing with
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nonlinear spring system, see for exanffls]. Note that "Yrepresents solely the axial spring poteritial spring

potential for the radial spring system could not be obtained successfufigr(dix chaptevll). In case the rotor

is driven forced, the angular velocity, is unequal zero.

U S 1. .
Y= ?Q(Q‘ Qi )2 + 2 QA Gean )* (22
E5o
2RO %E 1 o + O Q% %e,d & + -y EO 23)
t=1
€00 N -
0 0=F Qo+ Q Q% %, & +Q(A G )t QA Ghan )P+ - EO (24
=1 ;
Ogava 16 (Yaava 16 7 Yaa) & -gfot -5 (25)

One configuration of the stator spring system is depictédgi3. The developed stator surface for torque
(a) and force(b) functions is given here faheradialy placedPM batteries. The shown plots are simply a Lego

like placed summation plptomposed of 12 disk PMs (see correspondiggations(8), (10)and Fig.3b,
Fig.4b). The radial PM correspond to the distribution on the stator in the plane ofFig.12 and the axial

magnets correspond to the PMs shown on the stator in-zhglane (section A). The axial spring system is

done simpleri only one z dependent direction for this spring setup is usigilda). Instead of only two

nonpolar magnetic repulsion systems (see Rigd 2 section AA, (A) and (B)) in the center of the z axis, also a

more elaborated axial spring system might be prédsenthe same fasbi as the radial spring system.

Fig.13.

Fig.14.Normalized force using 3orderpolynomial approximation (a) and damping behavior for corresponding radial

The shown damping characteristic for this model is depicte&igriid. The implementation of the
fundamentally simple nonlinear DE g&3), (24) and (25) is shown inFig.15. The damping feedback of the
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Radi al
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(@)

PM stator distribution
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(b)
wi 360° (3Q° amylevand EOmrd z 6

distanceoffsetof each set)Diagram (a) shows torque signal and its corresponding force signal (b).
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~—— Axal friction
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(@)

(blue) and axial (red) velocities (b).

s) /2’ (m/s)

(b)

sy mmet

electrical domain into the mechanical domain is shown with blue amplifier blocks named “coilCouplingZ

(corresponding,’R and “coilCouplingPhi” dorresponding,, R In the following simulations, both feedback
loops have been set zero, e.g,(x -, 0. The 2D torqueand forcesprings have been derived (8) and

(10). Its first order approximation can be written(a6) and(27).

Q%G & 6 Q, SiNT g, %o G, + G, COST 4 &

(26)
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Q%G & QA SINT g %o gt 3. COST ¢l 27

Inserting(26) and(27) into DE systen(23), (24)and setting both transducer constants zgre -4 = 0, a
simplified mechanical DE system candigained

R O %6 1 o + 6, SINT g, %o Gy + (), COST ¢ @ =0 (29)

A 2% QP QA SIN T %0 Gt 0.,COST g8 + QA dan )+ QG &w )®=0 (29

Inspecting, expandin(28) and(29), it follows that both DE have the form of damped Hill's DE (wligre
denotes the periodic function generalized from the Mathieu DE where it is limited to harmonic functions):

A=% Q1= 0 &+ Qo =0 (30

Such DE have a most complex stability behavion this system 0f28) and (29), they are additionally
mutually coupled. This is most interesting and in the next section we will show that such oscillator systems
might exhibit at least one mutually coupled stable resonance.

4.2 Time domain response

Simulation results with given radial PM stator distributiogs(ilting torque and force signalleig.13) are
depicted iFig.16 T Fig.20. In those figure captiongirst subheading shows initial conditions aamxial impact
range(impacting is used only in exceptiohgmplementation of such impacting described in appendix chapter
IX, here set t&= 5.5¢ & ). Second subheading starts withoroPM radial and axial distributioriQ,;, and™@,.
Subscripts of those functions give the geometrical placingeafotior magnetskFor example, irFig.16a dl six
radial magnets are placed in the centeb@ti, whereasfor the axial spring a 1D PM spring is placed. In
Fig.16b, instead of an axial 1D PM spring, a 2D PM spring system is placedhsét axial magnetsn each
side asymmetricallat + 254 & and three at 274 & (see also appendix chap¥éil ). Superscript ofQy, and
"®, give the radial and axial location in 10° intervdis.the legends ofig.16 i Fig.20, %q, %& and ¢, &=
denotes the displacement and velocity si§&ba¢1% DoF) andd, ¢e¢2" DoF).

In simulationof Fig.16b, we have radially six symmetrical PMs placed and axially at each side three PMs
(at 0°, 120° and 240°)y;, indicates thawaxial distribution is doneasymmetrical (see also equati(#¥)) and
followed by the stiffness factabgg . The last subheading starts with, a potential excitation velocity and
its time Gg°a0 1 both set zero. fie radial and axial damping main parameter is indicated @ithand'Q (the
additional damping parameters not shown (to create the damping behakigrldj. Inertia and mass are also
set realistically using 3D printing technologies
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