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Abstract: In this paper, semi empirical formula for the mechanical properties of perovskite solids is elaborated 

in terms of lattice constant (a in Å) and product of ionic charges of the bonding. Values of bulk modulus(GPa), 

of the cubic perovskites (halides and oxides) exhibit a linear relationship when plotted against the lattice 

constant (a˚) normalization, but fall on different straight lines according to the product of ionic charges of the 

compounds and their modulus predictions are in good agreement with the experimental data and those from ab 

initio calculations. 
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I. Introduction 
During last few years, the elastic moduli, which is of great of importance in assessing the competition 

between the ductile and brittle failures, have been extensively investigated in relation to various microscopic 

characteristics of different sorts of materials, such as metals and covalently bonded crystals. Due to difficulties 

associated with experimental processes and their cost, as well as difficulties in obtaining accurate values of 

physical properties, researchers moved to calculate the physical properties of solids through computational 

methods[1-10]. Recent developments in modeling, through the use of density functional theory (DFT) and the 

increased availability of computational power, have made predictions of solid-state properties ab initio from 

theoretical principles relatively straightforward. Hence it is now common to see calculations for the solid-state 

properties of binary and ternary compounds. Experimental data to verify these predictions are sparse, especially 

for non-equilibrium systems, and it can be difficult to interpret the accuracy of published data [11, 12].  

Currently, most elastic modulus evaluations are carried out using ab initio techniques; however, one 

has to keep in mind that the rationalization of these first-principles calculations often requires profound 

understanding of the nature of the chemical bonding and its attributes in various solid-state systems. But due to 

the long process, methods involving a as well as complicated computational series of approximations, such a 

method has always been complicated. These concepts are directly associated with the character of the chemical 

bond and thus provide means for explaining and classifying many basic properties of molecules and solids.In the 

past few years [13-14], a number of theoretical calculations based on empirical relations have become an 

essential part of material research. In many cases empirical relations do not give highly accurate results for each 

specific material, but they still can be very useful. In particular, the simplicity of empirical relations allows a 

broader class of researchers to calculate useful properties, and often trends become more evident.[15-17].  

 

II. Mechanical properties of perovskite compounds 
The bulk modulus is an important mechanical property of a material and defines its resistance to 

volume change when compressed. Therefore, we have presented and studied the various models and theories 

describing the bulk modulus (B) of these materials. Cohen[17] predicted that bulk modulus B (GPa) by the semi 

empirical expression for the covalent materials by the relation, 
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Where NC is the bulk coordination number, d is the bond length, and  is an empirical ionicity parameter that 

takes the values of 0, 1, and 2 for IV, III-V and II-VI group semiconductors, respectively. Recently, Verma and 

co-authors [18-21] has been evaluated the structural, electronic, mechanical and ground state properties of 

binary and ternary crystals with the help of ionic charge theory. This is due to the fact that the ionic charge 

depends on the number of valence electrons, which changes when a metal forms a compound. In this paper, we 

improved this formula by replacing the adhoc empirical ionicity parameter with more suitable product of ionic 

charge of the compounds. Both experimental data and theoretical calculations based on density functional theory 

follow the correlation. 

There have been a number of reports in the past of empirical relations describing the mechanical properties of 

solids. Anderson and Nafe [22] first proposed an empirical relationship between bulk modulus B at atmospheric 

pressure and specific volume V0 of the form B~ V0
-x

. They find it to hold for a particular class of compounds. 
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Where, the value of x depends on the class of the compounds. For alkali halide, fluorides, sulfides and telluride 

they find x to be 1 and oxide compounds x is close to 4. One of the earliest attempts at describing bulk modulus 

B in terms of electronic parameters [23] yielded a simple proportionality relation between B and the product of 

the electron concentration with Fermi energy. However, the resulting formula is of limited utility, since it 

usually gives values within a factor of 2 of the experimental values. Recently, Gilman [24] derived expressions 

for both bulk B and shear G moduli of metals based on simplified quantum-mechanical considerations. The 

derived expressions also suffer from notable deficiencies, as they ignore the effects induced by ionicity of the 

bonds and exchange-correlation interactions amongst others.  

Both bulk B and shear G moduli can be derived from the second derivative of the total energy E with respect to 

the appropriate deformation parameter at the equilibrium state as follows [17, 25]: 
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Where and  stand for volume and dimensionless deformation parameter, respectively. From Esq. (2) and (3), 

it is evident that the first step in establishing the formulae for bulk and shear moduli is to approximate the 

energy derivatives in terms of chemical bonding parameters. Due to their spherical symmetry and tight-binding 

character, the core electrons are nearly unresponsive to low-energy perturbations [26]like those occurring under 

elastic deformation; while the valence electrons are completely affected by such phenomena. Therefore, within 

the limits of the elastic regime, the second derivative of the total energy can be approximated by the variation of 

the valence electrons’ force. In the case of covalently bonded materials, as discussed by Philips [16]the band gap 

energy Egprovides an estimation of the valence bond strength and it results from homopolar and heteropolar or 

ionic contributions of the atoms to the bonds as follows: 
222

chg EEE  (4) 

Here Eh refers to the homopolar or covalent contribution to the bonding, while Ec corresponds to the ionic 

contribution or the charge transfer to the bonds. In the case of purely covalent group IV crystals, such as 

diamond, silicon, or germanium, Eg is equal to Eh. Consequently, Eh characterizes the strength of the covalent 

bond. Cohen was the first to maintain [17] that Philips’ homopolar band gap energy is the dominant energy 

parameter in covalent solids. Recently, relationships connecting inherent traits such as thermal activation 

energies [27] and hardness [28] to the homopolar band gap energy were elaborated in the case of covalent 

crystals. These works further confirm that the intrinsic properties of covalent materials are predominantly 

dictated by Eh. Using a scaling argument, Eh can be expressed in terms of d as follows: [16] 
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where the units of Eh are in eV and d (nearest neighbour distance) is in Å. Since for small amounts of 

deformation, the strain parameter is a linear function of the nearest neighbour distance, from Eq. (5.5), it follows 

that 
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The cylindrical-shaped charge volume of covalent crystals is a linear function of the nearest neighbour distance, 

  daB

2
2 (aBis Bohr radius) and it can be used in Eqs. (2) and (3), since it enclose the largest electron 

concentration [17]. Thus Equations (2) – (6) yield 
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III. Bulk modulusandIonic charge theory 
On the basis of concept of ionic charge theory, a chemical bond is formed when the atoms with 

incomplete valence shells combine. The valence electrons refer to the electrons that take part in chemical 

bonding. These electrons reside in the outer most electron shell of the atom. Ionic charge depends on the 

outermost-shell electrons of an atom.In previous research [13, 19], we found that substantially reduced ionic 

charges must be used to get better agreement with experimental values. Goldschmidt [29] has pointed out that a 

term A = Za Zc, where Za and Zc are the valence number of anion and cation, respectively, may be considered for 

a direct comparison of the hardness. Further it is well known that the hardness is closely related to the elastic 

properties of crystals [30] Ionic charge depends on the outermost-shell electrons of an atom. Thus, there must be 

a correlation between ionic charge and the properties of solids[40].It has been verified[17]that elastic moduli 

assume a decreasing linear trend with increasing lattice parameter. Therefore, based on Equation (7), the fact, 

that bulk modulus (B) is linear functions of lattice parameter. The bulk modulus is expected to exhibit the 
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explicit dependences on lattice parameter (a) and ionic charge (Z). As an example, for verification of ionic 

charge theory, we have plotted the curves between B Vs a
3.5

 (B = bulk modulus in GPa, a = lattice parameter in 

Å) for group A
+1

B
+2

X3, (X = F. Cl, Br), A
+2

B
+4

O3 and A
+3

B
+3

O3 cubic perovskites and plotted in the figure 1.  
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Figure 1. Plot of bulk modulus B (GPa) and lattice constant (a in Å) for the group A

+1
B

+2
X3, (X = F. Cl, Br), 

A
+2

B
+4

O3 and A
+3

B
+3

O3 perovskites and found at three positions, which is depending upon the product of ionic 

charges. In this figure bulk modulus and lattice constant values are taken from Reference [1-10, 31-38]. 

We observe that in this plot of B Vs a
3.5

normalization, the group A
+1

B
+2

X3, (X = F. Cl, Br), A
+2

B
+4

O3 and 

A
+3

B
+3

O3 cubic perovskites exhibit three positions in this figure. These effects induced by the ionic charges of 

the compounds in the case of group A
+1

B
+2

X3, (X = F. Cl, Br), A
+2

B
+4

O3 and A
+3

B
+3

O3 perovskites. If all data of 

bulk modulus (in GPa) plots with product of ionic charges (Za ZbZc) of group A
+1

B
+2

X3, (X = F. Cl, Br), 

A
+2

B
+4

O3 and A
+3

B
+3

O3 perovskites and found a straight line for all groups, which are presented in figure 2. We 

note the procedure for determining B (in GPa) from these techniques considers a difference between 

experimental measurements, and this could magnify errors. Linear regression lines have been plotted for the 

bulk modulus (in GPa), which result in equations of the form 

 
5.3
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where Za,,Zb and Zcare the ionic charges on the A, B and X, respectively and a is lattice parameter in Å. The 

parameters S (1.794.15) and V (5505.785186.86) are constants. The correlation coefficient R (0.97092) 

obtained from the regression analysis. The significance of the regression is given as the probability P (0.0001) 

of the null hypothesis (that there is no correlation) for ABX3 (X = F. Cl, Br) perovskites materials. 
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Figure 2 Bulk modulus B (GPa) for perovskites (A

+1
B

+2
X3; X = F, Cl, Br, A

+2
B

+4
O3 and A

+3
B

+3
O3) as a 

function of (Za ZbZc)
0.35

/a
3.5

. This line show linear relationship as determined by regression analysis. In this 

figure bulk modulus and lattice constant values are taken from Reference [1-10, 31-38]. 
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From the comparison figures 1 and 2, we see that three lines found in figure 1 due to different ionic charges of 

the compounds. In figure 2, it has been verified that bulk modulus assumes a linear trend with lattice parameter. 

The facts that Bulk modulus is linear function of product of ionic charges and 1/a
3.5 

 

Table 1. Values of bulk modulus (B in GPa) defined by Eq. (8) obtained for A
+1

B
+2

X3, (X = F. Cl, Br), 

perovskites. 

Solids a (Å) [5] B (GPa) 

[1-4] 

B (GPa) 

this work 

Solids a (Å) 

[5] 

B (GPa) [3, 

4] 

B (GPa) this 

work 

CsCdF3 4.47 58 54.6 RbPbF3 4.79  42.9 

CsCaF3 4.523 49 52.4 KCaF3 4.38  58.6 

CsHgF3 4.57 55 50.5 KCdF3 4.293  62.9 

CsSrF3 4.75  44.1 KMgF3 3.989 82.7 81.3 

CsEuF3 4.78  43.2 KNiF3 4.013  79.6 

CsPbF3 4.8 36 42.6 KZnF3 4.056 85.5 76.7 

CsYbF3 4.61  49.0 KCoF3 4.071  75.7 

CsCaCl3 5.396 23.4 28.2 KVF3 4.1  73.9 

CsCdCl3 5.21  31.9 KFeF3 4.121  72.6 

CsPbCl3 5.605 25.8 24.7 KMnF3 4.189 64.9 68.5 

CsHgCl3 5.41  28.0 NaVF3 3.94  84.9 

CsEuCl3 5.627  24.4 NaMgF3 3.84 87.9 92.9 

CsTmCl3 5.476  26.8 NaZnF3 3.88 89.8 89.6 

CsYbCl3 5.437  27.5 NaCoF3 3.9  88.0 

CsPbBr3 5.874 23.5 21.0 AgMgF3 3.918  86.6 

CsPbI3 6..29 19.8 16.5 AgNiF3 3.936  85.2 

RbZnF3 4.11 86.9 73 AgZnF3 3.972  82.5 

RbCoF3 4.141  71.3 AgCoF3 3.983  81.8 

RbVF3 4.17  69.6 AgMnF3 4.03  78.5  

RbFeF3 4.174  69.4 LiBaF3 3.992  81.1 

RbMnF3 4.24 67.5 65.7 TlCoF3 4.138  71.5 

 

Table 2. Values of bulk modulus (B in GPa) defined by Eq. (8) obtained for A
+2

B
+4

O3 perovskites. The values 

of bulk modulus are tabulated as experimental (E) for comparison. 

Solids a (Å)  

[5] 

B (GPa) [7-

10, 31] 

B(GPa) 

thiswork 

Solids a (Å) 

[5] 

B (GPa) 

[32-35] 

B (GPa) this 

work 

BaMnO3 3.846 196 191.3 SrVO3 3.89 181.5  183.9 

BaFeO3 3.994  167.6 SrFeO3 3.85  190.6 

BaMoO3 4.04  161.0 SrTiO3 3.905 179 
E
 181 

BaNbO3 4.08 171 155.6 SrTcO3 3.949  174.4 

BaSnO3 4.116 145.8 
E
 150.9 SrMoO3 3.975  170.5 

BaHfO3 4.171  144.0 SrNbO3 4.016 173 164.4 

BaZrO3 4.193 127 
E
 141 SrSnO3 4.034 164 161.9 

BaIrO3 4.1  152.9 SrHfO3 4.069  157.1 

BaPbO3 4.265  133.2 SrTbO3 4.18  142.9 

BaTbO3 4.285  131.1 SrAmO3 4.23  137.1 

BaPrO3 4.354  123.9 SrPuO3 4.28  131.6 

BaCeO3 4.397  119.7 SrCoO3 3.85  190.6 

BaAmO3 4.357  123.6 SrZrO3 4.104 151 152.4 

BaTiO3 4.012 162 
E
 165.0 CaZrO3 4.01  165.3 
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Table 3. Values of bulk modulus (B in GPa) defined by Eq. (8) obtained for A
+3

B
+3

O3 perovskites. 

Solids a (Å) [5] B (GPa) 

[36, 37] 

B (GPa) this 

work 

Solids a (Å) [5] B (GPa) 

[37, 38] 

B (GPa) this 

work 

EuTiO3 3.905 172.6 189.0 NdCrO3 3.835  201.4 

EuAlO3 3.725  223.0 NdFeO3 3.87  195.1 

EuCrO3 3.803  207.4 NdMnO3 3.8  207.9 

EuFeO3 3.836  201.2 PrAlO3 3.757  216.4 

EuGaO3 3.84  200.5 PrCrO3 3.852  198.3 

EuInO3 4.03  169.3 PrFeO3 3.887  192.1 

CeAlO3 3.772  213.4 PrGaO3 3.863  196.3 

GdAlO3 3.71  226.1 PrMnO3 3.82  204.2 

GdCrO3 3.795  208.9 PrVO3 3.89  191.6 

GdFeO3 3.82  204.2 PrCoO3 3.78 130 211.8 

LaAlO3 3.778  212.2 SmAlO3 3.734  221.1 

LaCrO3 3.874  194.4 SmCoO3 3.75  217.8 

LaFeO3 3.92  186.5 SmVO3 3.89  191.6 

 

IV. Results and discussion 
Elastic moduli are important for theoretical understanding of material properties. It is determined by 

the phonon density of states and lattice anharmonicity effects or by electron-phonon interaction processes 

mediated via deformation potentials. In view of the still unsatisfactory and contradictory data on the mechanical 

properties of the compounds on the one hand and of the importance of their knowledge for a comprehensive 

analysis of a wide variety of material characteristics on the other hand it was the aim of the present study to 

critically evaluate and review related experimental and theoretical data reported in the literature so far. In the 

tables 1-3, we have presented experimental and theoretical bulk modulus values evaluated by different 

researchers [1-4, 7-10, 31-38] for the sake of comparison. The simple trend when a larger lattice constant leads 

to a smaller bulk modulus. It has been demonstrated also for different perovskites ABO3[39,40]. In the present 

work it is shown that analogous relation exists for the perovskite materials, which can be successfully employed 

to estimate the bulk modulus from their ionic charges. 

 

V. Summary and conclusions 
From the above results and discussion obtained by using the proposed empirical relation, it is quite 

obvious that the parameter such as bulk modulus reflecting the mechanical property can be expressed in terms of 

ionic charge, pressure, volume and temperature of the material. We note that the evaluated values of bulk 

modulus by the proposed relation (5.8) are in close agreement with the experimental data as compared to the 

values reported by previous researchers so far. For example, the results for bulk modulus differ from 

experimental by 1% (SrTiO3), 1.8% (BaTiO3), 3.5% (BaSnO3) and 11% (BaZrO3) in the current study. 
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