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Abstract: Creating an asymmetric torque signal over one full rotor revolution can be achieved when using a 

two degree of freedom (2DoF) system having a rotary and a translatory DoF andusing accordingly nonpolar 

magnetic repulsion techniques. This topic generally is popular in gray literature and is scarcely covered in peer 

reviewed scientific publications, as it often leads to the topic of permanent magnet motors, driven only by 

nonlinear magnetic spring configurations on the rotor and stator system, where the conservation of energy is 

violated. In this paper this problem is briefly discussed, while the focus is set to model the differential equation 

system and mathematically explore some of its major behaviors and properties. A working example of an 

existent magnetic motor is presented (the famous patented Yildiz permanent magnetic motor [1]). At first, a 

nonresonant rotary single DoF system will be modeled and discussed in detail. With two different methods an 

asymmetric torque signal is verified over one full rotor revolution using nonpolar magnetic repulsion 

techniques. Following on, a 2DoF system is modeled, in which both DoF resonate mutually together and exhibit 

at least one stable resonant frequency. The presented work hints to the working principle of the Yildiz motor 

macroscopically ï an asymmetric and incommensurable rotor torque generation described by two mutually 

displacement coupled Mathieu equations ï where the seemingly perpetual oscillation of such a system is 

sustained. However, the dynamics of such oscillators must be regarded as a modeling artefact as no 

microscopical explanation can be given of the energy conversion process nor a working prototype can yet be 

presented. 
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I . Introduction 
Energy Harvesting is a technology for capturing non-electrical energy from ambient energy sources, 

converting it into electrical energy and storing it to power wireless electronic devices[1], [2], [3]. The process of 

capturing mechanical energy such as shocks and vibrations is a particular field of energy harvesting requiring 

specific types of energy harvesting devices, so called kinetic energy harvesters (KEH) [4], [5], [6]. This work 

originated from conventional electromagnetic (EM) vibration KEHôs, where a suspended proof mass on a 

nonlinear spring is basepoint excited using nonpolar magnetic repulsion techniques [7]. Such SDoF transducers 

(first generation types) can harvest mechanical vibration energy effectively only in a narrow frequency window. 

Exploring transducer systems with more than one DoF might exhibit parametric and autoparametric resonance 

[7], [8], [9], [10] and have been investigated more recently (second generation types). During examinations of 

such (mainly 2DoF) resonator systems, also a rotary KEH system that uses nonpolar magnetic repulsion 

techniques has been studied, which exhibits strange seemingly perpetual motion behavior. The existence of at 

least one such physical model, presented also at the TU Eindhoven [11], the Yildiz motor, can scientifically 

always be questioned, as no scientist, nor at the TU Eindhoven (among others Dr. Backx and Dr. Duarte), nor 

Dr. Turtur had the chance to examine and measuring the device thoroughly; however, a European patent has 

been granted [12] and basic load measurements at the TU Eindoven were made (see also section X). This 

manuscript hints at least a macroscopic explanation, why such strange phenomena might be possible. We use 

still the naming convention KEH device, as effectively rotor mass and rotor inertia are used to start a seemingly 

perpetual oscillation in such a device. Microscopically, there might be yet unknown sources why such apparent 

perpetual motion is possible [11]. Chapter II  shows the modeling of an unbalanced torque signal using nonpolar 

repulsion techniques, and chapter III  applies such permanent magnet (PM) spring systems in an SDoF oscillator 

system using a cam. In chapter 4 we use instead of a cam, an additional DoF and investigate a 2DoF oscillator 

system. 

 

 

II . Creating A Numerical Model For Simulating An Unbalanced Torque Signal 
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Using the finite element(FE) tool COMSOL and modeling nonpolar magnetic repulsion systems magneto-

statically (magnet fields no currents), force and torque signals for such systems can easily be extracted and 

validated. Let us look first at one pair of disk PMs in repulsive magnetic configuration, shown in Fig.1a. Such a 

pair is formed with an outer disk PM(1) on a stator in the reference frame and an inner rotor disk PM (2) fixed 

on a shaft that can rotate in ‰ direction and move along the z axis. Disk PM magnet dimensions for stator and 

rotor are designated with ɲὨὛ,Ὑ (disk diameter) and ὬὛ,Ὑ (disk height). Fig.1b shows a similar setup, but four PM 

pairs on the stator-rotor system are used. The stator (1) and rotor (2) are placed symmetrical at the origin ὕ, z 

axis outwards of the page and cross section ὃ ὃ displayed to show translatory rotor movement. Similar setups 

with different number of stator-rotor PM disk magnet pairs are shown later in Fig.9, Fig.12 and Fig.23. 

 (a)  (b) 
Fig.1. 2DoF rotary-translatory shaft movement with one stator-rotor disk PM magnet pair (a) and four symmetrically placed 

stator-rotor disk PM pairs (b) with PM disk geometry ᶮÄR,ShR,S. 

To compute the torque and force signal of the magnet pair(s)acting on the rotor from Fig.1 is of interest. 

The torque and force of the moving rotor PM is calculated by using the integral of the surface stress tensor. The 

boundary normal vector pointing out from the PM is ▪, „ the stress tensor, the resulting torque vector Ⱳ, its 

amplitude † and the resulting force vector ╕(amplitude Ὂ) created by integrating over all boundary elements ὨὛ, 
(1), (2), see also [13]. 

╕= ▪ „ ὨὛ
ɱ

 (1) 

Ⱳ= ►× ╕ (2) 

Fig.2 shows the resulting FE calculated torque and force signals for one and four stator-rotor PM pairs 

(from Fig.1). This FE calculated torque and force signal can be, for instance, approximated with a 4
th
 order 

Fourier series. Using a 4
th
 order series, to make sure that the error in the force and torque interval is small. A 

normalized Fourier approximated signal for radial torque signal Ὢ†ὶὥὨ ‰ (3) and for axial force signal 

ὪὊὥὼᾀ(4) can be generated having used only sin terms, as we know that both functions must be odd. 

Ὢ†ὶὥὨ ‰ ḙ ὦὲ†sin ὲ†‰ †‰
4

ὲ†= 1
 (3) 

ὪὊὥὼᾀḙ ὦὲὪsin ὲὪὪ ᾀ‰
4

ὲὪ= 1
 (4) 

The rotary stiffness term ὅὶ (ὔάὶὥὨ
1) and the axial stiffness term Ὧὶ(ὔά

1). might be later measured 

using only one single stator-rotor PM pair. The resulting rotor torque- and force-signal can therefore be written 

as (5), (6). These equations correspond to the blue lines of Fig.2. In case where four, point symmetrical PM 

pairs are used (Fig.1b), the resulting torque and force signal is simply the fourfold of the factor ὅὶ respectively 

Ὧὶ (shown with the red lines in Fig.2). 

†ὶὥὨ ‰ = ὅὶὪ†ὶὥὨ ‰  (5) 

Ὂὥὼᾀ = ὯὶὪὊὥὼᾀ 
(6) 
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On the rotor circumference, only a limited number of disk PM pairs can be placed in the same ‰ ᾀ  plane 

ï due to the rotor diameter and the PM geometry. However, as such PM pairs can be placed on consecutive 

‰ ᾀ  planes, theoretically an arbitrarily high torque and force signal can be created. 

(a) (b) 
Fig.2. FE simulated rotary shaft torquewith one and four rotor-stator disk magnet pairs (a)and the axial force signal (b). The 

same geometry and magnetization for all PM pairs used (air gap of PM magnet pair is kept1άά for all simulations; N52 

disk magnets usedὨὙ= ὨὛ= 10άά and ὬὙ= ὬὛ= 5άά); radiusὶ0 from origin to the center of mass of the moving rotor 

PMsὶ0 = 27άά. 

Diagrams of Fig.3a show again the same FE simulated torque signal †‰ (blue signal) and its 4
th
 order 

Fourier series approximation (red signal) using approximation (3). For these (blue and red) signals, the 

corresponding designated x axis óAngle ‰ (Á)ô is valid. A brief description of the physical meaning of this 

signal: there needs to be mechanical torque energy pumped into the rotor, reaching the maximal negative torque 

of †άὥὼ ḙ 0.305ὔά at ‰ḙ 8° and reaching at ‰= 0° the instable point where for ‰> 0° rotor starts 

accelerating until reaching †άὥὼ+ ḙ+ 0.305ὔά (with maximal velocity close to ‰= 26°).  

Also depicted in diagrams of Fig.3a is the torque envelope signal denoted with †ᾀ. It is also created by 

using first an FE computed torque signal (orange curve; keeping the torque angle at its maximum ȿ‰ȿḙ8° and 

sweeping subsequently with this fixed torque angle) in the axial z direction. This created torque envelope 

function †ᾀmust be an even function; like in the Ὢ†ὶὥὨ ‰  case, also an approximated 4
th
 order Fourier series is 

used Ὢ†ὥὼᾀ(7), with coefficients ὥὲ† and ᾀ† to finally create the correspondingtorque signals (red and violet 

curves). 

Ὢ†ὥὼᾀḙὥ0†+ ὥὲ†cosὲ†ᾀ† ᾀ
4

ὲ†= 1
 (7) 

A 3D torque amplitude diagram can be realized, when combining both degrees of freedom ‰ and ᾀ 
together, shown in Fig.3b. This normalized function is the product of †‰ and †ᾀ, e.g. the product of (3) and (7), 

given in (8). This function Ὢ†‰,ᾀ characterizes the normalized 2D torque function. 

Ὢ†‰,ᾀḙὪ†ὶὥὨ ‰Ὢ†ὥὼᾀ = ὦὲ†sin ὲ†‰ †‰
4

ὲ†= 1
ὥ0†+ ὥὲ†cosὲ†ᾀ† ᾀ

4

ὲ†= 1
 (8) 

The correspondent normalized 2D force function is created analog the above presented torque function. 

The equation (9) gives the normalized force signal in radial direction, again for physical reasons, it must be an 

even function, here also given as a 4
th
 order Fourier series approximation expression. 

ὪὊὶὥὨ‰ ḙὥ0Ὢ
+ ὥὲὪcos ὲὪ‰ ᾀὪ

4

ὲὪ= 1
 (9) 

Like in Fig.3b, in Fig.4bthe 3D forceamplitude diagram is realized, combining both degrees of freedom ‰ 

and ᾀ together. This normalized function is the product of Ὂᾀ and Ὂ‰ e.g. the product of (4) and (9), given in 

(10). 

ὪὊ‰,ᾀḙὪὊὥὼᾀὪὊὶὥὨ ‰  = ὦὲὪsin ὲὪὪ ᾀ‰
4

ὲὪ= 1
ὥ0Ὢ

+ ὥὲὪcos ὲὪ‰ ᾀὪ
4

ὲὪ= 1
 (10) 
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(a) 

 
(b) 

Fig.3. Diagram (a) shows the FE simulated torque signals in‰- and ᾀ-direction and its 4th order Fourier series approximated 

equivalent signal. Diagram (b) shows the resulting normalized torque amplitude plot given in (8). 

 
(a) 

 
(b) 

Fig.4. Diagram (a) shows the FE simulated force signals in‰- and ᾀ-direction and its 4th order Fourier series approximated 

equivalent signals. Diagram (b) shows the resulting normalized force amplitude plot given in (10). 

Fig.4 shows FE simulated force signals and its corresponding normalized 3D spring force function. This 

function looks like the torque function ï but we deal in this plane with a force and not a torque signal and the 

PM alignment and its resulting force function is slightly different, as the PM are not rotating radially, but sliding 

axially (as shown in Fig.1c and Fig.1d). The envelop-function (Ὂ‰) and the x force component (Ὂᾀ) create like 

the torque function, a 3D force amplitude graph, in (b) shown normalized. 

The Fig.3b and Fig.4b can also be represented in a more compact way using a vector field plot. For each 

doublet ‰, z, a corresponding vector representation for †and Ὂ can be created. 

 
Fig.5. 2D vector field representation of 2D torque and force function, combining of Fig.3b, Fig.4b. 

Fig.6a depicts a distribution of disk PMs used in a FE simulation environment to simulate statically the 

resulting torque on the six (inner) rotor magnets that sit on an imaginary rigid shaft (not shown in this sketch). 

The sketch of Fig.6b shows in the developed view (‰ ᾀplane) in green and blue the same stator-rotor disk 

†ᾀ 

†‰ 

Ὂᾀ 

Ὂ‰ 
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PMconfiguration. The gray large circles outside the green and blue dots sketch the approximated influence of 

the magnet field of each permanent magnet. The light blue dot shows the beginning of the next 2“ periodic PM 

surface distribution (at zero degree the stator and rotor PM are superimposed and only the rotor magnet is 

visible ï behind there is the stator PM present). 

 
(a) 

 
(b) 

Fig.6. Diagrams show an axial PM configuration (ax) with 3 rotor PMs (R3) and 3 stator PMs on a single line (S3sl), PM 

distribution naming nomenclature given axR3S3sl. Diagram (a) shows developed view of PM distribution on the radial 

surface ‰ and z. Diagram (b) the same system in x-y axis direction. 

If we keep for this PM configuration the rotor z-axis constant while moving along ‰, we will obtain 

evidently always a resulting sum torque of zero over one full revolution. However, when the rotor in z-direction 

is swayed as a function of angle ‰ (this is also called a cam function), a torque signal unequal zero (over one 

revolution) can be obtained. Equation (11)gives a simple harmonic example functionfor such a z movement 

dependency; ᾀὙ is the resulting rotor movement when ‰ is moved from 0 to 2“, with a given amplitude ὃand an 

initial offset angle ‚έ. 

ᾀὙ‰ = ὃsin(+‰ ὲ ‚έ) (11) 

Applying such a cam function, and setting parametersὃ= 1άά and ‚έ= 0° and =ὲ 3, a positive torque 

signal over one 2“ period cycle can easily be reached. The shown cam function of (11) has been first tested with 

an analytical model by evaluating (8) for each rotor magnet the ᾀ and ‰ distance to all stator PMôs over one full 

revolution with which the resulting torque for this rotor PM element can be obtained. This evaluation is done for 

all PM magnets on the rotor to find the overall net torque of this stator-rotor PM configuration. The verification 

is done by comparing the analytically obtained result with the static magnet field FE calculation over one full 

revolution.This FE calculation is computationally intensive and ca. 6000-times slower to compute (on a standard 

PC it takes ca. 1Ὤ). 
This verification is shown inFig.8. The red line is the analytically obtained calculation using the magnetic 

torque spring function (8)and the blue line shows the obtained FE simulated counterpart. Both curves have a 

similar form and follow each other well. There are two parameters which are important: one is the overall 

created net torque В†magnitudeand its positivity, where for > 50%, a positive torque is achieved and < 50% a 

negative net torque is present. In this presented calculation, the static calculated FE simulation, shows even a 

slightly larger positive torque magnitude and a larger positivity than its analytically obtained counterpart 

calculation. A torque different from 50% can easily be reached with many different geometry configuration and 

cam functions. For creating an asymmetric incommensurable torque signal, it is important to align the harmonic 

axial rotor movement with the PM configuration. 

Having an analytical spring function, optimization can be done easily and the issue can be reduced to 

multivariable optimization problem. A first, none exhaustive optimization was done, by regarding the PM stator 

magnet distance as an optimization parameter. This optimization is shown in a sweep-plot in Fig.7b, where for 

one full revolution the PM distance to the origin is changing between 0é20mm. The result in Fig.7a is shown 

for an offset of stator PMs of 9mm (to the origin, compare also Fig.6a). The three resulting torque curves †1ȣ3 

cumulate the net torque at the same spots over one full revolution. The resulting sweep shows that for no 

asymmetric z distance (e.g. PM z-Position 0mm) a symmetric torque results. Also, for large distances >15mm, 

no torque is produced, as PM repulsion spring influence is cut off. For offset distances between 1 and 15mm, the 

net torque is given in red and the asymmetric percentage in blue (Fig.7b). 
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(a) 

 
(b) 

Fig.7. Diagram a depicts generated normalized torque signals with analytical torque simulations (orange) and diagram b 

shows a stator PM sweep from 0é20mmand the resulting torque signals in % (left axis) and normalized (right axis). A 

torque of all summed up 3 rotor disk PMs is clearly positive (> 60%).All used PMs have same geometry and magnetization 

strength of stator and rotor PMs (PM parameters given in caption of Fig.2). 

Fig.8a shows the FE setup and Fig.8b the verification of the analytical generated torque signal given in 

Fig.7a. For both calculation methods, the same clearly positive torque signal is generated.  

 
(a) 

 
(b) 

Fig.8. Diagram (a) a shows FE mesh model built according setup of Fig.6. Diagram (b) shows generated torque signals with 

FE simulation (blue) and analytically approximated (red). In both cases, net torque of all summed up rotor disk PMs is 

positive (61%) over one full revolution; peak torque is reached at 10°, 130° and 250° with torque maxima of ca. 0.135Nm 

using analytical model with calculations using equation (8). FE model shows same behavior, resulting in same averaged 

peak torque of 0.135Nm. 

It is most interesting, that with a given geometrical stator-rotor PM distribution, an arbitrarily complex 

torque curve over one full revolution can be generated. Note also, that making this analytical simplified 

numerical model, it will rest an approximated signal and a magnetostatical FE simulation verification is 

indispensable. In this manuscript, we restrict the investigation of asymmetric torque signals using an additional 

axial movement. Instead of such an axial movement, also a radial movement can be envisaged.  

 

III . Nonresonant Oscillator Using An Axial Cam 

3.1 Lumped parameter model 

Fig.9 shows the lumped parameter model. A rotating disk, the rotor with inertia ὐ and mass ά, is spinning 

radially with ‰(ὸ) and moving axially with ᾀ(ὸ) . On diagram (b) an EM transducer circuit is shown with 3 coils 

wound around the stator PM setup. The circuit in the electrical domain consists of the transducer όὩάὪ, the 

copper resistance of the coilsὙὧέὭὰ1ȣ3 with its sum inductance ὒὧέὭὰ1ȣ3 and the resistive load ὙὰέὥὨ andthe stator-

rotor PM setup has the same configuration as shown in Fig.8b.  
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Fig.9. Model of a 2DoF disk rotating radially with angle ‰(ὸ) and moves axially with ᾀ(ὸ)  (a). Diagram (b) shows the 

lumped parameter model including transducer systems on the stator. The stator-rotor distribution might be the one shown in 

Fig.6 or the one in Fig.8b. 

Equation (12) gives the vector ὶ(ὸ)  in Cartesian coordinates from the origin to the mass point ά on the 

disk radius ὶ0 and the axial z distanceᾀ(ὸ) . 

ὶὸ=

ὶ0ίὭὲ‰(ὸ)
ὶ0ὧέί‰(ὸ)

ᾀ(ὸ)
 (12) 

Deriving the corresponding governing differential equation (DE) system, we are applying the Lagrangian 

formalism (13), (14) and obtain the kinetic energy Ὕ of the system (15). 

ὒ=
Ὠ

Ὠὸ

ὒ

ήὭ

ὒ

qὭ
= 0 (13) 

ὒ= Ὕ Ὗ (14) 

Ὕ=
1

2
ά ὶᴂὸ

2
=

1

2
ά ᾀᴂ(ὸ)2 +

1

2
ὐ ‰ᴂ(ὸ)2 (15) 

The friction term Ὀ for the torque and Ὠ for the force DEare inserted separately in this non-conservative 

DE system. Both friction terms are functions of ‰ᴂὸ and ᾀᴂ(ὸ) , e.g. Ὀ‰ᴂὸ and Ὠᾀᴂὸ  following [14]. For 

simplicity we denote them as Ὀ and Ὠ, knowing that they are functions of the velocity signals. The stiffness 

terms ὅ and Ὧ could be obtained if a potential Ὗ can be found. An attempt was made to obtain such a spring 

potential, but it could not be applied successfully, see also appendix chapter VII .The stiffness terms are 

functions dependent of ‰ and ᾀ. Inserting these normalized stiffnessôs for torque and force signals Ὢ†‰,ᾀ and 

ὪὊ‰,ᾀ (see also Fig.3b and Fig.4b) with their corresponding amplitude constants ὅ and Ὧ, add the additional 

mechanical (viscous) damping from the electrical circuit ï the transducer constant ‐‰,ᾀ Ὥ(ὸ) times the current Ὥ, 

the system can be written as follows: 

ὐ ‰ᴂᴂὸ+ Ὀ‰ᴂὸ+ ὅ Ὢ†‰ὸ,ὃsin ‰ὸ+ ‚έ + ‐‰ Ὥ(ὸ) = 0 (16) 

ά ᾀᴂᴂὸ+ Ὠᾀᴂὸ+ Ὧ ὪὊ arcsin
ᾀὸ

ὃ
‚έ,ᾀὸ + ‐ᾀ Ὥ(ὸ)  = 0 (17) 

ὒὧέὭὰ1ȣ3Ὥ
ᴂ(ὸ) + ὙὧέὭὰ1ȣ3 + ὙὰέὥὨ Ὥὸ= ‐ ‰(ὸ)  (18) 

As ᾀ(ὸ)  is a dependent cam parameter of‰(ὸ) , (11) is inserted into Ὢ†to obtain (16). In (17), parameter ‰(ὸ)  

of ὪὊ has been replaced with ᾀ(ὸ)  using the inverse function of (11). Another way to write (17) is, replacing ᾀ(ὸ) 
with ‰(ὸ)  (and their derivatives) using (11): 

ά ὃ( sin ‰ὸ+ ‚έ‰
ᴂ(ὸ)2 + cos‰ὸ+ ‚έ‰

ᴂᴂ(ὸ)) + Ὠ ὃcos(‰ὸ+ ‚έ)‰ᴂὸ
+ Ὧ ὪὊ‰ὸ,ὃsin ‰ὸ+ ‚έ = 0 (19) 
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The seemingly complex torque displacement term of (16) is a 1D curve which might have a 2“ periodicity, 

depending on the used stator-rotor PM configuration (Fig.7 shows for instance such a sample curve). In the next 

chapter, we use (16) and (18) and assume that the axial cam friction is small. This cannot safely be assumed, as 

additional mechanical friction from the cam will be present (additional friction like air drag in both cases not 

considered). 

 

3.2 Time domain response 

Figure 12 shows the top-level block diagram of MATLAB Simulink implementation of DE system (16) 

and (18). The shown damping characteristic for this model is depicted in red ´Damping Models´ (one of the 3 

different friction models can be selected). The damping feedback of the electrical domain into the mechanical 

domain is shown with a blue amplifier block named ´coilCoupling2´ (corresponding transducer constant times 

electrical current ‐‰Ὥ). In the following simulations, the feedback loop has been set zero, e.g. ‐‰Ὥ= 0. A simple 

mechanical SDoF system is given with only a radial moving mass and inertia ὐ, a nonlinear mechanical friction 

and an elaborate stiffness term (see for example Fig.7 implemented via a lookup table). 

 
Fig.10. Top level implementation of DE set (15) and (17) in MATLAB Simulink. 

In Fig.11, the motion signals (‰1,‰1ᴂ) of a rotor with an axial harmonic cam(11) and parameters ὃ= 1mm, 

=ὲ 3 and ‚έ= 0is shown, including also the normalized stiffness signal (ὝάὥὫ ὲέὶά .). In such a case an 

apparent perpetual rotor motion is generated. The final angular velocity steady state signals are highly 

dependent of the chosen stator-rotor PM distribution and the friction of a given cam.Generating a harmoni cam 

with =ὲ 3that absorbs not too much of friction and has a profile as shown in Fig.7a (see also Fig.8b or Fig.11 

pink line) is only difficult to realize. A more realisitc cam should have only one single period per revolution, e.g. 

=ὲ 1 or at least an amplitude which is smaller.   
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Fig.11. Initial condition of rotor movement is =1Ὓ 400άὭὲ1 (see also parameter settings in subheadings). The shown 

system behavior of an axial cam movement and PM distribution from Fig.7a with rotor displacement ‰ (blue) and its angular 

velocity (green) oscillating with steady state angular velocity oscillation 26.3ὶὥὨίϳ < > 35.2ὶὥὨίϳ. A nonlinear 

friction model ὝὪ(= 3) of [14] for this rotary SDoF system has been applied. 

Note also, that such a distribution can be arbitrarily repeated over the stator and rotor system and therefore 

overcome principally any rotary friction (Ὀ1). Furthermore, such apparent perpetual rotor motion can only be 

achieved when a kinetic start energy Ὕ1Ὓ(20) is greater or equal than the equivalent applied maximal angular 

steady state velocity oscillation =άὥὼ ‰ᴂ
άὥὼ

.  

Ὕ1Ὓ=
1

2
 ὐ ‰ᴂ

άὥὼ
2

 (20) 

1Ὓ άὥὼ = ‰ᴂ
άὥὼ

 (21) 

 

IV . Resonant Oscillator Using Magnetic Spring 

4.1 Lumped parameter model 

Let us consider the case with no cam function and both DoF can oscillate freely. The lumped parameter 

model for such a KEH system is depicted in Fig.12. For this system, six symmetric stator PMs are drawn (they 

could represent also a stator PM distribution shown in Fig.13 with two rows of 6 PMs) and on the rotor two 

symmetrical placed PMs are present. In addition, also axially in z direction two sets of PMs are present. The 

inner PMs (A) are fixed on the rotor and this system ((A) and rotor) can slide in the hollow shaft axially (along 

the z axis) and the outer PMs (B) are fixed on the hollow shaft which rotates in the x-y plane. ᾀὥίώά  denotes the 

distance from origin ὕ to the symmetry axis of the off-centered rotor system. 

 
Fig.12. Lumped parameter model of 2DoF KEH system with a rotating ‰(ὸ)  axially ᾀ(ὸ) moving rotor on a hollow shaft is 

drawn without no bearings. A transducer might be present, electrical domain shown in the lower left-hand side corner. 

The resulting model, which has been already developed in chapter III , can be written as shown in DE 

system (23), (24) and (25).Independent variables are ‰(ὸ)  and ᾀ(ὸ)  with inertia ὐ and mass ά, as already 

derived in (16) and (18). Also, the mechanical damping terms Ὀ and Ὠ are present and realized with a nonlinear, 

e.g. stick-slip friction model[14]. The stiffness functions are more elaborately modeled compared to (16) and 

(18). No fixed periodic torque and force function can be assumed, but for each PM spring the sum of all torque 

and force signals over one complete 2“ cycle is modeled. The normalizedὪ†, ὪὊ functions represent the torque 

and force components of the stator spring system (over one 2“ period). The rotor magnets are placed at ‰ὲ and 

ᾀὲ. The stiffness term ὅὶ amplifies the torque sum of all magnets present in the system ὲὖὓ. The same setup is 

done for the force functions in the force DE (24), where Ὧὶ represents the axial spring stiffness amplitude and Ὧ1 

and Ὧ3 the corresponding linear and nonlinear stiffness parameters of the axial spring system (in Fig.12, section 

A-A depicted with (A) and (B)). Transducers on the stator might add additional viscous damping to the 

corresponding DE, here present with the according transducer parameters ‐‰ and ‐ᾀ for the radial and axial 

component. 

The potential Ὗof the axial spring is known (22) and applying the Lagrangian formalism (13), (14), we 

obtain the terms Ὧ1 ᾀ+ Ὧ3ᾀ
3 of (24). This 3

rd
 order polynomial approach is beneficial when dealing with 
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nonlinear spring system, see for example [15]. Note that Ὗ represents solely the axial spring potential ï a spring 

potential for the radial spring system could not be obtained successfully (appendix chapter VII ). In case the rotor 

is driven forced, the angular velocity .is unequal zero 0 

Ὗ=
1

2
Ὧ1(ᾀ ᾀὥίώά )2 +

1

4
Ὧ3(ᾀ ᾀὥίώά )4 (22) 

ὐ‰ᴂᴂ+ Ὀ ‰ᴂ 0 + ὅὶ Ὢ†‰ ‰ὲ,ᾀ ᾀὲ
ὲὖὓ

ὲ= 1
+ ‐‰Ὥ= 0 (23) 

άᾀᴂᴂ+ Ὠᾀᴂ+ Ὧὶ ὪὊ‰ ‰ὲ,ᾀ ᾀὲ
ὲὖὓ

ὲ= 1
+ Ὧ1 (ᾀ ᾀὥίώά ) + Ὧ3(ᾀ ᾀὥίώά )3 + ‐ᾀὭ= 0 (24) 

ὒὧέὭὰὛόά 16Ὥ
ᴂ+ (ὙὧέὭὰὛόά 16 + ὙὰέὥὨ)Ὥ= ‐‰‰+ ‐ᾀᾀ (25) 

One configuration of the stator spring system is depicted in Fig.13. The developed stator surface for torque 

(a) and force (b) functions is given here for the radially placed PM batteries. The shown plots are simply a Lego-

like placed summation plot, composed of 12 disk PMs (see corresponding equations (8), (10)and Fig.3b, 

Fig.4b). The radial PMs correspond to the distribution on the stator in the x-y plane of Fig.12 and the axial 

magnets correspond to the PMs shown on the stator in the y-z plane (section A-A). The axial spring system is 

done simpler ï only one z dependent direction for this spring setup is used (Fig.14a). Instead of only two 

nonpolar magnetic repulsion systems (see also Fig.12 section A-A, (A) and (B)) in the center of the z axis, also a 

more elaborated axial spring system might be present ï in the same fashion as the radial spring system. 

 
(a) 

 
(b) 

Fig.13. Radial PM stator distribution with 2rows and 6 symmetrical distributed PMôs over 360° (30° angle- and 10mm z 

distance-offset of each set). Diagram (a) shows torque signal and its corresponding force signal (b). 

 
(a) 

 
(b) 

Fig.14.Normalized force using a 3rdorder polynomial approximation (a) and damping behavior for corresponding radial 

(blue) and axial (red) velocities (b). 

The shown damping characteristic for this model is depicted in Fig.14. The implementation of the 

fundamentally simple nonlinear DE set (23), (24) and (25) is shown in Fig.15. The damping feedback of the 

electrical domain into the mechanical domain is shown with blue amplifier blocks named ´coilCouplingZ´ 

(corresponding‐ᾀὭ) and ´coilCouplingPhi´ (corresponding‐‰Ὥ). In the following simulations, both feedback 

loops have been set zero, e.g. ‐‰Ὥ= ‐ᾀὭ= 0. The 2D torque- and force-springs have been derived in (8) and 

(10). Its first order approximation can be written as (26) and (27). 

Ὢ†‰,ᾀḙὅὶὦ1†sin ‰ †‰ ὥ0†
+ ὥὲ†cosᾀ† ᾀ  (26) 
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ὪὊ‰,ᾀḙὯὶὦ1Ὢ
sin ‰ Ὢ‰ ὥ0Ὢ

+ ὥὲὪcos ᾀὪ ᾀ  (27) 

Inserting (26) and (27) into DE system (23), (24)and setting both transducer constants zero ‐‰= ‐ᾀ= 0, a 

simplified mechanical DE system can be obtained:  

ὐ‰ᴂᴂ+ Ὀ‰ᴂ 0 + ὅὶὦ1†sin ‰ †‰ ὥ0†
+ ὥὲ†cos ᾀ† ᾀ = 0 (28) 

άᾀᴂᴂ+ Ὠᾀᴂ+ Ὧὶὦ1Ὢsin ‰ Ὢ‰ ὥ0Ὢ
+ ὥὲὪcos ᾀὪ ᾀ + Ὧ1 (ᾀ ᾀὥίώά ) + Ὧ3(ᾀ ᾀὥίώά )3 = 0 (29) 

Inspecting, expanding (28) and (29), it follows that both DE have the form of damped Hill´s DE (where Ὢὴ 

denotes the periodic function generalized from the Mathieu DE where it is limited to harmonic functions): 

ήᴂᴂ+ Ὠήᴂ+ ήὥ+ Ὢὴὸ = 0 (30) 

Such DE have a most complex stability behavior ï in this system of (28) and (29), they are additionally 

mutually coupled. This is most interesting and in the next section we will show that such oscillator systems 

might exhibit at least one mutually coupled stable resonance.  

4.2 Time domain response 

Simulation results with given radial PM stator distribution (resulting torque and force signal of Fig.13) are 

depicted inFig.16 ï Fig.20. In those figure captions, first subheading shows initial conditions and axial impact 

range (impacting is used only in exceptions ï implementation of such impacting described in appendix chapter 

IX, here set to ± 5.5άά). Second subheading starts with rotor PM radial and axial distribution, ὪὶὥὨ and Ὢὥὼ. 
Subscripts of those functions give the geometrical placing of the rotor magnets. For example, in Fig.16a all six 

radial magnets are placed in the center at 0άά, whereas for the axial spring a 1D PM spring is placed. In 

Fig.16b, instead of an axial 1D PM spring, a 2D PM spring system is placed with three axial magnets on each 

side asymmetrically at + 25άά and three at 27άά (see also appendix chapter VIII ). Superscript of ὪὶὥὨ and 

Ὢὥὼ give the radial and axial location in 10° intervals. In the legends of Fig.16 ï Fig.20, ‰1, ‰1
ᴂ and ᾀ1, ᾀ1

ᴂ 

denotes the displacement and velocity signal ‰, ‰ᴂ (1st
 DoF) and ᾀ, ᾀᴂ (2nd

 DoF). 

In simulation of Fig.16b, we have radially six symmetrical PMs placed and axially at each side three PMs 

(at 0°, 120° and 240°). ᾀὥ indicates that axial distribution is done asymmetrical (see also equation (24)) and 

followed by the stiffness factorsὅὶὥὨ,ὥὼ. The last subheading starts with a potential excitation velocity and ,0 

its time ὸὩὼὧέὪὪ ï both set zero. The radial and axial damping main parameter is indicated with Ὀ1 and Ὠ1 (the 

additional damping parameters not shown (to create the damping behavior of Fig.14). Inertia and mass are also 

set realistically using 3D printing technologies. 

 


